-
1Academic Journal
-
2Academic Journal
Authors: D.V. Koval, O.O. Levenets, R.I. Chvankina, I.V. Smachylo, A.Z. Mykolenko
Source: Morphologia; Vol. 17 No. 3 (2023); 52-55
Morphologia; Том 17 № 3 (2023); 52-55Subject Terms: оклюзія аорто-клубового сегменту, сім'яники, сперматогенез, aortoiliac segment occlusion, testes, spermatogenesis
File Description: application/pdf
Access URL: http://morphology.dma.dp.ua/article/view/325964
-
3Academic Journal
Authors: D.B. Koval, O.O. Levenets, J.-M.V. Shandra, A.Z. Mykolenko
Source: Morphologia; Vol. 17 No. 3 (2023); 56-59
Morphologia; Том 17 № 3 (2023); 56-59Subject Terms: acetylsalicylic acid poisoning, testes, hemodynamic disorders, spermatogenesis, отруєння ацетилсаліциловою кислотою, сім'яники, розлади гемодинаміки, сперматогенез
File Description: application/pdf
Access URL: http://morphology.dma.dp.ua/article/view/325966
-
4Academic Journal
Authors: Y. M. Sagurova, A. A. Pendina, T. V. Chugunova, M. I. Krapivin, E. M. Komarova, O. A. Efimova, Я. М. Сагурова, А. А. Пендина, Т. В. Чугунова, М. И. Крапивин, Е. М Комарова, О. А. Ефимова
Contributors: This research was funded by Russian Science Foundation, grant number 24-15-00402, https://rscf.ru/project/24-15-00402/., Исследование выполнено за счет гранта Российского научного фонда № 24-15-00402, https://rscf.ru/ project/24-15-00402/.
Source: Medical Genetics; Том 24, № 9 (2025); 107-110 ; Медицинская генетика; Том 24, № 9 (2025); 107-110 ; 2073-7998
Subject Terms: сперматоциты II, spermatogenesis, azoospermia, spermatogonia, spermatocytes I, spermatocytes II, сперматогенез, азооспермия, сперматогонии, сперматоциты I
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/3190/2050; Turner K.J., Vasu V., Griffin D.K. Telomere Biology and Human Phenotype. Cells. 2019;8(1):73. doi:10.3390/cells8010073; Lindsey J., McGill N.I., Lindsey L.A., et al. In vivo loss of telomeric repeats with age in humans. Mutation Research. 1991; 256:45–48. doi:10.1016/0921-8734(91)90032-7.; Takubo K., Nakamura K.I., Izumiyama N., et al. Telomere shortening with aging in human liver. The journals of gerontology. Series A, Biological sciences and medical sciences. 2000; 55:B533– B536. doi:10.1093/gerona/55.11.B533.; Kimura M., Cherkas L.F., Kato B.S., et al. Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genetics. 2008; 4(2):e37. doi:10.1371/journal.pgen.0040037.; Aston K.I., Hunt S.C., Susser E., et al. Divergence of sperm and leukocyte age-dependent telomere dynamics: implications for maledriven evolution of telomere length in humans. Molecular human reproduction. 2012; 18(10):517–522. doi:10.1093/molehr/gas028.; Pendina A.A., Krapivin M.I., Sagurova Y.M., et al. Telomere Length in Human Spermatogenic Cells as a New Potential Predictor of Clinical Outcomes in ART Treatment with Intracytoplasmic Injection of Testicular Spermatozoa. International journal of molecular sciences. 2023; 24(13): 10427. doi:10.3390/ijms241310427; Temura K., Ogura A., Cheong C., et al. Dynamic rearrangement of telomeres during spermatogenesis in mice. Developmental biology. 2005; 281(2):196–207. doi:10.1016/j.ydbio.2005.02.025; Achi M.V., Ravindranath N., Dym M. Telomere length in male germ cells is inversely correlated with telomerase activity. Biology of Reproduction. 2000; 63(2):591-598.; Pendina A.A., Krapivin M.I., Efimova O.A., et al. Telomere Length in Metaphase Chromosomes of Human Triploid Zygotes. International journal of molecular sciences. 2021; 22(11):5579. doi:10.3390/ijms22115579; Tire B., Ozturk S. Potential effects of assisted reproductive technology on telomere length and telomerase activity in human oocytes and early embryos. Journal of Ovarian Research. 2023; 16(1):130. https://doi.org/10.1186/s13048-023-01211-4; Antunes D.M., Kalmbach K.H., Wang F., et al. A single-cell assay for telomere DNA content shows increasing telomere length heterogeneity, as well as increasing mean telomere length in human spermatozoa with advancing age. Journal of Assisted Reproduction and Genetics. 2015; 32:1685–1690. doi:10.1007/s10815-015-0574-3.
