Εμφανίζονται 1 - 3 Αποτελέσματα από 3 για την αναζήτηση '"спилловер-эффект"', χρόνος αναζήτησης: 0,41δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology; № 1 (2020): ; 23-27
    Вестник НТУ"ХПИ" серия "Химия, химическая технология и экология"; № 1 (2020): ; 23-27
    Вісник Національного технічного університету «ХПІ». Серія: Хiмiя, хiмiчнi технологiї та екологiя; № 1 (2020): Вісник Національного технічного університету «ХПІ». Серія: Хімія, хімічна технологія та екологія; 23-27

    Περιγραφή αρχείου: application/pdf

  2. 2
    Academic Journal

    Συγγραφείς: Yu. S. Nechaev, Ю. С. Нечаев

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 21 (2015); 70-75 ; Альтернативная энергетика и экология (ISJAEE); № 21 (2015); 70-75 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/201/205; Juarez-Mosqueda R., Mavrandonakis A., Kuc A.B., Pettersson L.G.M., Heine T. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. // Front Chem. 2015. Vol. 3. P. 2. Published online 2015 Feb 2. %7C doi:10.3389/fchem.2015.00002. PMCID: PMC4313777.; Han S.S., Jung H., Jung D.H., Choi S.-H., Park N. (2012). Stability of hydrogenation states of graphene and conditions for hydrogen spillover. // Phys. Rev. B. 2012. Vol. 85. P. 155408. 10.1103/PhysRevB.85.155408.; Tsao C.S., Liu Y., Chuang H.Y., Tseng H.H., Chen T.Y., Chen C.H., Yu M.S., Li Q., Lueking A.D., Chen S.H. Hydrogen Spillover effect of Pt-doped Activated Carbon Studied by Inelastic Neutron Scattering // J. Phys. Chem. Lett. 2011. Vol. 2. P. 2322– 2325.; Li Q., Lueking A.D. Effect of Surface Oxyen Groups and Water on Hydrogen Spillover in Pt-Doped Activated Carbon // J. Phys. Chem. C. 2011. Vol. 115. P. 4273-4282.; Bhowmick R., Rajasekaran S., Friebel D., Beasley C., Jiao L., Ogasawara H., Dai H., et al. Hydrogen spillover in pt-single-walled carbon nanotube composites: formation of stable C-H bonds. // J. Am. Chem. Soc. 2011. Vol. 133. P. 5580–5586. doi:10.1021/ja200403m.; Chen C.-H., Huang C.-C. Enhancement of hydrogen spillover onto carbon nanotubes with defect feature // Microporous Mesoporous Mater. 2008. Vol. 109. P. 549–559. 10.1016/j.micromeso.2007.06.003.; Chen H., Yang R.T. Catalytic effects of TiF3 on hydrogen spillover on Pt/Carbon for hydrogen storage // Langmuir. 2010. Vol. 26. P. 15394–15398. 10.1021/la100172b.; Chen L., Cooper A.C., Pez G.P., Cheng H. Mechanistic study on hydrogen spillover onto graphitic carbon materials // J. Phys. Chem. C. 2007. Vol. 111. P. 18995–19000. 10.1021/jp074920g.; Chen L., Cooper A.C., Pez G.P., Cheng H. Density functional study of sequential H2 dissociative chemisorption on a Pt6 cluster // J. Phys. Chem. C. 2007. Vol. 111. P. 5514–5519. 10.1021/jp070181s.; Chen L., Zhou C.-G., Wu J.-P., Cheng H.-S. Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review // Front. Phys. China. 2009. Vol. 4. P. 356–366. 10.1007/s11467-009-0050-6.; Cheng H., Chen L., Cooper A.C., Sha X., Pez G.P. Hydrogen spillover in the context of hydrogen storage using solid-state materials // Energy Environ. Sci. 2008. Vol. 1. P. 338–354. 10.1039/B807618A.; Lachawiec A.J., Qi G., Yang R.T. Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement // Langmuir. 2005. Vol. 21. P. 11418–11424. 10.1021/la051659r.; Li Y., Yang R.T. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover // J. Am. Chem. Soc. 2006. Vol. 128. P. 8136–8137. 10.1021/ja061681m.; Li Y., Yang R.T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover // J. Am. Chem. Soc. 2006. Vol. 128. P. 726– 727. 10.1021/ja056831s.; Liu Y.-Y., Zeng J.-L., Zhang J., Xu F., Sun L.-X. Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 4005–4010. 10.1016/j.ijhydene.2007.04.029.; Lueking A.D., Yang R.T. Hydrogen spillover to enhance hydrogen storage study of the effect of carbon physicochemical properties // Appl. Catal. A. 2004. Vol. 265. P. 259–268. 