Εμφανίζονται 1 - 20 Αποτελέσματα από 66 για την αναζήτηση '"спинальная мышечная атрофия"', χρόνος αναζήτησης: 1,10δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The authors of this article confirmed the lack of conflict of interest and financial support, which should be reported, Авторы данной статьи подтвердили отсутствие конфликта интересов и финансовой поддержки, о которых необходимо сообщить

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 4 (2024); 16-30 ; Российский вестник перинатологии и педиатрии; Том 69, № 4 (2024); 16-30 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2024/1508; Анисимова И.В., Артемьева С.Б., Белоусова Е.Д., Влодавец Д.В., Вольский Г.Б., Германенко О.Ю. и др. Проксимальная спинальная мышечная атрофия 5q. Клинические рекомендации, 2023.; Kolb S.J., Coffey C.S., Yankey J.W., Krosschell K., Arnold W.D., Rutkove S.B. et al. NeuroNEXT Clinical Trial Network on behalf of the NN101 SMA Biomarker Investigators. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol 2017; 82(6): 883–891. DOI:10.1002/ana.25101; Cances C., Vlodavets D., Comi G.P., Masson R., Mazurkiewicz-Bełdzińska M., Saito K. et al.; ANCHOVY Working Group. Natural history of Type 1 spinal muscular atrophy: a retrospective, global, multicenter study. Orphanet J Rare Dis 2022; 17(1): 300. DOI:10.1186/s13023–022–02455-x; Fauroux B., Khirani S., Griffon L., Teng T., Lanzeray A., Amaddeo A. Non-invasive Ventilation in Children With Neuromuscular Disease. Front Pediatr 2020; 8: 482. DOI:10.3389/fped.2020.00482.; Бабак С.Л. Неинвазивная вентиляция легких. Практическое руководство по респираторной медицине. М.: ГК «ТРИММ», 2020; 335 с.; Халл Д., Аниаправан Р., Чан Э., Четвин М., Фортон Д., Галлахер Д. и др. Руководство по респираторной поддержке детей с нервно-мышечными заболеваниями, 2015.; Darras B.T., Monani U.R., De Vivo D.C. Genetic Disorders Affecting the Motor Neuron. Swaiman’s Pediatr Neurol 2017; 6: 1057–1064. DOI:10.1016/b978–0–323–37101–8.00139–9; Finkel R.S., McDermott M.P., Kaufmann P., Darras B.T., Chung W.K., Sproule D.M. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014; 83(9): 810–817. DOI:10.1212/WNL.0000000000000741; De Sanctis R., Coratti G., Pasternak A., Montes J., Pane M., Mazzone E.S. et al. Developmental milestones in type I spinal muscular atrophy. Neuromuscul Disord 2016; 26(11): 754–759. DOI:10.1016/j.nmd.2016.10.002; Kolb S.J., Coffey C.S., Yankey J.W. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol 2017; 82: 883–891. DOI:10.1002/ana.25101; Annoussamy M., Seferian A.M., Daron A., Péréon Y., Cances C., Vuillerot C. et al.; NatHis-SMA study group. Natural history of Type 2 and 3 spinal muscular atrophy: 2-year NatHis-SMA study. Ann Clin Transl Neurol 2021; 8(2): 359–373. DOI:10.1002/acn3.51281; Артемьева С.Б., Кузенкова Л.М., Ильина Е.С., Курсакова Ю.А., Колпакчи Л.М., Сапего Е.Ю. и др. Эффективность и безопасность препарата нусинерсен в рамках программы расширенного доступа в России. Нервно-мышечные болезни 2020; 10 (3); 35–41. DOI:10.17650/2222–8721–2020–10–3–35–41; EDN: OUHJUQ.; Бофанова Н.С., Елисеева А.Р., Ончина В.С. Современные принципы терапии пациентов со спинальными мышечными атрофиями. Журнал неврологии и психиатрии им. C.C. Корсакова 2023; 123(3): 34–40. DOI:10.17116/jnevro202312303134; EDN: EILCJO.; Влодавец Д.В. Рисдиплам при лечении спинальной мышечной атрофии. Журнал неврологии и психиатрии им. С.С. Корсакова 2024; 124(2): 45–57. DOI:10.17116/jnevro202412402145; EDN: AITHVQ.; Paul G.R., Gushue C., Kotha K., Shell R. The respiratory impact of novel therapies for spinal muscular atrophy. Pediatr Pulmonol 2020; 56(4): 721–728. DOI:10.1002/ppul.25135; Finkel R.S., Mercuri E., Darras B.T., Connolly A.M., Kuntz N.L., Kirschner J. et al.; ENDEAR Study Group. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017; 377(18): 1723–1732. DOI:10.1056/NEJMoa1702752. PMID: 29091570.; Day J.W., Finkel R.S., Chiriboga C.A., Connolly A.M., Crawford T.O., Darras B.T. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20(4): 284–293. DOI:10.1016/S1474–4422(21)00001–6; Mercuri E., Muntoni F., Baranello G., Masson R., Boespflug-Tanguy O., Bruno C. et al.; STR1VE-EU study group. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20(10): 832–841. DOI:10.1016/S1474–4422(21)00251–9; Darras B.T., Masson R., Mazurkiewicz-Bełdzińska M., Rose K., Xiong H., Zanoteli E. et al. Risdiplam-treated infants with Type 1 spinal muscular atrophy versus historical controls. N Engl J Med 2021; 385(5): 427–435. DOI:10.1056/NEJMoa2102047; Mercuri E., Darras B.T., Chiriboga C.A., Day J.W., Campbell C., Connolly A.M. et al.; CHERISH Study Group. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N Engl J Med 2018; 378(7): 625–635. DOI:10.1056/NEJMoa1710504; Oskoui M., Day J.W., Deconinck N., Mazzone E.S., Nascimento A., Saito K. et al.; SUNFISH Working Group. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J Neurol 2023; 270(5): 2531–2546. DOI:10.1007/s00415–023–11560–1; Finkel R.S., Darras B.T., Mendell J.R., Day J.W., Kuntz N.L., Connolly A.M. et al. Intrathecal Onasemnogene Abeparvovec for Sitting, Nonambulatory Patients with Spinal Muscular Atrophy: Phase I Ascending-Dose Study (STRONG). J Neuromuscul Dis 2023; 10(3): 389–404. DOI:10.3233/JND-221560; De Vivo D.C., Bertini E., Swoboda K.J., Hwu W.L., Crawford T.O., Finkel R.S. et al.; NURTURE Study Group. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019; 29(11): 842–856. DOI:10.1016/j.nmd.2019.09.007; Strauss K.A., Farrar M.A., Muntoni F., Saito K., Mendell J.R., Servais L. et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med 2022; 28(7): 1381–1389. DOI:10.1038/s41591–022–01866–4; Strauss K.A., Farrar M.A., Muntoni F., Saito K., Mendell J.R., Servais L. et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial. Nat Med 2022; 28(7): 1390–1397. DOI:10.1038/s41591–022–01867–3; RAINBOWFISH Results Highlight Risdiplam as Effective Treatment for Presymptomatic SMA. https://www.ajmc.com/view/rainbowfish-results-highlight-risdiplam-as-effective-treatment-for-presymptomatic-sma / Ссылка активна на 25. 06. 2024.; Prior T.W., Leach M.E., Finanger E. Spinal Muscular Atrophy. In: GeneReviews® [Internet]. Editors M.P. Adam, G.M. Mirzaa, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K.W. Gripp et al., Seattle (WA): University of Washington, Seattle; 1993–2023.; Finkel R.S., Mercuri E., Meyer O.H., Simonds A.K., Schroth M.K., Graham R.J. et al.; SMA Care group. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018; 28(3): 197–207. DOI:10.1016/j.nmd.2017.11.004; Lemoine T.J., Swoboda K.J., Bratton S.L., Holubkov R., Mundorff M., Srivastava R. Spinal muscular atrophy type 1: are proactive respiratory interventions associated with longer survival? Pediatr Crit Care Med 2012; 13(3): e161–5. DOI:10.1097/PCC.0b013e3182388ad1; Edel L., Grime C., Robinson V., Manzur A., Abel F., Munot P. et al. A new respiratory scoring system for evaluation of respiratory outcomes in children with spinal muscular atrophy type1 (SMA1) on SMN enhancing drugs. Neuromusc Dis 2021; 31(4): 300–309. DOI:10.1016/j.nmd.2021.01.008; Chatwin M., Toussaint M., Gonçalves M.R., Sheers N., Mellies U., Gonzales-Bermejo J. et al. Airway clearance techniques in neuromuscular disorders: A state of the art review. Respir Med 2018; 136: 98–110. DOI:10.1016/j.rmed.2018.01.012; Hull J., Aniapravan R., Chan E., Chatwin M., Forton J., Gallagher J. et al. British Thoracic Society guideline for respiratory management of children with neuromuscular weakness. Thorax 2012; 67 Suppl 1: i1–40. DOI:10.1136/thoraxjnl-2012–201964