-
5Academic Journal
Authors: Алимов , Бахромжон
Source: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 Part 2 (2025): Eurasian Journal of Medical and Natural Sciences; 257-261 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 257-261 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 257-261 ; 2181-287X
Subject Terms: Необструктивная азооспермия, тромбоцитарно обогащённая плазма, факторы роста, сперматогенез, трансфузиология, Non-obstructive azoospermia, platelet-rich plasma, growth factors, spermatogenesis, transfusiology
File Description: application/pdf
Availability: https://in-academy.uz/index.php/EJMNS/article/view/65012
-
6Academic Journal
Authors: V. B. Chernykh, Yu. L. Melyanovskaya, T. A. Kyian, E. E. Bragina, O. A. Solovova, E. I. Kondratyeva, В. Б. Черных, Ю. Л. Мельяновская, Т. А. Киян, Е. Е. Брагина, О. А. Соловова, Е. И. Кондратьева
Contributors: The study was carried out as part of the research project “Complex analysis of genophenotypic correlations in cystic fibrosis and primary ciliary dyskinesia” (registration number 122032300396-1), Исследование выполнено в рамках Научно-исследовательской работы «Комплексный анализ генофенотипических корреляций при муковисцидозе и первичной цилиарной дискинезии» (регистрационный номер 122032300396-1)
Source: PULMONOLOGIYA; Том 35, № 2 (2025); 269-275 ; Пульмонология; Том 35, № 2 (2025); 269-275 ; 2541-9617 ; 0869-0189
Subject Terms: полноэкзомное секвенирование, cilium, flagellum, spermatogenesis, asthenoteratozoospermia, primary ciliary dyskinesia, whole exome sequencing, ресничка, жгутик, сперматогенез, астенотератозооспермия, первичная цилиарная дискинезия
File Description: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/4691/3772; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4691/3264; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4691/3279; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4691/3280; World Health Organization. WHO laboratory manual for the examination and processing of human semen. World Health Organization; 2010. Available at: https://andrologylab.gr/wp-content/uploads/2020/09/WHO-Manual-2010.pdf; Брагина Е.Е., Арифулин Е.А., Сенченков Е.П. Генетически обусловленные нарушения подвижности сперматозоидов человека. Онтогенез. 2016; 47 (5): 271–286. Доступно на: http://ontogenez.org/archive/2016/5/Bragina_2016_5.pdf; Кондратьева Е.И., Авдеев С.Н., Мизерницкий Ю.Л. и др. Первичная цилиарная дискинезия : обзор проекта клинических рекомендаций 2022 года. Пульмонология. 2022; 32 (4): 517–538. DOI:10.18093/0869-0189-2022-32-4-517-538.; Aprea I., Nöthe-Menchen T., Dougherty G.W. et al. Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system. Mol. Hum. Reprod. 2021; 27 (3): gaab009. DOI:10.1093/molehr/gaab009.; Черных В.Б., Соловова О.А. Мужское бесплодие: взгляд генетика на актуальную проблему. Consilium Medicum. 2019; 21 (7): 19–24. DOI:10.26442/20751753.2019.7.190517.; Derichs N., Sanz J., Von Kanel T. et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010; 65 (7): 594–599. DOI:10.1136/thx.2009.125088.; Sedova A.O., Shtaut M.I., Bragina E.E. et al. Comprehensive semen examination in patients with pancreatic-sufficient and pancreatic-insufficient cystic fibrosis. Asian J. Androl. 2023; 25 (5): 591–597. DOI:10.4103/aja2022115.; Репина С.А., Красовский С.А., Сорокина Т.М. и др. Патогенный вариант 3849+10kbC>T гена CFTR как главный предиктор сохранения фертильности у мужчин с муковисцидозом. Генетика. 2019; 55 (12): 1481–1486. DOI:10.1134/S0016675819120105.; Репина С.А., Красовский С.А., Шмарина Г.В. и др. Состояние репродуктивной системы и алгоритм решения вопроса деторождения у мужчин с муковисцидозом. Альманах клинической медицины. 2019; 47 (1): 26–37. DOI:10.18786/2072-0505-2019-47-001.; Newman L., Chopra J., Dossett C. et al. The impact of primary ciliary dyskinesia on female and male fertility : a narrative review. Hum. Reprod. Update. 2023; 29 (3): 347–367. DOI:10.1093/humupd/dmad003.; https://journal.pulmonology.ru/pulm/article/view/4691
-
7Academic Journal
Authors: Nəzərova, G.E.
Source: Azerbaijan Medical Journal. :155-158
Subject Terms: мужское бесплодие, azot oksid, сперматогенез, nitric oxide, фруктоза, оксид азота, kişi sonsuzluğu, fruktoza, spermatogenez, male infertility, spermatogenesis, 3. Good health, fructose
-
8Academic Journal
Authors: Сaидов Aкмaл Aбдуллaевич
Source: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 1001-1009 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 1001-1009 ; 2181-3469
Subject Terms: сперматогенез
File Description: application/pdf
-
9Academic Journal
Authors: Макеєнко, Вікторія Ігорівна, Старченко, Іван Іванович, Прилуцький, Олексій Костянтинович, Филенко, Борис Миколайович, Ройко, Наталія Віталіївна, Makeyenko, V. I., Starchenko, I. I., Prilutskyi, O. K., Fylenko, B. M., Roiko, N. V.
Subject Terms: морфологія, яєчко, придаток яєчка, сперматогенез, сім’явиносна протока, клітини Лейдіга, morphology, testis, epididymis, spermatogenesis, vas deferens, Leydig cells
File Description: application/pdf
Relation: Морфофункціональна характеристика яєчок людини в нормі (огляд літератури) / В. І. Макеєнко, І. І. Старченко, О. К. Прилуцький, Б. М. Филенко, Н. В. Ройко // Перспективи та інновації науки (Серія «Педагогіка», Серія «Психологія», Серія «Медицина»). – 2024. – № 5 (39). – С. 1316–1329.; https://repository.pdmu.edu.ua/handle/123456789/23831
Availability: https://repository.pdmu.edu.ua/handle/123456789/23831
https://doi.org/10.52058/2786-4952-2024-5(39)-1316-1329 -
10Academic Journal
Authors: Курташ, Н. Я., Бахматюк, І. В.
Source: Achievements of Clinical and Experimental Medicine; No. 1 (2024); 120-124 ; Достижения клинической и экспериментальной медицины; № 1 (2024); 120-124 ; Здобутки клінічної і експериментальної медицини; № 1 (2024); 120-124 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2024.v.i1
Subject Terms: human papilloma virus, spermatogenesis, married couples, вірус папіломи людини, сперматогенез, подружні пари
File Description: application/pdf
-
11Academic Journal
Authors: L. V. Osadchuk, G. V. Vasiliev, M. K. Ivanov, M. A. Prasolova, M. A. Kleshchev, A. V. Osadchuk, Л. В. Осадчук, Г. В. Васильев, М. К. Иванов, М. А. Прасолова, М. А. Клещев, А. В. Осадчук
Contributors: This study was supported by the state assignment FWNR-2022-0021.