10.1016/j.apcata.2004.01.019.; Mitchell P.C.H., Ramirez-Cuesta A.J., Parker S.F., Tomkinson J. Inelastic neutron scattering in spectroscopic studies of hydrogen on carbon-supported catalysts-experimental spectra and computed spectra of model systems // J. Mol. Struct. 2003. Vols. 651–653. P. 781–785. 10.1016/S0022-2860(03)00124-8.; Mitchell P.C.H., Ramirez-Cuesta A.J., Parker S.F., Tomkinson J., Thompsett D. Hydrogen spillover on carbon-supported metal catalysts studied by inelastic neutron scattering. Surface vibrational states and hydrogen riding modes // J. Phys. Chem. B. 2003. Vol. 107(28). P. 6838–6845. 10.1021/jp0277356.; Psofogiannakis G.M., Froudakis G.E. DFT study of the hydrogen spillover mechanism on Pt-Doped graphite // J. Phys. Chem. C. 2009. Vol. 113. P. 14908– 14915. 10.1021/jp902987s.; Wu H.-Y., Fan X., Kuo J.-L., Deng W.-Q. DFT study of hydrogen storage by spillover on graphene with boron substitution // J. Phys. Chem. C. 2011. Vol. 115. P. 9241–9249. 10.1021/jp200038b.; Yang F.H., Lachawiec A.J., Yang R.T. Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes // J. Phys. Chem. B. 2006. Vol. 110. P. 6236–6244. 10.1021/jp056461u.; Yang R.T., Wang Y. Catalyzed hydrogen spillover for hydrogen storage // J. Am. Chem. Soc. 2009. Vol. 131. P. 4224–4226. 10.1021/ja808864r.; Zacharia R., Rather S., Hwang S.W., Nahm K.S. Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes // Chem. Phys. Lett. 2007. Vol. 434. P. 286–291. 10.1016/j.cplett.2006.12.022.; Zhou C., Wu J., Nie A., Forrey R.C., Tachibana A., Cheng H. On the sequential hydrogen dissociative chemisorption on small platinum clusters: a density functional theory study // J. Phys. Chem. C. 2007. Vol. 111. P. 12773–12778. 10.1021/jp073597e.; Zieliñski M., Wojcieszak R., Monteverdi S., Mercy M., Bettahar M.M. Hydrogen storage in nickel catalysts supported on activated carbon // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 1024–1032. 10.1016/j.ijhydene.2006.07.004.; Nechaev Yu.S. On the H2 nanophase intercalation into graphene-layers structures: Relevence to the spillover effect // Int. Scientific Journal for Alternative Energy and Ecology. 2015. # 06 (170). P. 37-40.; Nechaev Yu.S., Veziroglu T.N. On the hydrogenation-dehydrogenation of graphene-layer-nanostructures: Relevance to the hydrogen on-board storage problem // Int. Journal of Physical Sciences. 2015. Vol. 10, Iss. 2. P. 54-89 (an “open access” Journal).; Lobodjuk V.A., Estrin E.I. Martensite Transformation. Moscow: Fizmatlit, 2009, in Russian.; Koval Yu.N. Peculiarities of relaxation processes during martensite transformation // Usp. Fiz. Met. 2005. Vol. 6. P. 169-196.; Hu S., Lozada-Hidalgo M., Wang F.C., Mishchenko A., Schedin F., Nair R.R., Hill E.W., Boukhvalov D.W., Katsnelson M.I., Dryfe R.A.W., Grigorieva I.V., Wu H.A., Geim A.K. Proton transport through one atom thick crystals // Materials Science (cond-mat.mtrl-sci); Mesoscale and Nanoscale Physics (cond-mat.mes-hall), (Submitted on 31 Oct 2014), 10.1038/nature14015, arXiv:1410.8724 cond-mat.mtrl-sci. (or arXiv:1410.8724v1 cond-mat.mtrl-sci.).; Naumov I.I., Hemley R.J. Aromaticity, Closed-Shell Effects, and Metallization of Hydrogen // Acc. Chem. Res. 2014. Vol. 47. P. 3551−3559.; Ting V.P., Ramirez-Cuesta A.J., Bimbo N., Sharpe J.E., Noguera-Diaz A., Presser V., Rudic S., Mays T.J. Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures // ACS Nano, Just Accepted Manuscript (2015). DOI:10.1021/acsnano.5b02623, www.acsnano.org.; Nechaev Yu.S., Yurum A., Tekin A., Yavuz N.K., Yurum Yu., Veziroglu T.N. Fundamental open questions on engineering of super hydrogen sorption in graphite nanofibers: Relevance for clean energy applications // American Journal of Analytical Chemistry. 2014. Vol. 5, # 16. P. 1151-1165 (an “open access” Journal).; https://www.isjaee.com/jour/article/view/201