  3. 3
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 17, No 6 (2023); 707-717 ; Акушерство, Гинекология и Репродукция; Vol 17, No 6 (2023); 707-717 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1869/1164; Inhorn M.C., Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26. https://doi.org/10.1093/humupd/dmv016.; Клинические рекомендации – Женское бесплодие – 2021-2022-2023 (24.06.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 50 с. Режим доступа: https://moniiag.ru/wp-content/uploads/2019/07/Klinicheskie-rekomendatsii.-ZHenskoe-besplodie.pdf. [Дата обращения: 11.06.2023].; Регистр ВРТ. Отчет за 2020 год. Российская ассоциация репродукции человека, 2020. 56 c. Режим доступа: https://rahr.ru/d_registr_otchet/RegistrVRT_2020.pdf. [Дата обращения: 11.06.2023].; Забненкова В.В., Дадали Е.Л., Поляков А.В. Проксимальная спинальная мышечная атрофия типов I–IV: особенности молекулярно генетической диагностики. Нервно-мышечные болезни. 2013;(3):27–31. https://doi.org/10.17650/2222-8721-2013-0-3-27-31.; Lunn M.R., Wang C.H. Spinal muscular atrophy. Lancet. 2008;371(9630):2120–33. https://doi.org/10.1016/S01406736(08)60921-6.; Prior T.W., Leach M.E., Finanger E. Spinal muscular atrophy. GeneReviews®. National Library of Medicine, 2020. Режим доступа: http://www.ncbi.nlm.nih.gov/books/NBK1352/. [Дата обращения: 11.06.2023].; Маретина М.А., Киселев А.В., Ильина А.В. и др. Современные тенденции в диагностике, скрининге и лечении спинальной мышечной атрофии. Вестник Российской академии медицинских наук. 2022;77(2):87–96. https://doi.org/10.15690/vramn1768.; Scriven P.N. Combining PGT-A with PGT-M risks trying to do too much. J Assist Reprod Genet. 2022;39(9):2015–8. https://doi.org/10.1007/s10815-022-02519-8.; Vill K., Blaschek A., Schara U. et al. Spinal muscular atrophy: Time for newborn screening? Nervenarzt. 2017;88(120:1358–66. (In German). https://doi.org/10.1007/s00115-017-0447-3.; Гузева В.И., Иванов Д.О., Петренко Ю.В. и др. Проксимальная спинальная мышечная атрофия 5q. Методическое пособие для врачей. СПб.: СПбГПМУ, 2021. 20 с.; Zabnenkova V.V., Dadali E.L., Spiridonova M.G. et al. Spinal muscular atrophy carrier frequency in Russian Federation. In: Proceedings of American Society of Human Genetics (ASHG). Annual Meeting, 2016. 2476W. https://doi.org/10.13140/RG.2.2.16245.60642.; Sugarman E.A., Nagan N., Zhu H. et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012;20(1):27–32. https://doi.org/10.1038/ejhg.2011.134.; Ceylan A.C., Erdem H.B., Şahin İ., Agarwal M. SMN1 gene copy number analysis for spinal muscular atrophy (SMA) in a Turkish cohort by CODESEQ technology, an integrated solution for detection of SMN1 and SMN2 copy numbers and the “2+0” genotype. Neurol Sci. 2020;41:2575–84. https://doi.org/10.1007/s10072-020-04365-x.; Carré A., Empey C. Review of spinal muscular atrophy (SMA) for prenatal and pediatric genetic counselors. J Genet Couns. 2016;25(1):32–43. https://doi.org/10.1007/s10897-015-9859-z.; Плаксина А.Н., Ковтун О.П., Николаева Е.Б. Вспомогательные репродуктивные технологии: анализ достигнутых результатов и поиск новых решений (обзор литературы). Уральский медицинский журнал. 2017;(5):20–6.; Gates A., Terry S.F., Bonhomme N. Expanded carrier screening and its implications on genetic testing protocols. Genet Test Mol Biomarkers. 2016;20(11):643–4. https://doi.org/10.1089/gtmb.2016.29023.sjt.; Committee Opinion No. 690: Carrier Screening in the Age of Genomic Medicine. Obstet Gynecol. 2017;129(3):e35–40. https://doi.org/10.1097/AOG.0000000000001951.; Волобуев А.Н., Давыдкин И.Л., Колсанов А.В., Кудлай Д.А. Математические аспекты генетики. M.: ГЭОТАР-Медиа, 2020. 176 c. https://doi.org/10.33029/9704-5890-7-MAG-2020-1-176.; Hendrickson B.C., Donohoe C., Akmaev V.R. et al. Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet. 2009;46(9):641–4. https://doi.org/10.1136/jmg.2009.066969.; Gillingwater T.H. Counting the cost of spinal muscular atrophy. J Med Econ. 2016;19(8):827–8. https://doi.org/10.1080/13696998.2016.1202833.; Невмержицкая К.С., Сапего Е.Ю., Морозова Д.А. Краткосрочная безопасность и эффективность онасемноген абепарвовека у 10 пациентов со спинальной мышечной атрофией: когортное исследование. Вопросы современной педиатрии. 2021;20(6s):589–94. https://doi.org/10.15690/vsp.v20i6S.2367.; Droege M., Sproule D., Arjunji R. et al. Economic burden of spinal muscular atrophy in the United States: a contemporary assessment. J Med Econ. 2020;23(1):70–9. https://doi.org/10.1080/13696998.2019.1646263.; Armstrong E.P., Malone D.C., Yeh W.-S. et al. The economic burden of spinal muscular atrophy. J Med Econ. 2016;19(8):822–6. https://doi.org/10.1080/13696998.2016.1198355.; Колбин А.С., Влодавец Д.В., Курылев А.А. и др. Анализ социально-экономического бремени спинальной мышечной атрофии в Российской Федерации. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(4):337–54. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.068.; Национальный проект «Демография». Режим доступа: https://mintrud.gov.ru/ministry/programms/demography. [Дата обращения: 11.06.2023].; Butchbach M.E.R. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): Implications for spinal muscular atrophy phenotype and therapeutics development. Int J Mol Sci. 2021;22(15):7896. https://doi.org/10.3390/ijms22157896.; Клинические рекомендации. Проксимальная спинальная мышечная атрофия 5q. М.: Министерство здравоохранения Российской Федерации, 2023. 117 c. Режим доступа: https://amg-genetics.ru/pdf/2023/kr_sma_2023.pdf. [Дата обращения: 11.06.2023].; Rouzier C., Chaussenot A., Paquis-Flucklinger V. Molecular diagnosis and genetic counseling for spinal muscular atrophy (SMA). Arch Pediatr. 2020;27(7S):9–14. https://doi.org/10.1016/S0929-693X(20)30270-0.; Blauw H.M., Barnes C.P., van Vught P.W.J. et al. SMN1 gene duplications are associated with sporadic ALS. Neurology. 2012;78(11):776–80. https://doi.org/10.1212/WNL.0b013e318249f697.; Kuźma-Kozakiewicz M., Jędrzejowska M., Kaźmierczak B. SMN1 gene duplications are more frequent in patients with progressive muscular atrophy. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(5–6):457–62. https://doi.org/10.3109/21678421.2013.771367.; Wang X.-.B, Cui N.-H., Gao J.-J. et al. SMN1 duplications contribute to sporadic amyotrophic lateral sclerosis susceptibility: evidence from a meta-analysis. J Neurol Sci. 2014;340(1–2):63–8. https://doi.org/10.1016/j.jns.2014.02.026.; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019;18(2):3–23. https://doi.org/10.25557/2073-7998.2019.02.3-23.; Ar Rochmah M., Awano H., Awaya T. et al. Spinal muscular atrophy carriers with two SMN1 copies. Brain Dev. 2017;39(10):851–60. https://doi.org/10.1016/j.braindev.2017.06.002.; Забненкова В.В., Дадали Е.Л., Артемьева С.Б. и др. Точковые мутации в гене SMN1 у больных проксимальной спинальной мышечной атрофией I–IV типа, имеющих одну копию гена SMN1. Генетика. 2015;51(9):1075–82. https://doi.org/10.7868/S0016675815080123.; Theodorou L., Nicolaou P., Koutsou P. et al. Genetic findings of Cypriot spinal muscular atrophy patients. Neurol Sci. 2015;36(10):1829–34. https://doi.org/10.1007/s10072-015-2263-5.; Souček .P, Réblová K., Kramárek M. et al. High-throughput analysis revealed mutations’ diverging effects on SMN1 exon 7 splicing. RNA Biol. 2019;16(10):1364–76. https://doi.org/10.1080/15476286.2019.1630796.; Sneha P., Zenith T.U., Abu Habib U.S. et al. Impact of missense mutations in survival motor neuron protein (SMN1) leading to Spinal Muscular Atrophy (SMA): A computational approach. Metab Brain Dis. 2018;33(6):1823–34. https://doi.org/10.1007/s11011-018-0285-4.; Ganji H., Nouri N., Salehi M. et al. Detection of intragenic SMN1 mutations in spinal muscular atrophy patients with a single copy of SMN1. J Child Neurol. 2015;30(5):558–62. https://doi.org/10.1177/0883073814521297.; Zhao X., Wang Y., Mei S. et al. Identification of two novel SMN1 point mutations associated with a very severe SMA-I phenotype. Eur J Med Genet. 2020;63(9):104006. https://doi.org/10.1016/j.ejmg.2020.104006.; Wijaya Y.O.S., Ar Rohmah M., Niba E.T.E. et al. Phenotypes of SMA patients retaining SMN1 with intragenic mutation. Brain Dev. 2021;43(7):745–58. https://doi.org/10.1016/j.braindev.2021.03.006.; Кудрявцева Е.В. Философские, медицинские и юридические аспекты репродуктивной генетики. Уральский медицинский журнал. 2018;(13):54–7. https://doi.org/10.25694/URMJ.2018.13.46.; Ижевская В.Л., Баранова Е.Е. Информированное согласие при генетическом тестировании и скрининге. Медицинская генетика. 2022;21(4):16–24. https://doi.org/10.25557/2073-7998.2022.04.16-24.; Михальчук К.А., Забненкова В.В., Щагина О.А., Поляков А.В. Спектр минорных вариантов локуса SMN. Медицинская генетика. 2022;21(10):19–22. https://doi.org/10.25557/2073-7998.2022.10.19-22.; https://www.gynecology.su/jour/article/view/1869