Source: Vavilov Journal of Genetics and Breeding; Том 28, № 7 (2024); 780-791 ; Вавиловский журнал генетики и селекции; Том 28, № 7 (2024); 780-791 ; 2500-3259 ; 10.18699/vjgb-24-75
Subject Terms: общая популяция, spermatogenesis, male fertility, general population, сперматогенез, мужская фертильность
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4351/1885; Akbarzadeh Khiavi M., Jalili A., Safary A., Gharedaghchi Z., Mirinezhad S.K., Mehdizadeh A., Rahmani S.A. Karyotypic abnormalities and molecular analysis of Y chromosome microdeletion in Iranian Azeri Turkish population infertile men. Syst. Biol. Reprod. Med. 2020;66(2):140-146. DOI 10.1080/19396368.2019.1682083; Alimardanian L., Saliminejad K., Razi S., Ahani A. Analysis of partial azoospermia factor c deletion and DAZ copy number in azoospermia and severe oligozoospermia. Andrologia. 2016;48(9):890-894. DOI 10.1111/and.12527; Arredi B., Ferlin A., Speltra E., Bedin C., Zuccarello D., Ganz F., Marchina E., Stuppia L., Krausz C., Foresta C. Y-chromosome haplogroups and susceptibility to azoospermia factor c microdeletion in an Italian population. J. Med. Genet. 2007;44(3):205-208. DOI 10.1136/jmg.2006.046433; Bahmanimehr A., Zeighami S., Namavar Jahromi B., Anvar Z., Parsanezhad M.E., Davari M., Montazeri S. Detection of Y chromosome microdeletions and hormonal profile analysis of infertile men undergoing assisted reproductive technologies. Int. J. Fertil. Steril. 2018;12(2):173-177. DOI 10.22074/ijfs.2018.5244; Balanovska E.V., Balanovsky O.P. The Russian Gene Pool on the Russian Plain. Moscow, 2007 (in Russian); Bansal S.K., Gupta G., Rajender S. Y chromosome b2/b3 deletions and male infertility: a comprehensive meta-analysis, trial sequential analysis and systematic review. Mutat. Res. Rev. Mutat. Res. 2016a; 768:78-90. DOI 10.1016/j.mrrev.2016.04.007; Bansal S.K., Jaiswal D., Gupta N., Singh K., Dada R., Sankhwar S.N., Gupta G., Rajender S. Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses. Sci. Rep. 2016b;6:19798. DOI 10.1038/srep19798; Barkov I.Yu., Soroka N.E., Popova A.Yu., Gamidov S.I., Belyaeva N.A., Glinkina Zh.I., Kalinina E.A., Trofimov D.Yu., Sukhikh G.T. Diagnosis of male infertility associated with microdeletions at the AZF locus of the Y chromosome. Akusherstvo i Ginekologiya = Obstetrics and Gynecology. 2014;1:59-64 (in Russian); Behulova R., Varga I., Strhakova L., Bozikova A., Gabrikova D., Boronova I., Repiska V. Incidence of microdeletions in the AZF region of the Y chromosome in Slovak patients with azoospermia. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2011;155(1): 33-38. DOI 10.5507/bp.2011.006; Beyaz C.C., Gunes S., Onem K., Kulac T., Asci R. Partial deletions of Y-chromosome in infertile men with non-obstructive azoospermia and oligoasthenoteratozoospermia in a Turkish population. In Vivo. 2017;31(3):365-371. DOI 10.21873/invivo.11068; Chernykh V.B., Chukhrova A.L., Beskorovainaya T.S., Grishina E.M., Sorokina T.M., Shileiko L.V., Gogolevsky P.A., Kalugina A.S., Morina G.V., Togobetsky A.S., Tanevsky V.E., Zdanovsky V.M., Gogolevskaya I.K., Kramerov D.A., Polyakov A.V., Kurilo L.F. Types of Y chromosome deletions and their frequency in infertile men. Russ. J. Genet. 2006;42(8):936-941. DOI 10.1134/S1022795406080138; ChernykhV.B., Rudneva S.A., Sorokina T.M., Shileyko L.V., Kurilo L.F., Ryzhkova O.P., Chukhrova A.L., Polyakov A.V. Characteristics of spermatogenesis in infertile men with the AZFc region deletions. Andrologiya i Genitalnaya Khirurgiya = Andrology and Genital Surgery. 2014;2:48-57 (in Russian); Chernykh V.B., Ryzhkova O.P., Kuznetsova I.A., Kazaryan M.S., Sorokina T.M., Kurilo L.F., Schagina O.A., Polyakov A.V. Deletions in AZFc region of Y chromosome in Russian fertile men. Russ. J. Genet. 2022;58(7):850-856. DOI 10.1134/s1022795422070043; Choi J., Song S.H., Bak C.W., Sung S.R., Yoon T.K., Lee D.R., Shim S.H. Impaired spermatogenesis and gr/gr deletions related to Y chromosome haplogroups in Korean men. PLoS One. 2012;7(8): e43550. DOI 10.1371/journal.pone.0043550; Cioppi F., Rosta V., Krausz C. Genetics of azoospermia. Int. J. Mol. Sci. 2021;22(6):3264. DOI 10.3390/ijms22063264; Colaco S., Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. 2018; 16(1):14. DOI 10.1186/s12958-018-0330-5; Deng C.Y., Zhang Z., Tang W.H., Jiang H. Microdeletions and vertical transmission of the Y-chromosome azoospermia factor region. Asian J. Androl. 2023;25(1):5-12. DOI 10.4103/aja2021130; Derenko M., Malyarchuk B., Denisova G., Wozniak M., Grzybowski T., Dambueva I., Zakharov I. Y-chromosome haplogroup N dispersals from south Siberia to Europe. J. Hum. Genet. 2007;52(9):763-770. DOI 10.1007/s10038-007-0179-5; Ferlin A., Tessari A., Ganz F., Marchina E., Barlati S., Garolla A., Engl B., Foresta C. Association of partial AZFc region deletions with spermatogenic impairment and male infertility. J. Med. Genet. 