  3. 3
    Academic Journal

    Συγγραφείς: Yu. S. Nechaev, Ю. С. Нечаев

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 6 (2015); 37-40 ; Альтернативная энергетика и экология (ISJAEE); № 6 (2015); 37-40 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/27/28; Nechaev Yu.S., Filippova V.P., Alp Yurum, Yuda Yurum, Veziroglu N.T. The Reversible hydrogenation-dehydrogenation of membrane and epitaxial graphenes // Journal of Chemical Engineering and Chemical Research, Vol. 2, # 1 (2015) p.p. 421-457.; Nechaev Yu.S. and Nejat Veziroglu T. On the hydrogenation-dehydrogenation of graphene-layer-nanostructures: Relevance to the hydrogen on-board storage problem // Int. Journal of Physical Sciences, Vol. 10, Iss. 2 (2015) P. 54-89.; Nechaev Yu.S., Alp Yurum, Adem Tekin, Nilgun Karatepe Yavuz, Yuda Yurum, Veziroglu N.T. Fundamental open questions on engineering of super hydrogen sorption in graphite nanofibers: Relevance for clean energy applications // American Journal of Analytical Chemistry, Vol. 5, # 16 (2014) P. 1151-1165.; Nechaev Yu.S. and Veziroglu N.T. On thermodynamic characteristics of the thermal desorption of hydrogen from hydrogenated graphene layers. Chapter 4, in: Handbook of Carbon Nanomaterials, Vol. 5, Graphene – Fundamental Properties. Eds. F. D’Souza, K.M. Kadish. World Scientific Publ. Co Pte. Ltd., Singapore, (20014) P. 219-258.; Nechaev Yu.S. and Veziroglu N.T. Thermodynamic aspects of the stability of the graphene/graphane/hydrogen systems, relevance to the hydrogen on-board storage problem // Advances in Materials Physics and Chemistry. Vol. 3 (2013) P. 255-280.; Nechaev Yu.S., Veziroglu T.N. On thermodynamic stability of hydrogenated graphene layers, relevance to the hydrogen on-board storage // The Open Fuel Cells Journal. Vol. 6 (2013) P. 21–39.; Nechaev Yu.S. Physical and chemical interactions of hydrogen with carbonaceous nanostructures (An analytical study – indirect experiment). Chapter 2, in: Carbon Nanomaterials for Gas Adsorption. Eds. M.L. Teranova, S. Orlanducci, M. Rossi. Pan Stanford Publ. Pte. Ltd., Singapore (2013) P. 39-130.; Nechaev Yu.S. Solid hydrogen intercalation in closed graphane-hydride-like nanostructures, Relevance to the storage applications. Chapter 5, in: Nanotechnology, Vol. 6, Energy and Environment. Eds. S. Sinha, N.K. Navani, G.N. Govil. Stadium Press LLS, U.S.A. (2013) P. 111-136.; Nechaev Yu.S. On the solid hydrogen intercalation in multilayer carbohydride-like graphane nanostructures, relevance to storage applications // Journal of Nano Research, Vol. 15 (2011) P. 75-93.; Nechaev Yu.S. The high-density hydrogen carrier intercalation in graphane-like nanostructures, relevance to its on-board storage in fuel-cell-powered vehicles // The Open Fuel Cells Journal, Vol. 4 (2011) P.p. 16-29.; Nechaev Yu.S. On the solid hydrogen carrier intercalation in graphane-like regions in carbon-based nanostructures // Int. Journal of Hydrogen Energy, Vol. 36, # 15 (2011) P. 9023-9031.; Nechaev Yu.S. Carbon nanomaterials, relevance to solving the hydrogen storage problem // Journal of Nano Research, Vol. 12 (2010) P. 1-44.; https://www.isjaee.com/jour/article/view/27

    Διαθεσιμότητα: https://www.isjaee.com/jour/article/view/27