  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Πηγή: Neuromuscular Diseases; Том 13, № 2 (2023); 42-55 ; Нервно-мышечные болезни; Том 13, № 2 (2023); 42-55 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/542/349; Auer-Grumbach M., Olschewski A., Papic L. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 2010;42(2): 160–4. DOI:10.1038/ng.508; Zimon M., Baets J., Auer-Grumbach M. et al. Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 2010;133(Pt 6):1798–809. DOI:10.1093/brain/awq109; Fiorillo C., Moro F., Brisca G. et al. TRPV4 mutations in children with congenital distal spinal muscular atrophy. Neurogenetics 2012;13(3):195–203. DOI:10.1007/s10048-012-0328-7; Chen D.H., Sul Y., Weiss M. et al. CMT2C with vocal cord paresis associated with short stature and mutations in the TRPV4 gene. Neurology 2010;75(22):1968–75. DOI:10.1212/WNL.0b013e3181ffe4bb; Aharoni S., Harlalka G., Offiah A. et al. Striking phenotypic variability in familial TRPV4-axonal neuropathy spectrum disorder. Am J Med Genet A 2011;155A(12):3153–6. DOI:10.1002/ajmg.a.34327; Berciano J., Baets J., Gallardo E. et al. Reduced penetrance in hereditary motor neuropathy caused by TRPV4 Arg269Cys mutation. J Neurol 2011;258(8):1413–21. DOI:10.1007/s00415-011-5947-7; Koutsis G., Lynch D., Manole A. et al. Charco–Marie–Tooth disease type 2C and scapuloperoneal muscular atrophy overlap syndrome in a patient with the R232C TRPV4 mutation. J Neurol 2015;262(8):1972–5. DOI:10.1007/s00415-015-7800-x; Vill K., Kuhn M., Glaser D. et al. Long-term observations in an affected family with neurogenic scapuloperoneal syndrome caused by mutation R269C in the TRPV4 gene. Neuropediatrics 2015;46(4):282–6. DOI:10.1055/s-0035-1554100; Jedrzejowska M., Debek E., Kowalczyk B. et al. The remarkable phenotypic variability of the p.Arg269HiS variant in the TRPV4 gene. Muscle Nerve 2019;59(1):129–33. DOI:10.1002/mus.26346; Garcia-Elias A., Lorenzo I.M., Vicente R. et al. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli viaa calmodulin-binding site. J Biol Chem 2008;283(46):31284–8. DOI:10.1074/jbc.C800184200; Kottgen M., Buchholz B., Garcia-Gonzalez M.A. et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 2008;182(3):437–47. DOI:10.1083/jcb.200805124; Donate-Macian P., Jungfleisch J., Perez-Vilaro G. et al. The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. Nat Commun 2018;9(1):2307. DOI:10.1038/s41467-018-04776-7; Arniges M., Fernandez-Fernandez J.M., Albrecht N. et al. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 2006;281(3):1580–6. DOI:10.1074/jbc.M511456200; Takahashi N., Hamada-Nakahara S., Itoh Y. et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P(2). Nat Commun 2014;5:4994. DOI:10.1038/ncomms5994; Strotmann R., Schultz G., Plant T.D. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 2003;278(29):26541–9. DOI:10.1074/jbc.M302590200; Stenson P.D., Ball E.V., Mort M. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003;21(6):577–81. DOI:10.1002/humu.10212; Deng H.X., Klein C.J., Yan J. et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 2010;42(2):165–9. DOI:10.1038/ng.509; Landoure G., Zdebik A.A., Martinez T.L. et al. Mutations in TRPV4 cause Charcot–Marie–Tooth disease type 2C. Nat Genet 2010;42(2):170–4. DOI:10.1038/ng.512; Fecto F., Shi Y., Huda R. et al. Mutant TRPV4-mediated toxicity is linked to increased constitutive function in axonal neuropathies. J Biol Chem 2011;286(19):17281–91. DOI:10.1074/jbc.M111.237685; Klein C.J., Shi Y., Fecto F. et al. TRPV4 mutations and cytotoxic hypercalcemia in axonal Charcot–Marie–Tooth neuropathies. Neurology 2011;76(10):887–94. DOI:10.1212/WNL.0b013e31820f2de3; Sullivan J.M., Zimanyi C.M., Aisenberg W. et al. Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy. Neurol Genet 2015;1(4):e29. DOI:10.1212/NXG.0000000000000029; Taga A., Peyton M.A., Goretzki B. et al. TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol 2022;9(3):375–91. DOI:10.1002/acn3.51523; Cho T.J., Matsumoto K., Fano V. et al. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: a report of three patients. Am J Med Genet A 2012;158A(4):795–802. DOI:10.1002/ajmg.a.35268; Fawcett K.A., Murphy S.M., Polke J.M. et al. Comprehensive analysis of the TRPV4 gene in a large series of inherited neuropathies and controls. J Neurol Neurosurg Psychiatry 2012;83(12):1204–9. DOI:10.1136/jnnp-2012-303055; Drew A.P., Zhu D., Kidambi A. et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015;3(2):143–54. DOI:10.1002/mgg3.126; Uchoa Cavalcanti E.B., Santos S.C.L., Martins C.E.S. et al. Char-cot-Marie-Tooth disease: Genetic profile of patients from a large Brazilian neuromuscular reference center. J Peripher Nerv Syst 2021;26(3):290–7. DOI:10.1111/jns.12458; Volodarsky M., Kerkhof J., Stuart A. et al. Comprehensive genetic sequence and copy number analysis for Charcot–Marie–Tooth disease in a Canadian cohort of 2517 patients. J Med Genet 2021;58(4):284–8. DOI:10.1136/jmedgenet-2019-106641; Dai J., Kim O.H., Cho T.J. et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J Med Genet 2010;47(10):704–9. DOI:10.1136/jmg.2009.075358; Маркова Т.В., Кенис В.М., Мельченко Е.В. и др. Клиникогенетические характеристики TRPV4-ассоциированных скелетных дисплазий у российских пациентов. Медицинская генетика 2022;21(4):25–37. DOI:10.25557/2073-7998.2022.04.25-37; Inada H., Procko E., Sotomayor M. et al. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 2012;51(31):6195–206. DOI:10.1021/bi300279b; McCray B.A., Diehl E., Sullivan J.M. et al. Neuropathy-causing TRPV4 mutations disrupt TRPV4-RhoA interactions and impair neurite extension. Nat Commun 2021;12(1):1444. DOI:10.1038/s41467-021-21699-y; Dyck P.J., Litchy W.J., Minnerath S. et al. Hereditary motor and sensory neuropathy with diaphragm and vocal cord paresis. Ann Neurol 1994;35(5):608–15. DOI:10.1002/ana.410350515; Deng S., Feely S.M.E., Shi Y. et al. Incidence and clinical features of TRPV4-linked axonal neuropathies in a USA cohort of Char-cot–Marie–Tooth disease type 2. Neuromolecular Med 2020;22(1):68–72. DOI:10.1007/s12017-019-08564-4; Fleury P., Hageman G. A dominantly inherited lower motor neuron disorder presenting at birth with associated arthrogryposis. J Neurol Neurosurg Psychiatry 1985;48(10):1037–48. DOI:10.1136/jnnp.48.10.1037; Van der Vleuten A.J., van Ravenswaaij-Arts C.M., Frijns C.J. et al. Localisation of the gene for a dominant congenital spinal muscular atrophy predominantly affecting the lower limbs to chromosome 12q23–q24. Eur J Hum Genet 1998;6(4):376–82. DOI:10.1038/sj.ejhg.5200229; Echaniz-Laguna A., Dubourg O., Carlier P. et al. Phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathy. Neurology 2014;82(21):1919–26. DOI:10.1212/WNL.0000000000000450; Rossor A.M., Kalmar B., Greensmith L. et al. The distal hereditary motor neuropathies. J Neurol Neurosurg Psychiatry 2012;83(1): 6–14. DOI:10.1136/jnnp-2011-300952; DeLong R., Siddique T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features. Arch Neurol 1992;49(9):905–8. DOI:10.1001/archneur.1992.00530330027010; McEntagart M. TRPV4 axonal neuropathy spectrum disorder. J Clin Neurosci 2012;19(7):927–33. DOI:10.1016/j.jocn.2011.12.003; Biasini F., Portaro S., Mazzeo A. et al. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature. Neuromuscul Disord 2016;26(4–5):312–5. DOI:10.1016/j.nmd.2016.02.010; Landoure G., Sullivan J.M., Johnson J.O. et al. Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology 2012;79(2):192–4. DOI:10.1212/WNL.0b013e31825f04b2; Unger S., Lausch E., Stanzial F. et al. Fetal akinesia in metatropic dysplasia: The combined phenotype of chondrodysplasia and neuropathy? Am J Med Genet A 2011;155A(11):2860–4. DOI:10.1002/ajmg.a.34268; Faye E., Modaff P., Pauli R. et al. Combined phenotypes of spondylometaphyseal dysplasia–Kozlowski type and Charcot–Marie– Tooth disease type 2C secondary to a TRPV4 pathogenic variant. Mol Syndromol 2019;10(3):154–60. DOI:10.1159/000495778; Муртазина А.Ф., Щагина О.А., Никитин С.С. и др. Современные клинико-генетические представления об аутосомно-рецессивных наследственных периферических нейропатиях. Анналы клинической и экспериментальной неврологии 2019;13(1):55–69. DOI:10.25692/ACEN.2019.1.7; https://nmb.abvpress.ru/jour/article/view/542