2005;42(3):209-213. DOI 10.1136/jmg.2004.025833; Fu M., Chen M., Guo N., Lin M., Li Y., Huang H., Cai M., Xu L. Molecular genetic analysis of 1,980 cases of male infertility. Exp. Ther. Med. 2023;26(1):345. DOI 10.3892/etm.2023.12044; Ghorbel M., Gargouri S.B., Zribi N., Abdallah F.B., Cherif M., Keskes R., Chakroun N., Sellami A., McElreavey K., Fakhfakh F., Ammar-Keskes L. Partial microdeletions in the Y-chromosome AZFc region are not a significant risk factor for spermatogenic impairment in Tunisian infertile men. Genet. Test. Mol. Biomarkers. 2012;16(7): 775-779. DOI 10.1089/gtmb.2012.0024; Hallast P., Kibena L., Punab M., Arciero E., Rootsi S., Grigorova M., Flores R., Jobling M.A., Poolamets O., Pomm K., Korrovits P., Rull K., Xue Y., Tyler-Smith C., Laan M. A common 1.6 MB Ychromosomal inversion predisposes to subsequent deletions and severe spermatogenic failure in humans. eLife. 2021;10:e65420. DOI 10.7554/eLife.65420; Hucklenbroich K., Gromoll J., Heinrich M., Hohoff C., Nieschlag E., Simoni M. Partial deletions in the AZFc region of the Y chromosome occur in men with impaired as well as normal spermatogenesis. Hum. Reprod. 2005;20(1):191-197. DOI 10.1093/humrep/deh558; Iijima M., Shigehara K., Igarashi H., Kyono K., Suzuki Y., Tsuji Y., Kobori Y., Kobayashi H., Mizokami A. Y chromosome microdeletion screening using a new molecular diagnostic method in 1030 Japanese males with infertility. Asian J. Androl. 2020;22(4):368-371. DOI 10.4103/aja.aja_97_19; Ilumäe A.M., Reidla M., Chukhryaeva M., Järve M., Post H., Karmin M., Saag L., Agdzhoyan A., Kushniarevich A., Litvinov S., Ekomasova N., Tambets K., Metspalu E., Khusainova R., Yunusbayev B., Khusnutdinova E.K., Osipova L.P., Fedorova S., Utevska O., Koshel S., Balanovska E., Behar D.M., Balanovsky O., Kivisild T., Underhill P.A., Villems R., Rootsi S. Human Y chromosome haplogroup N: a non-trivial time-resolved phylogeography that cuts across language families. Am. J. Hum. Genet. 2016;99(1): 163-173. DOI 10.1016/j.ajhg.2016.05.025; Johnson M., Raheem A., De Luca F., Hallerstrom M., Zainal Y., Poselay S., Mohammadi B., Moubasher A., Johnson T.F., Muneer A., Sangster P., Ralph D.J. An analysis of the frequency of Y-chromosome microdeletions and the determination of a threshold sperm concentration for genetic testing in infertile men. BJU Int. 2019; 123(2):367-372. DOI 10.1111/bju.14521; Krausz C., Casamonti E. Spermatogenic failure and the Y chromosome. Hum. Genet. 2017;136(5):637-655. DOI 10.1007/s00439-017-1793-8; Krausz C., Cioppi F., Riera-Escamilla A. Testing for genetic contributions to infertility: potential clinical impact. Expert Rev. Mol. Diagn. 2018;18(4):331-346. DOI 10.1080/14737159.2018.1453358; Krausz C., Navarro-Costa P., Wilke M., Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state of the art 2023. Andrology. 2024;12(3):487- 504. DOI 10.1111/andr.13514; Kuroda S., Usui K., Sanjo H., Takeshima T., Kawahara T., Uemura H., Yumura Y. Genetic disorders and male infertility. Reprod. Med. Biol. 2020;19(4):314-322. DOI 10.1002/rmb2.12336; Kuzmanovska M., Noveski P., Terzic M., Plaseski T., Kubelka-Sabit K., Filipovski V., Lazarevski S., Sukarova Stefanovska E., PlaseskaKaranfilska D. Y-chromosome haplogroup architecture confers susceptibility to azoospermia factor c microrearrangements: a retrospective study. Croat. Med. J. 2019;60(3):273-283. DOI 10.3325/cmj.2019.60.273; Lebedev G.S., Golubev N.A., Shaderkin I.A., Shaderkina V.A., Apolikhin O.I., Sivkov A.V., Komarova V.A. Male infertility in the Russian Federation: statistical data for 2000–2018. Eksperimental’naya i Klinicheskaya Urologiya = Experimental and Clinical Urology. 2019; 4:4-12. DOI 10.29188/2222-8543-2019-11-4-4-12 (in Russian); Levkova M., Chervenkov T., Angelova L. The association of gr/gr deletion in the Y chromosome and impaired spermatogenesis in Bulgarian males: a pilot study. Middle East Fertil. Soc. J. 2020;25:10. DOI 10.1186/s43043-020-00020-9; Liu T., Song Y.X., Jiang Y.M. Early detection of Y chromosome microdeletions in infertile men is helpful to guide clinical reproductive treatments in southwest of China. Medicine (Baltimore). 2019; 98(5):e14350. DOI 10.1097/MD.0000000000014350; Lo Giacco D., Chianese C., Sánchez-Curbelo J., Bassas L., Ruiz P., Rajmil O., Sarquella J., Vives A., Ruiz-Castañé E., Oliva R., Ars E., Krausz C. Clinical relevance of Y-linked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Eur. J. Hum. Genet. 2014;22(6):754-761. DOI 10.1038/ejhg.2013.253; Lu C., Jiang J., Zhang R., Wang Y., Xu M., Qin Y., Lin Y., Guo X., Ni B., Zhao Y., Diao N., Chen F., Shen H., Sha J., Xia Y., Hu Z., Wang X. Gene copy number alterations in the azoospermia-associated AZFc region and their effect on spermatogenic impairment. Mol. Hum. Reprod. 2014;20(9):836-843. DOI 10.1093/molehr/gau043; Mikhaylenko D.S., Sobol I.Y., Safronova N.Y., Simonova O.A., Efremov E.A., Efremov G.D., Alekseev B.Y., Kaprin A.D., Nemtsova M.V. The incidence of AZF deletions, CFTR mutations and long alleles of the AR CAG repeats during the primary laboratory diagnostics in a heterogeneous group of infertily men. Urologiia. 