Showing 1 - 1 results of 1 for search '"стабильность вакцин"', query time: 0.38s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00026-24-01 (R&D Registry No. 124022200103-5), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-01 на проведение прикладных научных исследований (номер государственного учета НИР № 124022200103-5)

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 3 (2024); 335-347 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 3 (2024); 335-347 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-3

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/613/918; https://www.biopreparations.ru/jour/article/downloadSuppFile/613/1039; Berkowitz S, Rathore AS, Krull IS. Challenges in the determination of protein aggregates. Part II. LCGC North Am. 2015;33(7):478–89.; Rathore AS, Krull IS. Challenges in the determina tion of protein aggregates. Part I. LCGC North Am. 2015;33(1):42–9.; Noel JC, Lagassé D, Golding B, Sauna ZE. Emerging approaches to induce immune tolerance to therapeutic proteins. Trends Pharmacol Sci. 2023;44(12):1028–42. https://doi.org/10.1016/j.tips.2023.10.002; Wearne SJ, Creighton TE. Effect of protein conformation on rate of deamidation: ribonuclease A. Proteins. 1989;5(1):8–12. https://doi.org/10.1002/prot.340050103; Grigolato F, Arosio P. Synergistic effects of flow and interfaces on antibody aggregation. Biotechnol Bioeng. 2020;117(2):417–28. https://doi.org/10.1002/bit.27212; Shah M. Commentary: New perspectives on protein aggregation during biopharmaceutical development. Int J Pharm. 2018;552(1–2):1–6. https://doi.org/10.1016/j.ijpharm.2018.09.049; Chi EY, Krishnam S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20(9):1325–36. https://doi.org/10.1023/a:1025771421906; Jacob S, Shirwaikar AA, Srinivasan KK, Alex J, Prabu SL, Mahalaxmi R, Kumar R. Stability of proteins in aqueous solution and solid state. Indian J Pharm Sci. 2006;68(2):154–63. https://doi.org/10.4103/0250-474X.25708; Larson NR, Wei Y, Prajapati I, Chakraborty A, Peters B, Kalonia C, et al. Comparison of polysorbate 80 hydrolysis and oxidation on the aggregation of a monoclonal antibody. J Pharm Sci. 2020;109(1):633–9. https://doi.org/10.1016/j.xphs.2019.10.069; Xie M, Schowen R. Secondary structure and protein deamidation. J Pharm Sci. 1999;88(1):8–13. https://doi.org/10.1021/js9802493; Cohen S, Price C, Vlasak J. β-Elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage. J Am Chem Soc. 2007;129(22):6976–7. https://doi.org/10.1021/ja0705994; Cordoba AJ, Shyong B, Breen D, Harris RJ. Non-enzy matic hinge region fragmentation of antibodies in solution. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;818(2):115–21. https://doi.org/10.1016/j.jchromb.2004.12.033; Werner R, Kopp K, Schlueter M. Glycosylation of therapeutic proteins in different production systems. Acta Paediatr. 2007;96(455):17–22. https://doi.org/10.1111/j.1651-2227.2007.00199.x; Luo D, Smith SW, Anderson BD. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J Pham Sci. 2005;94(2):304–16. https://doi.org/10.1002/jps.20253; Cleland JL, Lam X, Kendrick B, Yang J, Yang T, Overca shier D, et al. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci. 2001;90(3):310–21. https://doi.org/10.1002/1520-6017(200103)90:3%3C310::aid-jps6%3E3.0.co;2-r; Constantino HR, Carrasquillo KG, Cordero RA, Mumenthaler M, Hsu CC, Gribenow K. Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J Pharm Sci. 1998;87(11):1412–20. https://doi.org/10.1021/js980069t; Lai MC, Topp EM. Solid-state chemical stability of proteins and peptides. J Pharm Sci. 1999;88(5):489–500. https://doi.org/10.1021/js980374e; Li S, Patapoff TW, Overcashier, D, Hsu C, Nguyen TH, Borchardt RT. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state. J Pharm Sci. 1996;85(8):873–7. https://doi.org/10.1021/js950456s; Narhi LO, Chou DK, Christian TR, Gibson S, Jaganna than B, Jiskoot W, et al. Stress factors in primary packaging, transportation and handling of protein drug prod ucts and their impact on product quality. J Pharm Sci. 2022;111(4):887–902. https://doi.org/10.1016/j.xphs.2022.01.011; Besheer A, Burton L, Galas RJ Jr, Gokhale K, Goldbach P, Hu Q, et al. An industry perspective on compatibility assessment of closed system drug-transfer devices for bio logics. J Pharm Sci. 2021;110(2):610–4. https://doi.org/10.1016/j.xphs.2020.10.047; Campa C, Pronce T, Paludi M, Weusten J, Conway L, Savery J, et al. Use of stability modeling to support acceler ated vaccine development and supply. Vaccines (Basel). 2021;9(10):1114. https://doi.org/10.3390/vaccines9101114; Bunc M, Hadži S, Graf C, Bončina M, Lah J. Aggregation time machine: a platform for the prediction and optimization of long-term antibody stability using short-term kinetic analysis. J Med Chem. 2022;65(3):2623–32. https://doi.org/10.1021/acs.jmedchem.1c02010; https://www.biopreparations.ru/jour/article/view/613