  8. 8
  9. 9
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 6 (2022); 58-62 ; Российский вестник перинатологии и педиатрии; Том 67, № 6 (2022); 58-62 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1743/1323; Kolb S.J., Kissel J.T. Spinal Muscular Atrophy. Neurol Clin 2015; 33(4): 831–846. DOI:10.1016/j.ncl.2015.07.004; Mercuri E., Finkel R.S., Muntoni F., Wirth B., Montes J., Main M. et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28(2): 103–115. DOI:10.1016/j.nmd.2017.11.005; Wirth B., Karakaya M., Kye M.J., Mendoza-Ferreira N. Twenty-five years of spinal muscular atrophy research: from phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet 2020; 21: 231–261. DOI:10.1146/annurev-genom-102319–103602; Vu-Han T.L., Reisener M.J., Putzier M., Pumberger M. Scoliosis in spinal muscular atrophy. Orthopade 2021; 50(8): 657–663. DOI:10.1007/s00132–021–04131–7; Salazar R., Montes J., Young S.D., McDermott M.P., Martens W., Pasternak A. et al. Quantitative evaluation of lower extremity joint contractures in spinal muscular atrophy: implications for motor function. Pediatr Phys Ther 2018; 30(3): 209–215. DOI:10.1097/PEP.0000000000000515; Guo W.H., Cao L., Chang L. Clinical characteristics of non-invasive ventilation treatment in children with spinal muscular atrophy and sleep disordered breathing. Zhonghua Er Ke Za Zhi 2019; 2;57(10): 792–796. DOI:10.3760/cma.j.issn.0578–1310.2019.10.012; Грознова О.С., Руденская Г.Е., Адян Т.А., Харламов Д.А.Поражение сердца при наследственных нервно-мышечных заболеваниях у детей. Российский вестник перинатологии ипедиатрии 2014; 2:35–42.; Maxwell G.K., Szunyogova E., Shorrock H.K., Gillingwater T.H., Parson S.H. Developmental and degenerative cardiac defects in the Taiwanese mouse model of severe spinal muscular atrophy. J Anat 2018; 232(6): 965–978. DOI:10.1111/joa.12793; WÜngaarde C.A., Blank A.C., Stam M., Wadman R.I., Berg L.H., Pol W.L. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J Rare Dis 2017; 12: 67. DOI:10.1186/s13023–017–0613–5; Deguise M.O., Chehade L., Kothary R. Metabolic dysfunction in spinal muscular atrophy. Int J Mol Scie 2021; 22(11): 5913. DOI:10.3390/Ùms22115913; Deguise M.O., Baranello G., Mastella C., Beauvais A., Michaud J., Leone A. et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Ann Clin Transl Neurol 2019; 6(8): 1519–1532. DOI:10.1002/acn3.50855; Szunyogova E., Zhou H., Maxwell G.K., Powis R.A., Muntoni F., Gillingwater T.H. et al. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Scientific Reports 2016; 6: 34635. DOI:10.1038/srep34635; WÜngaarde C.A., Huisman A., Wadman R.I., Cuppen I., Stam M., Heitink-Pollé K.M.J. et al. Abnormal coagulation parameters are a common non-neuromuscular feature in patients with spinal muscular atrophy. J Neurol Neurosurg Psychiatry 2020; 91(2): 212–214. DOI:10.1136/jnnp-2019–321506; De Wel B., Goosens V., Sobota A., Van Camp E., Geukens E., Van Kerschaver G. et al. Nusinersen treatment significantly improves hand grip strength, hand motor function and MRC sum scores in adult patients with spinal muscular atrophy types 3 and 4. J Neurol 2021; 268(3): 923–935. DOI:10.1007/s00415–020–10223–9; Pera M.C., Coratti G., Forcina N., Mazzone E.S., Scoto M., Montes J. et al. Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC Neurol 2017; 17: 39. DOI:10.1186/s12883–017–0790–9; McGrattan K.E., Graham R.J., DiDonato C.J., Darras B.T. Dysphagia phenotypes in spinal muscular atrophy: the past, present, and promise for the future. Am J Speech Lang Pathol 2021; 30(3): 1008–1022. DOI:10.1044/2021_AJSLP-20–00217; Finkel R.S., Mercuri E., Meyer O.H., Simonds A.K., Schroth M.K., Graham R.J. et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscular Disorders 2018; 28(3): 197–207. DOI:10.1016/j.nmd.2017.11.004; Morris L.E.H., EstilowT., Glanzman A.M., Cusack S.V., YumS.W. Improving temporomandibular range of motion in people with Duchenne muscular dystrophy and spinal muscular atrophy. Am J Occupat Ther 2020; 74(2): 7402205080p1–7402205080p10. DOI:10.5014/ajot.2020.030825; Yang J.H., Kasat N.S., Suh S.W., Kim S.Y. Improvement in reflux gastroesophagitis in a patient with spinal muscular atrophy after surgical correction of kyphoscoliosis: a case report. Clin Orthop Relat Res 2011; 469(12): 3501–3505. DOI:10.1007/s11999–011–2080-y; Grychtol R., Abela F., Fitzgeral D.A. The role of sleep diagnostics and non-invasive ventilation in children with spinal muscular atrophy. Paediatr Respir Rev 2018; 28: 18–25. DOI:10.1016/j.prrv.2018.07.006; Chabanon A., Seferian A.M., Daron A., Péréon Y., Cances C., Vuillerot C. et al. Prospective and longitudinal natural history study of patients with Type 2 and 3 spinal muscular atrophy: Baseline data NatHis-SMA study. PLoS One 2018; 13(7): e0201004. DOI:10.1371/journal.pone.0201004; Djordjevic S.A., Milic-Rasic V., Brankovic V., Kosac A., Vukomanovic G., Topalovic M. et al. Cardiac findings in pediatric patients with spinal muscular atrophy types 2 and 3. Muscle Nerve 2021; 63(1): 75–83. DOI:10.1002/mus.27088; Alves C.R.R., Zhang R., Johnstone A.J., Garner R., Nwe P.H., Siranosian J.J. et al. Serum creatinine is a biomarker of progressive denervation in spinal muscular atrophy. Neurology 2020; 94(9): e921–e931. DOI:10.1212/WNL.0000000000008762; Freigang M., Wurster C.D., Hagenacker T., Stolte B., Weiler M., Kamm C. et al. Serum creatine kinase and creatinine in adult spinal muscular atrophy under nusinersen treatment. Ann Clin Transl Neurol 2021; 8(5): 1049–1063. DOI:10.1002/acn3.51340; Pino M.G., Rich K.A., Kolb S.J. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16: 11772719211035643. DOI:10.1177/11772719211035643