2019; 3:101-107. DOI 10.18565/urology.2019.3.101-107 (in Russian); Mokánszki A., Ujfalusi A., Gombos É., Balogh I. Examination of Y-chromosomal microdeletions and partial microdeletions in idiopathic infertility in East Hungarian patients. J. Hum. Reprod. Sci. 2018;11(4):329-336. DOI 10.4103/jhrs.JHRS_12_18; Osadchuk L.V., Shantanova L.N., Troev I.V., Kleshchev M.A., Osadchuk A.V. Regional and ethnic differences in semen quality and reproductive hormones in Russia: a Siberian population-based cohort study of young men. Andrology. 2021;9:1512-1525. DOI 10.1111/andr.13024; Osadchuk L., Vasiliev G., Kleshchev M., Osadchuk A. Androgen receptor gene CAG repeat length varies and affects semen quality in an ethnic-specific fashion in young men from Russia. Int. J. Mol. Sci. 2022;23(18):10594. DOI 10.3390/ijms231810594; Pan Y., Li L.L., Yu Y., Jiang Y.T., Yang X., Zhang H.G., Liu R.Z., Wang R.X. Natural transmission of b2/b3 subdeletion or duplication to expanded Y chromosome microdeletions. Med. Sci. Monit. 2018;24:6559-6563. DOI 10.12659/MSM.911644; Peterlin B., Kunej T., Sinkovec J., Gligorievska N., Zorn B. Screening for Y chromosome microdeletions in 226 Slovenian subfertile men. Hum. Reprod. 2002;17(1):17-24. DOI 10.1093/humrep/17.1.17; Plaseski T., Novevski P., Kocevska B., Dimitrovski C., Efremov G.D., Plaseska-Karanfilska D. AZF deletions in infertile men from the Republic of Macedonia. Prilozi. 2006;27(1):5-16; Repping S., van Daalen S.K., Korver C.M., Brown L.G., Marszalek J.D., Gianotten J., Oates R.D., Silber S., van der Veen F., Page D.C., Rozen S. A family of human Y chromosomes has dispersed throughout northern Eurasia despite a 1.8-Mb deletion in the azoospermia factor c region. Genomics. 2004;83(6):1046-1052. DOI 10.1016/j.ygeno.2003.12.018; Rozen S.G., Marszalek J.D., Irenze K., Skaletsky H., Brown L.G., Oates R.D., Silber S.J., Ardlie K., Page D.C. AZFc deletions and spermatogenic failure: a population-based survey of 20,000 Y chromosomes. Am. J. Hum. Genet. 2012;91(5):890-896. DOI 10.1016/j.ajhg.2012.09.003; Sin H.S., Koh E., Shigehara K., Sugimoto K., Maeda Y., Yoshida A., Kyono K., Namiki M. Features of constitutive gr/gr deletion in a Japanese population. Hum. Reprod. 2010;25(9):2396-2403. DOI 10.1093/humrep/deq191; Stepanov V.A., Khar’kov V.N., Puzyrev V.P. Evolution and phylogeography of human Y-chromosomal lineages. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2006;10(1):57-74 (in Russian); Waseem A.S., Singh V., Makker G.C., Trivedi S., Mishra G., Singh K., Rajender S. AZF deletions in Indian populations: original study and meta-analyses. J. Assist. Reprod. Genet. 2020;37(2):459-469. DOI 10.1007/s10815-019-01661-0; WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva: World Health Organization, 2010; WHO Laboratory Manual for the Examination and Processing of Human Semen. 6th ed. Geneva: World Health Organization, 2021; Yang Y., Ma M., Li L., Su D., Chen P., Ma Y., Liu Y., Tao D., Lin L., Zhang S. Differential effect of specific gr/gr deletion subtypes on spermatogenesis in the Chinese Han population. Int. J. Androl. 2010;33(5):745-754. DOI 10.1111/j.1365-2605.2009.01015.x; Ye J.J., Ma L., Yang L.J., Wang J.H., Wang Y.L., Guo H., Gong N., Nie W.H., Zhao S.H. Partial AZF c duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China. J. Zhejiang Univ. Sci. B. 2013;14(9):807-815. DOI 10.1631/jzus.B1200301; Zhang F., Lu C., Li Z., Xie P., Xia Y., Zhu X., Wu B., Cai X., Wang X., Qian J., Wang X., Jin L. Partial deletions are associated with an increased risk of complete deletion in AZFc: a new insight into the role of partial AZFc deletions in male infertility. J. Med. Genet. 2007;44(7):437-444. DOI 10.1136/jmg.2007.049056; Zobkova G.Yu., Baranova Е.Е., Donnikov А.Е., Mskhalaya G.J., Zaletova V.V., Koshkina Т.Е., Тrofimov D.Yu. Range of azoospermia factor (AZF) deletions in men with normal and disturbed spermatogenesis. Problemy Reproduktsii = Russian Journal of Human Reproduction. 2017;4:109-113. DOI 10.17116/repro2017234109-113 (in Russian).; https://vavilov.elpub.ru/jour/article/view/4351
-
12Academic Journal
Authors: R. G. Farkhutdinov, K. A. Pupykina, L. A. Sharafutdinova, A. M. Fedorova, Z. R. Hismatullina, M. I. Garipova, E. F. Koroleva, A. A. Yamaleeva, T. D. Rendyuk, Р. Г. Фархутдинов, К. А. Пупыкина, Л. А. Шарафутдинова, А. М. Федорова, З. Р. Хисматуллина, М. И. Гарипова, Е. Ф. Королева, А. А. Ямалеева, Т. Д. Рендюк
Source: Drug development & registration; Том 13, № 2 (2024); 208-216 ; Разработка и регистрация лекарственных средств; Том 13, № 2 (2024); 208-216 ; 2658-5049 ; 2305-2066
Subject Terms: тестостерон, sexual behavior, sperm motility, spermatogenesis, testosterone, половое поведение, подвижность сперматозоидов, сперматогенез