  10. 10
    Academic Journal

    Πηγή: Neuromuscular Diseases; Том 13, № 3 (2023); 40-47 ; Нервно-мышечные болезни; Том 13, № 3 (2023); 40-47 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/558/358; Vaccines and Immunization. Available at: https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1.; Новикова Е.Б., Дворников А.В., Милованова О.А., Зыков В.П. Неврологические осложнения вакцинации. Тактика вакцинации детей с патологией нервной системы: учебное пособие. М.: ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования», 2017. 60 с.; Crawford N.W., Bines J.E., Royle J., Buttery J.P. Optimizing immunization in pediatric special risk groups. Exp Rev Vaccines 2011;10(2):175–86. DOI:10.1586/erv.10.157; Федосеенко М.В., Намазова-Баранова Л.С., Вишнева Е.А. и др. Совершенствование подходов к иммунопрофилактике детей с отклонениями в состоянии здоровья: результаты проспективного когортного исследования. Педиатрическая фармакология 2021;18(6):469–82. DOI:10.15690/pf.v18i6.2328; Grechukha T.A., Galitskaya M.G., Namazova-Baranova L.S. Importance of vaccine safety in children with chronic conditions – experience at the Scientific Centre for Children's Health in Moscow, Russia. Curr Drug Saf 2015;10(1):49–54. DOI:10.2174/157488631001150407110306; Qu Y.J., Tian Y.L., Song F. et al. Coverage rate and adverse reactions of National Immunization Program vaccines in children with spinal muscular atrophy: a cross-sectional retrospective cohort study. Zhonghua Er Ke Za Zhi Chin J Pediatr 2020;58(4):308–5. DOI:10.3760/cma.j.cn112140-20200108-00016; Finkel R.S., Mercuri E., Meyer O.H. et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2017;3:197–207. DOI:10.1016/j.nmd.2017.11.004; Muscular Dystrophy Association. Medical Management – Duchenne Muscular Dystrophy (DMD) – Diseases. Available at: https://www.mda.org/disease/duchenne-muscular-dystrophy/ medical-management/.; ACIP General Best Practice Guidelines for Immunization %7C CDC. Available at: https://www.cdc.gov/vaccines/hcp/acip-recs/generalrecs/index.html.; Dinleyici M., Carman K.B., Kilic O. et al. The immunization status of children with chronic neurological disease and serological assessment of vaccine-preventable diseases. Hum Vaccines Immunother 2018;14(8):1970–76. DOI:10.1080/21645515.2018.1460986; Федосеенко М.В., Галицкая М.Г., Намазова-Баранова Л.С. Вакцинация детей с тяжелым течением хронических болезней. Алгоритмы врача-иммунолога. Педиатрическая фармакология 2010;7(6):16–5.; Esposito S., Passera S. Vaccination in patients with disorders of the muscle and neuromuscular junction. Exp Rev Vaccines 2013;12(11):1341–9. DOI:10.1586/14760584.2013.841341; Шамшева О.В. Здоровый и больной ребенок. Особенности вакцинации. М.: ГЭОТАР-медиа, 2020. 208 c.; Каплина С.П., Скрипченко Н.В. Вклад вакцинопрофилактики в здоровье детей с неврологическими нарушениями. Здоровье – основа человеческого потенциала. Проблемы и пути их решения 2014;9(2):641–4.; Esposito S., Bruno C., Berardinelli A. et al. Vaccination recommendations for patients with neuromuscular disease. Vaccine 2014;32(45):5893–900. DOI:10.1016/j.vaccine.2014.09.003; Doherty M., Schmidt-Ott R., Santos J.I. et al. Vaccination of special populations: Protecting the vulnerable. Vaccine 2016;34(52):6681–90. DOI:10.1016/j.vaccine.2016.11.015; Шамшева О.В. Эволюция национального календаря профилактических прививок: результаты и перспективы. Детские инфекции 2022;21(1):5–10. DOI:10.22627/2072-8107-2022-21-1-5-15; Намазова-Баранова Л.С., Федосеенко М.В., Баранов А.А. Новые горизонты Национального календаря профилактических прививок. Вопросы современной педиатрии 2019;18(1):13–30. DOI:10.15690/vsp.v18i1.1988; Озерецковский Н.А., Немировская Т.И. Вакцинация против гемофильной инфекции типа b в Российской Федерации и за рубежом. Эпидемиология и вакцинопрофилактика 2016:1(86):61–4. DOI:10.31631/2073-3046-2016-15-1-61-66; Абрамцева М.В., Тарасов А.П., Немировская Т.И. и др. Гемофильная инфекция типа b. Заболеваемость и вакцинопрофилактика. БИОпрепараты. Профилактика, диагностика, лечение 2017;17(2):78–8.; Скрипченко Е.Ю., Иванова Г.П., Скрипченко Н.В. и др. Современный взгляд на особенности течения ветряной оспы у детей и возможности специфической профилактики. Практическая медицина 2021;19(2):8–13. DOI:10.32000/2072–1757-2021-28-13; Коровкина Е.С., Костинов М.П. Современные конъюгированные вакцины, применяемые для профилактики менингококковой инфекции. Инфекционные болезни: Новости. Мнения. Обучение 2018;7(1):60–8. DOI:10.24411/2305-3496-2018-00008; Баранов А.А., Намазова-Баранова Л.С., Таточенко В.К. и др. Клинические рекомендации. Вакцинопрофилактика заболеваний, вызванных вирусом папилломы человека. М., 2017.; Баранов А.А., Намазова-Баранова Л.С., Таточенко В.