File Description: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1828/1279; https://www.pharmjournal.ru/jour/article/view/1828/1295; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1828/2279; Андрияненков А. В. Изучение фармакологической эффективности густых экстрактов ярутки полевой и эспарцета песчаного на модели доброкачественной гиперплазии предстательной железы у крыс. Scientific Journal «ScienceRise». 2015;10(4):46–51. DOI:10.15587/2313-8416.2015.52263.; Барнаулов О. Д. Фитотерапия при импотенции: обзор лекарственных растений и их композиций, применяемых для профилактики и лечения нарушений репродуктивных функций у мужчин. СПб.: Изд-во Н.-Л.; 2012. 416 с.; Браузи М. Тренды фармакотерапии в урологии. Инновации и обращение к прошлому. В сб.: XI конгресс Профессиональной ассоциации андрологов России. Эффективная фармакотерапия. 2016;23:32–33.; Галимов Ш. Н., Громенко Д. С., Юлдашев В. Л. Фархутдинов Р. Г., Галимова Э. Ф. Азбука мужского здоровья. Уфа: ДизайнПолиграфСервис; 2009. 24 с.; Гетманенко А. Ю., Бугаева Л. И., Спасов А. А., Лебедева С. А., Кузубова Е. А., Мальцев М. С. Исследование полового поведения и сперматогенеза у крыс-самцов с экспериментальным дефицитом магния. Вестник ВолгГМУ. 2016;4(60):20–23.; Губанов И. А., Киселева К. В., Новиков В. С., Тихомирова В. М. Иллюстрированный определитель растений Средней России. Том 2. Покрытосеменные (двудольные: раздельнолепестные). М.: Товарищество научных изданий КМК; 2003. 328 с.; Зайченко А. В., Тацкий Ю. А., Коротков В. А., Коваленко Е. Н., Андрияненков А. В., Кухтенко А. С. Морфологическая оценка простатопротекторного действия свечей с масляным экстрактом маклюры в эксперименте. Экспериментальная и клиническая урология. 2014;2:28-31.; Кирилюк А. А., Петрище Т. Л. Особенности влияния пищевых продуктов и их компонентов на фармакологическую активность лекарственных средств. Современные проблемы здравоохранения и медицинской статистики. 2017;1:51–64.; Наумов Н. П., Щеплев П. А., Полозов В. В. Роль антиоксидантов в профилактике мужского бесплодия. Андрология и генитальная хирургия. 2019;20(1):22–28. DOI:10.17650/2070-9781-2019-20-1-22-29.; Павлов В. Н., Кутлияров Л. М., Хайретдинов А. В., и др. Фитотерапия и мужское здоровье. Уфа: Травы Башкирии; 2008. 32 с.; Полухина Т. С., Шатрова М. С., Бешенцева А. В. Ярутка полевая (Thlaspi arvence L.) – перспективный источник биологически активных веществ. В сб.: III Международной научно-практической конференции «Инновационное развитие современной науки: проблемы, закономерности, перспективы». Пенза: Наука и Просвещение (ИП Гуляев Г. Ю.). 2017. С. 270–272.; Сивков А. В., Синюхин В. Н., Ощепков В. Н., Разумов С. В., Медведев А. А., Чирун Н. В. Роль цитокинов в диагностике хронического простатита. Урология. 2003;6:25–28.; Буданцев А. Л., ред. Растительные ресурсы России: Дикорастущие цветковые растения, их компонентный состав и биологическая активность. Том 2. Семейства Actinidiaceae – Malvaceae, Euphorbiaceae – Haloragaceae. СПб; М.: Товарищество научных изданий КМК; 2009. 129 c.; Хабриев Р. У., ред. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Изд-во Медицина; 2005. 832 с.; Субботина С. Н., Парфёнова А. А., Юдин М. А., Быкова А. Ф. Сравнительный анализ информативности методов оценки полового поведения самцов крыс. Журнал высшей нервной деятельности им. И.П. Павлова. 2020;70(2):277–288. DOI:10.31857/S0044467720020124.; Эбель Т. В., Михайлова С. И. Распространение ярутки полевой (Thlaspi arvensis L., Brassicaceae) в агроценозах Сибирского Федерального округа и с подкарантинной продукцией. Вестник КрасГАУ. 2021;1:56–61. DOI:10.36718/1819-4036-2021-1-56-61.; Alahmadi B. A. Effect of Herbal Medicine on Fertility Potential in Experimental Animals – an Update Review. Materia Socio Medica. 2020;32(2):140–147. DOI:10.5455/msm.2020.32.140-147.; Allen J. A., Diemer T., Janus P., Hales K. H., Hales D. B. Bacterial endotoxin lipopolysaccharide and reactive oxygen species inhibit Leydig cell steroidogenesis via perturbation of mitochondria. Endocrine. 2004;25(3):265–275. DOI:10.1385/ENDO:25:3:265.; Aitken R. J. Free radicals, lipid peroxidation and sperm function. Reproduction, Fertility and Development. 1995;7(4):659–668. DOI:10.1071/rd9950659.; Nguyen B. H., Hoang L., Cao T. N., Minh Q. P., Jannini E. A. Testosterone and aging male, a perspective from a developing country. The Aging Male. 2023;26(1):2223712. DOI:10.1080/13685538.2023.2223712.; Bennett J. P., Gomperts B. D., Wollenweber E. Inhibitory effects of natural flavonoids on secretion from mast cells and neutrophils. Arzneimittelforschung. 1981;31(3):433–437.; Boroujeni S. N., Bossaghzadeh F., Malamiri F. A., Esmaeili A., Moudi E. The most important medicinal plants affecting sperm and testosterone production: a systematic review. JBRA Assisted Reproduction. 2022;26(3):522–530. DOI:10.5935/1518-0557.20210108.; Brody S. A. Мужское бесплодие и окислительный стресс: роль диеты, образа жизни и пищевых добавок. Андрология и генитальная хирургия. 