К. и др. Вакцинопрофилактика заболеваний, вызванных вирусом папилломы человека: позиции доказательной медицины. Обзор клинических рекомендаций. Вопросы современной педиатрии 2017;16(2):107–10. DOI:10.15690/vsp.v16i2.1711; Rychkova O.A., Grakhova М.A., Sagitova A.S. et al. Rotavirus infection. the possibilities of timely vaccination. Med Counc 2018;(17):215–9. DOI:10.21518/2079-701X-2018-17-215-219; Keren R., Zaoutis T.E., Bridges C.B. et al. Neurological and neuromuscular disease as a risk factor for respiratory failure in children hospitalized with influenza infection. JAMA 2005;294(17):2188–94. DOI:10.1001/jama.294.17.2188; Berical A.C., Harris D., Dela Cruz C.S., Possick J.D. Pneumococcal vaccination strategies. an update and perspective. Ann Am Thorac Soc 2016;13(6):933–44. DOI:10.1513/AnnalsATS.201511-778FR; Spinal Muscular Atrophy and the COVID-19 Vaccine: What We Know. mySMAteam. Available at: https://www.mysmateam.com/resources/sma-and-the-covid-19-vaccine-what-we-know.; Гам-КОВИД-Вак. Комбинированная векторная вакцина для профилактики коронавирусной инфекции, вызываемой вирусом SARS-CoV-2. Доступно по: https://www.vidal.ru/drugs/gam-covid-vac.; Iwayama H., Ishihara N., Kawahara K. et al. Early immunological responses to the mRNA SARS-CoV-2 vaccine in patients with neuromuscular disorders. Front Immunol 2022;13:996134. DOI:10.3389/fimmu.2022.996134; Артемьева С.Б., Белоусова Е.Д., Влодавец В.Д. и др. Клинические рекомендации. Проксимальная спинальная мышечная атрофия 5q. Нервно-мышечные болезни 2020;10(4):53–1. DOI:10.17650/2222-8721-2020-10-4-53-104; Kotulska K., Jozwiak S., Jedrzejowska M. et al. Newborn screening and gene therapy in SMA: Challenges related to vaccinations. Front Neurol 2022;23:13:890860. DOI:10.3389/fneur.2022.890860; Nicolau S., Waldrop M.A., Connolly A.M., Mendell J.R. Spinal muscular atrophy. Semin Pediatr Neurol 2021;37:100878. DOI:10.1016/j.spen.2021.100878; Приказ Минздрава РФ от 06.12.2021 № 1122Н. Редакция от 06.12.2021 Доступно по: https://normativ.kontur.ru/document?moduleId=1&documentId=410331.; Lefebvre S., Sarret C. Pathogenesis and therapeutic targets in spinal muscular atrophy [SMA]. Arch Pédiatrie 2020;27(7S):7S3– 7S8. DOI:10.1016/S0929-693X[20]30269-4; Bandyopadhyay A.S., Garon J., Seib K., Orenstein W.A. Polio vaccination: past, present and future. Future Microbiol 2015;10(5):791–17. DOI:10.2217/fmb.15.19; Baranov A.A., Namazova-Baranova L.S., Belyaeva I.A. et al. Immunoprophylaxis of infectious diseases in premature infants. Pediatr Pharmacol 2018;15(5):376–89.; Евдокимов К.В., Ровный В.Б., Бабаченко И.В. и др. Респираторно-синцитиальная инфекция у детей раннего возраста. Медицинский совет 2017;(4):7–10. DOI:10.21518/2079-701X-2017-4-7-10; Овсянников Д.Ю., Дегтярева Е.А., Кузьменко Л.Г. Группы риска тяжелого течения респираторно-синцитиальной вирусной инфекции у детей: современные возможности профилактики. Детские инфекции 2011;10(2):49–52.; Синагис. Доступно по: https://www.vidal.ru/drugs/synagis__23826; Баранов А.А., Намазова-Баранова Л.С., Давыдова И.В. и др. Федеральные клинические рекомендации по иммунопрофилактике респираторно-синцитиальной вирусной инфекции у детей. Педиатрическая фармакология 2015;12(5):543–49. DOI:10.15690/pf.v12i5.1456; Kichula E.A., Proud C.M., Farrar M.A. et al. Expert recommendations and clinical considerations in the use of onasemnogene abeparvovec gene therapy for spinal muscular atrophy. Muscle Nerve 2021;64(4):413–27.; Canada PHA of. Immunization of immunocompromised persons: Canadian Immunization Guide. Avaialble at: https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-3-vaccination-specific-populations/page8-immunization-immunocompromised-persons.html.; Birnkrant D.J., Bushby K., Bann C.M. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018;17(3):251–67. DOI:10.1016/S1474-4422[18]30024-3.; Birnkrant D.J., Bushby K., Bann C.M. et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol 2018;17(4):347–61. DOI:10.1016/S1474-4422[18]30025-5; Nascimento Osorio A., Medina Cantillo J., Camacho Salas A. et al. Consensus on the diagnosis, treatment and follow-up of patients with Duchenne muscular dystrophy. Neurologia 2019;34(7):469– 81. DOI:10.1016/j.nrl.2018.01.001; Caplan A., Fett N., Rosenbach M. et al. Prevention and management of glucocorticoid-induced side effects: a comprehensive review. J Am Acad Dermatol 2017;76(2):201–7. DOI:10.1016/j.jaad.2016.02.1241; Canada PHA of. Immunization of persons with chronic diseases: Canadian Immunization Guide. Available at: https://www.canada.ca/en/public-health/services/publications/healthy-living/canadianimmunization-guide-part-3-vaccination-specific-populations/page7-immunization-persons-with-chronic-diseases.html.; Hofstetter A.M., LaRussa P., Rosenthal S.L. Vaccination of adolescents with chronic medical conditions: Special considerations and strategies for enhancing uptake. Hum Vaccines Immunother 2015;11(11):2571–81. DOI:10.1080/21645515.2015.1067350; Vorobtsova I.N., Petrenko Yu.V., Komissarova O.N. et al. Infection of newborns with human papillomavirus. Child Inf 2007;6(1):28–30.; Rall S., Grimm T. Survival in Duchenne muscular dystrophy. Acta Myol 2012;31(2):117–20.; Duan D., Goemans N., Takeda S. et al. Duchenne muscular dystrophy. Nat Rev Dis Primers 2021;7(1):13. DOI:10.1038/s41572-021-00248-3; Zhou Q., Zhou R., Yang H., Yang H. To be or not to be vaccinated: that is a question in myasthenia gravis. Front Immunol 2021;12:733418. DOI:10.3389/fimmu.2021.733418; https://nmb.abvpress.ru/jour/article/view/558

  11. 11
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of publicly funded research project No. 056-00052-23-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121021800098-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00052-23-00 на проведение прикладных научных исследований (номер государственного учета НИР 121021800098-4).

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 2 (2023): От традиционных биологических к высокотехнологичным лекарственным препаратам: вопросы разработки и применения; 127-147 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 2 (2023): От традиционных биологических к высокотехнологичным лекарственным препаратам: вопросы разработки и применения; 127-147 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/433/649; https://www.biopreparations.ru/jour/article/view/433/659; https://www.biopreparations.ru/jour/article/view/433/660; https://www.biopreparations.ru/jour/article/view/433/661; https://www.biopreparations.ru/jour/article/view/433/662; https://www.biopreparations.ru/jour/article/view/433/663; https://www.biopreparations.ru/jour/article/view/433/694; https://www.biopreparations.ru/jour/article/downloadSuppFile/433/655; Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372):eaan4672. https://doi.org/10.1126/science.aan4672; Солдатов АА, Авдеева ЖИ, Горенков ДВ, Хантимирова ЛМ, Гусева СГ, Меркулов ВА. Проблемные аспекты разработки и регистрации генотерапевтических препаратов. БИОпрепараты. Профилактика, диагностика, лечение. 2022;22(1):6–22. https://doi.org/10.30895/2221-996X-2022-22-1-6-22; Ravi B, Chan-Cortés MH, Sumner CJ. Gene-targeting therapeutics for neurological disease: lessons learned from spinal muscular atrophy. Annu Rev Med. 2021;72:1–14. https://doi.org/10.1146/annurev-med-070119-115459; Ямщикова НГ, Ставровская АВ, Иллариошкин СН. Некоторые аспекты развития нейродегенеративных заболеваний. Асимметрия. 2018;12(4):631–45. https://doi.org/10.18454/ASY.2018.12.4.030; Heemels MT. Neurodegenerative diseases. Nature. 2016;539(7628):179. https://doi.org/10.1038/539179a; Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;101(5):839–62. https://doi.org/10.1016/j.neuron.2019.02.017; Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78. https://doi.org/10.1038/s41573-019-0012-9; Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: opportunities and concerns. Prog Retin Eye Res. 2019;68:31–53. https://doi.org/10.1016/j.preteyeres.2018.08.003; Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci. 2021;24(3):297–311. https://doi.org/10.1038/s41593-020-00778-1; Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–36. https://doi.org/10.1038/s41586-020-1978-5; Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet. 2000;1(2):91–9. https://doi.org/10.1038/35038533; Leone P, Shera D, McPhee SW, Francis JS, Kolodny EH, Bilaniuk LT, et al. Long-term follow-up after gene therapy for Canavan disease. Sci Transl Med. 2012;4(165):165ra163. https://doi.org/10.1126/scitranslmed.3003454; Bedbrook CN, Deverman BE, Gradinaru V. Viral strategies for targeting the central and peripheral nervous systems. Annu Rev Neurosci. 2018;41:323–48. https://doi.org/10.1146/annurev-neuro-080317-062048; Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas JR, Forsayeth J, Bankiewicz KS. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fl uid of nonhuman primates. Hum Gene Ther. 2013;24(5):526–32. https://doi.org/10.1089/hum.2013.005; Xiang C, Zhang Y, Guo W, Liang XJ. Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharm Sin B. 2020;10(2):239–48. https://doi.org/10.1016/j.apsb.2019.11.003; Katz ML, Tecedor L, Chen Y, Williamson BG, Lysenko E, Wininger FA, et al. AAV gene transfer delays disease onset in a TPP1-defi cient canine model of the late infantile form of Batten disease. Sci Transl Med. 2015;7(313):313ra180. https://doi.org/10.1126/scitranslmed.aac6191; Federici T, Taub JS, Baum GR, Gray SJ, Grieger JC, Matthews KA, et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther. 2012;19(8):852–9. https://doi.org/10.1038/gt.2011.130; Sehara Y, Fujimoto KI, Ikeguchi K, Katakai Y, Ono F, Takino N, et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson’s disease. Hum Gene Ther Clin Dev. 2017;28(2):74–9. https://doi.org/10.1089/humc.2017.010; Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J Control Release. 2016;241:94–109. https://doi.org/10.1016/j.jconrel.2016.09.011; Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 2016;27(7):478–96. https://doi.org/10.1089/hum.2016.087; Van Dam D, De Deyn PP. Drug discovery in dementia: the role of rodent models. Nat Rev Drug Discov. 2006;5(11):956–70. https://doi.org/10.1038/nrd2075; Pype S, Moechars D, Dillen L, Mercken M. Characterization of amyloid β peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein. J Neurochem. 2003;84(3):602–9. https://doi.org/10.1046/j.1471-4159.2003.01556.x; Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci. 2014;109(2) 73–86. https://doi.org/10.1016/j.lfs.2014.05.017; Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifi cally elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specifi c γ secretase. Hum Mol Genet. 2004;13(2):159–70. https://doi.org/10.1093/hmg/ddh019; Jankowsky JL, Slunt HH, Gonzales V, Savonenko AV, Wen JC, Jenkins NA, et al. Persistent amyloidosis following suppression of Aβ production in a transgenic model of Alzheimer disease. PLoS Med. 2005;2(12):e355. https://doi.org/10.1371/journal.pmed.0020355; Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM-Y. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron. 2002;34(4):521–33. https://doi.org/10.1016/S0896-6273(02)00682-7; Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv. 2017;3(12):eaar3952. https://doi.org/10.1126/sciadv.aar3952; Duan W, Guo M, Yi L, Liu Y, Li Z, Ma Y, et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 2020;27(3-4):157–69. https://doi.org/10.1038/s41434-019-0116-1; Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos CMA, et al. Treatment of a mouse model of ALS by in vivo base editing. Mol Ther. 2020;28(4):1177–89. https://doi.org/10.1016/j.ymthe.2020.01.005; Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is suffi cient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506. https://doi.org/10.1016/s0092-8674(00)81369-0; Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor defi cits in a Huntington’s disease mouse model. Mol Ther Nucleic Acids. 2019;17:829–39. https://doi.org/10.1016/j.omtn.2019.07.009; Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet. 2000;9(3):333–9. https://doi.org/10.1093/hmg/9.3.333; Passini MA, Bu J, Richards AM, Treleaven CM, Sullivan JA, O’Riordan CR, et al. Translational fi delity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy. Hum Gene Ther. 2014;25(7):619–30. https://doi.org/10.1089/hum.2014.011; Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, et al. Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther. 2013;21(2):282–90. https://doi.org/10.1038/mt.2012.261; Richardson RM, Gimenez F, Salegio EA, Su X, Bringas J, Berger MS, Bankiewicz KS. T2 imaging in monitoring of intraparenchymal real-time convection-enhanced delivery. Neurosurgery. 2011;69(1):154–63. https://doi.org/10.1227/NEU.0b013e318217217e; Miyanohara A, Kamizato K, Juhas S, Juhasova J, Navarro M, Marsala S, et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol Ther Methods Clin Dev. 2016;3:16046. https://doi.org/10.1038/mtm.2016.46; Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, Indrigo M, et al. AAV-PHP.B-mediated global-scale expression in the mouse nervous system enables GBA1 gene therapy for wide protection from synucleinopathy. Mol Ther. 2017;25(12):2727–42. https://doi.org/10.1016/j.ymthe.2017.08.004; Coune PG, Schneider BL, Aebischer P. Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med. 2012;2(4):a009431. https://doi.org/10.1101/cshperspect.a009431; Boussicault L, Alves S, Lamazière A, Planques A, Heck N, Moumné L, et al. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain. 2016;139(Pt3):953–70. https://doi.org/10.1093/brain/awv384; Challis RC, Kumar SR, Chan KY, Challis C, Beadle K, Jang MJ, et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc. 2019;14(2):379–414. https://doi.org/10.1038/s41596-018-0097-3; Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204–9. https://doi.org/10.1038/nbt.3440; Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther. 2009;17(7):1187–96. https://doi.org/10.1038/mt.2009.71; Xie C, Gong XM, Luo J, Li BL, Song BL. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58(3):512–8. https://doi.org/10.1194/jlr.M071274; Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 2015;17(Suppl_2):ii3–8. https://doi.org/10.1093/neuonc/nou354; Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother. 2009;9(10):1519–27. https://doi.org/10.1586/ern.09.99; Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther. 2017;28(11):988–1003. https://doi.org/10.1089/hum.2017.160; McFarthing K, Prakash N, Simuni T. Clinical trial highlights: 1. Gene therapy for Parkinson’s, 2. Phase 3 study in focus — Intec Pharma’s Accordion Pill, 3. Clinical trials resources. J Parkinson’s Dis. 2019;9(2):251–64. https://doi.org/10.3233/JPD-199001; Smith BK, Collins SW, Conlon TJ, Mah CS, Lawson LA, Martin AD, et al. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther. 2013;24(6):630–40. https://doi.org/10.1089/hum.2012.250; Rafi i MS, Tuszynski MH, Thomas RG, Barba D, Brewer JB, Rissman RA, et al. Adeno-associated viral vector (serotype 2)-nerve growth factor for patients with Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2018;75(7):834–41. https://doi.org/10.1001/jamaneurol.2018.0233; Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther. 2008;19(5):463–74. https://doi.org/10.1089/hum.2008.022; Fu H, Meadows AS, Pineda RJ, Kunkler KL, Truxal KV, McBride KL, et al. Differential prevalence of antibodies against adeno-associated virus in healthy children and patients with mucopolysaccharidosis III: perspective for AAV-mediated gene therapy. Hum Gene Ther Clin Dev. 2017;28(4):187–96. https://doi.org/10.1089/humc.2017.109; Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285–98. https://doi.org/10.1089/hum.2018.015; Glanzman AM, Mazzone E, Main M, Pelliccioni M, Wood J, Swoboda KJ, et al. The Children’s Hospital of Philadelphia infant test of neuromuscular disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord. 2010;20(3):155–61. https://doi.org/10.1016/j.nmd.2009.11.014; Day JW, Mendell JR, Mercuri E, Finkel RS, Strauss KA, Kleyn A, et al. Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy. Drug Saf. 2021;44(10):1109–19. https://doi.org/10.1007/s40264-021-01107-6; Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284–93. https://doi.org/10.1016/S1474-4422(21)00001-6; https://www.biopreparations.ru/jour/article/view/433