2014;15(3):33–41. DOI:10.17650/2070-9781-2014-3-33-41.; Gebreegziabher Y., Marcos E., McKinon W., Rogers G. Sperm characteristics of endurance trained cyclists. International Journal of Sports Medicine. 2004;25(4):247–251. DOI:10.1055/s-2004-819933.; Geva E., Bartoov B., Zabludovsky N., Lessing J. B., Lerner-Geva L., Amit A. The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertility and Sterility. 1996;66(3):430–434. DOI:10.1016/s0015-0282(16)58514-8.; Razaq S., Ibraheem M. R., Hashim S. S. Effect of Lepidium sativum aqueous crude extract in some fertility parameters in mice. International Journal of Science and Research. 2015;6:260–266. DOI:10.21275/ART20176549.; Kim H. P., Son K. H., Chang H. W., Kang S. S. Anti-inflammatory plant flavonoids and cellular action mechanisms. Journal of Pharmacological Sciences. 2004;96(3):229–245. DOI:10.1254/jphs.crj04003x.; Kubiak A., Wolna-Maruwka A., Niewiadomska A., Pilarska A. A. The Problem of Weed Infestation of Agricultural Plantations vs. the Assumptions of the European Biodiversity Strategy. Agronomy. 2022;12(8):1808. DOI:10.3390/agronomy12081808.; Liu J., Chen M., Zhang Y., Zheng B. Analyses of the oil content, fatty acid composition, and antioxidant activity in seeds of Thlaspi arvense L. from different provenances and correlations with environmental factors. Chemical and Biological Technologies in Agriculture. 2022;9:11. DOI:10.1186/s40538-021-00276-x.; Mencherini T., Cau A., Bianco G., Della Loggia R., Aquino R. P., Autore G. An extract of Apium graveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory properties. Journal of Pharmacy and Pharmacology. 2007;59(6):891–897. DOI:10.1211/jpp.59.6.0016.; Mathes M., Kastrick E., Sayles H., Gustin S. How low is too low? Postwash total motile sperm count effect on pregnancy outcomes in intrauterine insemination. Human Fertility. 2023;26(5):1108–1113. DOI:10.1080/14647273.2022.2137858.; Modaresi M., Messripour M., Rajaei R. Effect of cinnamon extract on the number of spermatocyte and spermatozoa cells in mice. Iranian Journal of Medicinal and Aromatic Plants Research. 2010;26(1):83–90. DOI:10.22092/ijmapr.2010.6983.; Moher D., Liberati A., Tetzlaff J., Altman D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine. 2009;6(7):e1000097. DOI:10.1371/journal.pmed.1000097.; Monageng E., Offor U., Takalani N. B., Mohlala K., Opuwari C. S. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants. 2023;12(8):1559. DOI:10.3390/antiox12081559.; Oi Y., Imafuku M., Shishido C., Iwai K., Kominato Yu., Nishimura S. Garlic supplementation increases testicular testosterone and decreases plasma corticosterone in rats fed a high protein diet. The Journal of Nutrition. 2001;131(8):2150–2156. DOI:10.1093/jn/131.8.2150.; Ralebona N., Sewani-Rusike C., Nkeh-Chungag B. Effects of ethanolic extract of Garcinia kola on sexual behaviour and sperm parameters in male Wistar rats. African Journal of Pharmacy and Pharmacology. 2012;6:1077–1082. DOI:10.5897/AJPP11.652.; Kanabar R., Mazur A., Plum A., Schmied J. Correlates of testosterone change as men age. The Aging Male. 2022;25(1):29–40. DOI:10.1080/13685538.2021.2023493.; Santangelo C., Varì R., Scazzocchio B., Di Benedetto R., Filesi C., Masella R. Polyphenols, intracellular signalling and inflammation. Annali dell'Istituto Superiore di Sanità. 2007;43(4):394–405.; Santos F. W., Graça D. L., Zeni G., Rocha J. B. T., Weis S. N., Favero A. M., Nogueira C. W. Sub-chronic administration of diphenyl diselenide potentiates cadmium-induced testicular damage in mice. Reproductive Toxicology. 2006;22(3):546–550. DOI:10.1016/j.reprotox.2005.12.009.; Silván A. M., Abad M. J., Bermejo P., Villar A. Effects of compounds extracted from Santolina oblongifolia on TXB 2 release in human platelets. Inflammopharmacology. 1998;6(3):255–263. DOI:10.1007/s10787-998-0024-2.; Sokolik O. P., Prozorova G. O. Current view on the problem of treating fibrocystic breast disease in terms of herbal medicine. Research Results in Pharmacology. 2022;8(2):77–85. DOI:10.3897/rrpharmacology.8.79286.; Sultana S., Ahmed S., Jahangir T., Sharma S. Inhibitory effect of celery seeds extract on chemically induced hepatocarcinogenesis: modulation of cell proliferation, metabolism and altered hepatic foci development. Cancer Letters. 2005;221(1):11–20. DOI:10.1016/j.canlet.2004.07.030.; Jang T. L., Schaeffer A. J. The role of cytokines in prostatitis. World Journal of Urology. 2003;21:95–99. DOI:10.1007/s00345-003-0335-2.; Van Coppenolle F., Le Bourhis X., Carpentier F., Delaby G., Cousse H., Raynaud J.-P., Dupouy J.-P., Prevarskaya N. Pharmacological effects of the lipidosterolic extract of Serenoa repens (Permixon®) on rat prostate hyperplasia induced by hyperprolactinemia: Comparison with finasteride. The Prostate. 2000;43(1):49–58. DOI:10.1002/(sici)1097-0045(20000401)43:13.0.co;2-j.; Yahyazadeh A., Altunkaynak B. Z. Protective effects of luteolin on rat testis following exposure to 900 MHz electromagnetic field. Biotechnic & Histochemistry. 2019;94(4):298–307. DOI:10.1080/10520295.2019.1566568.; Zou Y., Sun Q., Li J., Yang C., Yang J., Zhang L. Effects of E/Z isomers of lycopene on experimental prostatic hyperplasia in mice. Fitoterapia. 2014;99:211–217. DOI:10.1016/j.fitote.2014.09.013.; https://www.pharmjournal.ru/jour/article/view/1828