  12. 12
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 3 (2022); 100-106 ; Российский вестник перинатологии и педиатрии; Том 67, № 3 (2022); 100-106 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1659/1251; Селиверстов Ю.А., Клюшников С.А., Иллариошкин С.Н. Спинальные мышечные атрофии: понятие, дифференциальная диагностика, перспективы лечения. Нервные болезни 2015; 3: 9–17.; Проксимальная спинальная мышечная атрофия 5q. Клинические рекомендации. 2020; 105. https://f-sma.ru/biblioteka/klinic-recom-mzrf/ Ссылка активна на 02.05.2022.; Ross L.F., Kwon J.M. Spinal Muscular Atrophy: Past, Present, and Future. Neo Rev 2019; 20 (8) 437–451. DOI:10.1542/neo.20-8-e437; Mercuri E., Finkel R.S., Muntoni F., Wirth B., Montes J., Main M. et al.; SMA Care Group. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28(2): 103–115. DOI:10.1016/j.nmd.2017.11.005; Wijngaarde C.A., Stam M., Otto L.A.M., van Eijk RPA, Cuppen I., Veldhoen E.S. et al. Population-based analysis of survival in spinal muscular atrophy. Neurology 2020; 94 (15): 1634–1644. DOI:10.1212/WNL.0000000000009248; Massalska D., Zimowski J. G., Bijok J., KuciĔska-Chahwan A., àusakowska A., Jakiel G. et al. Prenatal diagnosis of congenital myopathies and muscular dystrophies. Clin Genet 2016; 90: 199–210. DOI:10.1111/cge.12801; Finkel R.S., Mercuri E., Meyer O.H., Simonds A.K., Schroth M.K., Graham R.J. et al. SMA Care group. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018; 28(3): 197–207. DOI:10.1016/j.nmd.2017.11.004; Прыгунова Т.М., Радаева Т.М., Степанова Е.Ю., Береснева Е.Е., Азовцева И.А. Синдром «вялого ребенка»: значимость для дифференциальной диагностики наследственных болезней обмена веществ и дегенеративных поражений нервной системы. Вопросы современной педиатрии 2015; 5(14): 586–590. DOI:10.15690/vsp.v14i5.1444.; Курушина О.В., Андрющенко Ф.А., Агаркова О.И. Дворецкая Ю.А. Современный подход к диагностике и лечению первичных и вторичных миопатий. Вестник ВолгГМУ 2017; 61(1): 16–22.; Pattali R., Mou Y., Li X.J. AAV9 Vector: a Novel modality in gene therapy for spinal muscular atrophy. Gene Ther 2019; 26(7–8): 287–295. DOI:10.1038/s41434-019-0085-4; Finkel R.S., Mercuri E., Darras B.T. Connolly A.M., Kuntz N.L., Kirschner J. et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017; 377(18): 1723–1732. DOI:10.1056/NEJMoa1702752; Finkel R.S., Chiriboga C.A., Vajsar J., Day J.W., Montes J., De Vivo D.C. et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017; 377(18): 1723–1732. DOI:10.1056/NEJMoa1702752; Darras B.T., Chiriboga C.A., Iannaccone S.T., Swoboda K.J., Montes J., Mignon L. et al. Nusinersen in later-onset spinalmuscular atrophy. Long-term results from the phase 1/2 studies. Neurology 2019; 92: 1–15. DOI:10.1212/WNL.0000000000007527; Wadman R.I., van der Pol W.L., Bosboom W.M., Asselman F.-L., Leonard H., Iannaccone S.T. et al. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1(1): CD006282. DOI:10.1002/14651858; Ratni H., Ebeling M., Baird J. Bendels S., Bylund J., Chen K.S. et al. Discovery of Risdiplam, a Selective Survival of Motor Neuron÷2(SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem 2018; 61(15): 6501–6517. DOI:10.1021/acs.jmedchem.8b00741; Mercuri E., Finkel R.S., Muntoni F., Wirth B., Montes J., Main M. et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28(2): 103–115. DOI:10.1016/j.nmd.2017.11.005; Bartels B., Montes J., van der Pol W.L., de Groot J.F. Physical exercise training for type 3 spinal muscular atrophy. Cochrane Database Syst Rev 2019; 3(3): CD012120. DOI:10.1002/14651858; Rathore F.A., Afridi A. Does physical exercise training improve functional performance in type 3 spinal muscular atrophy? A Cochrane Review summary with commentary. Child Neurol 2020; 62(9): 1014–1016. DOI:10.1111/dmcn.14622; Kraszewski J.N., Kay D.M., Stevens C.F., Koval C., Haser B., Ortiz V. et al. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genet Med 2018; 20(6): 608–613. DOI:10.1038/gim.2017.152

  13. 13
    Academic Journal

    Πηγή: Neuromuscular Diseases; Том 12, № 2 (2022); 28-36 ; Нервно-мышечные болезни; Том 12, № 2 (2022); 28-36 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2022-12-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/486/320; D’Amico A., Mercuri E., Tiziano F.D. et al. Spinal muscular atrophy. Orphanet J Rare Dis 2011;6(71). DOI:10.1186/1750-1172-6-71.; Cure SMA.org. Voice of the Patient Report. Available at: http://www.curesma.org/documents/advocacy-documents/sma-voice-of-the-patient.pdf.; Проксимальная спинальная мышечная атрофия 5q. Клинические рекомендации. 2020. Доступно по: https://cr.minzdrav.gov.ru/recomend/593_2.; Verhaart I.E.C., Robertson A., Wilson I.J. et al. Prevalence, incidence and carrier frequency of 5q linked spinal muscular atrophy: a literature review. Orphanet J Rare Dis 2017;12(1):124. DOI:10.1186/s13023-017-0671-8.; Забненкова В.В., Дадали Е.Л., Поляков А.В. Проксимальная спинальная мышечная атрофия типов I–IV: особенности молекулярногенетической диагностики. Нервномышечные болезни 2013;(3):27–31. DOI:10.17650/2222-8721-2013-03-27-31.; Prior T.W., Leach M.E., Finanger E. Spinal Muscular Atrophy. 2000. In: GeneReviews®. Seattle: University of Washington, 1993–2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1352/.; Lefebvre S., Bürglen L., Reboullet S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80(1):155–65. DOI:10.1016/0092-8674(95)90460-3.; Farrar M.A., Kiernan M.C. The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics 2015;12(2):290–302. DOI:10.1007/s13311-014-0314-x.; Инструкция по медицинскому применению препарата Спинраза (МНН: нусинерсен) ЛП-005730 от 28.02.2020.; Инструкция по медицинскому применению препарата Эврисди (МНН: рисдиплин) ЛП-006602 от 26.11.2020.; Инструкция по медицинскому применению препарата Золгенсма.; Glanzman A.M., Mazzone E., Mainet M. et al. The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromusc Disord 2010;20(3):155–61. DOI:10.1016/j.nmd.2009.11.014.; De Sanctis R., Coratti G., Amy Pasternak A. et al. Developmental milestones in type I spinal muscular atrophy. Neuromusc Disord 2016;26(11):754–9. DOI:10.1016/j.nmd.2016.10.002.; Артемьева С.Б., Белоусова Е.Д., Влодавец Д.В. и др. Консенсус в отношении генозаместительной терапии для лечения спинальной мышечной атрофии. Неврологический журнал им. Л.О. Бадаляна 2021;2(1):7–9. DOI:10.46563/2686-8997-2021-2-1-7-9.; Артемьева С.Б., Кузенкова Л.М., Ильина Е.С. и др. Эффективность и безопасность препарата нусинерсен в рамках программы расширенного доступа в России. Нервно-мышечные болезни 2020;10(3):35–41. DOI:10.17650/2222-8721-2020-10-3-35-41.; https://nmb.abvpress.ru/jour/article/view/486

  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Πηγή: Сучасна педіатрія. Україна; № 2(122) (2022): Сучасна педіатрія. Україна; 50-55
    Modern Pediatrics. Ukraine; No. 2(122) (2022): Modern pediatrics. Ukraine; 50-55
    Modern Pediatrics. Ukraine; № 2(122) (2022): Modern pediatrics. Ukraine; 50-55

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://mpu.med-expert.com.ua/article/view/254835

  18. 18
  19. 19
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/6059

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/6059

  20. 20
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/5214

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/5214