-
13Academic Journal
Authors: A. U. Khamadyanova, R. M. Mannanov, D. M. Smakova, F. I. Musaeva, D. G. Bedelov, A. E. Ibragimov, A. A. Rusinova, M. M. Salikhova, S. V. Shtukaturova, T. V. Doroshenko, M. V. Fattakhova, M. K. Rakhimova, L. R. Marinova, А. У. Хамадьянова, Р. М. Маннанов, Д. М. Смакова, Ф. И. Мусаева, Д. Г. Беделов, А. Э. Ибрагимов, А. А. Русинова, М. М. Салихова, С. В. Штукатурова, Т. В. Дорошенко, М. В. Фаттахова, М. К. Рахимова, Л. Р. Маринова
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 720-734 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 720-734 ; 2500-3194 ; 2313-7347
Subject Terms: сперматогенез, coenzyme Q10, CoQ10, oxidative stress, reproduction, mitochondria, organogenesis, oogenesis, spermatogenesis, коэнзим Q10, окислительный стресс, репродукция, митохондрии, органогенез, оогенез
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2136/1234; Башмакова Н.В., Третьякова Т.Б., Демченко Н.С. Цитогенетические нарушения у эмбриона при неразвивающейся беременности. Российский вестник акушера-гинеколога. 2013;13(4):18–21.; Новикова Н.Ю., Цибизова В.И., Первунина Т.М., Малушко А.В. Нутрициология и образ жизни при беременности. Российский журнал персонализированной медицины. 2023;3(2):82–92. https://doi.org/10.18705/2782-3806-2023-3-2-82-92.; Святова Г.С., Березина Г.М., Муртазалиева А.В. Генетические аспекты идиопатической формы привычного невынашивания беременности. Медицинская генетика. 2020;19(11):83–4. https://doi.org/10.25557/2073-7998.2020.11.83-84.; Адамян Л.В., Геворгян А.П. Аутофагия как новое звено в механизме развития нарушений репродуктивной системы (обзор литературы). Проблемы репродукции. 2019;25(5):6–14.; Zhao J., Yao K., Yu H. et al. Metabolic remodelling during early mouse embryo development. Nat Metab. 2021;3(10):1372–84. https://doi.org/10.1038/s42255-021-00464-x.; Motiei M., Vaculikova K., Cela A. et al. Non-invasive human embryo metabolic assessment as a developmental criterion. J Clin Med. 2020;9(12):4094. https://doi.org/10.3390/jcm9124094.; Ayer A., Fazakerley D.J., Suarna C. et al. Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biol. 2021;46:102127. https://doi.org/10.1016/j.redox.2021.102127.; You X., Ryu M.J., Cho E. et al. Embryonic expression of nrasG 12 D leads to embryonic lethality and cardiac defects. Front Cell Dev Biol. 2021;9:633661. https://doi.org/10.3389/fcell.2021.633661.; Wu Y., Yang D., Chen G.Y. Targeted disruption of Rab1a causes early embryonic lethality. Int J Mol Med. 2022;49(4):46. https://doi.org/10.3892/ijmm.2022.5101.; Liang R., Chen X., Zhang Y. et al. Clinical features and gene variation analysis of COQ8B nephropathy: Report of seven cases. Front Pediatr. 2023;10:1030191. https://doi.org/10.3389/fped.2022.1030191.; Somnay Y.R., Wang A., Griffiths K.K., Levy R.J. Altered brown adipose tissue mitochondrial function in newborn fragile X syndrome mice. Mitochondrion. 2022;65:1–10. https://doi.org/10.1016/j.mito.2022.04.003.; Guerra R.M., Pagliarini D.J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci. 2023;48(5):463–76. https://doi.org/10.1016/j.tibs.2022.12.006.; Gutierrez-Mariscal F.M., Arenas-de Larriva A.P., Limia-Perez L. et al. Coenzyme Q10 supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci. 2020;21(21):7870. https://doi.org/10.3390/ijms21217870.; Navas P., Sanz A. Editorial: "Mitochondrial coenzyme Q homeostasis: Signalling, respiratory chain stability and diseases". Free Radic Biol Med. 2021;169:12–3. https://doi.org/10.1016/j.freeradbiomed.2021.04.005.; Alcázar-Fabra M., Rodríguez-Sánchez F., Trevisson E., Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med. 2021;167:141–80. https://doi.org/10.1016/j.freeradbiomed.2021.02.046.; Zhao M., Tian Z., Zhao D. et al. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: a national cross-sectional study. Food Funct. 2023;14(21):9815–24. https://doi.org/10.1039/d3fo00978e.; Громова О.А., Торшин И.Ю. Молекулярная фармакология коэнзима Q10 в контексте лечения гиперлипидемических состояний. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2023;16(2):345–57. https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.186.; Lapuente-Brun E., Moreno-Loshuertos R., Acín-Pérez R. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567–70. https://doi.org/10.1126/science.1230381.; Griffiths K.K., Wang A., Levy R.J. Assessment of open probability of the mitochondrial permeability transition pore in the setting of coenzyme Q excess. J Vis Exp. 2022;(184). https://doi.org/10.3791/63646.; Oh J.N., Lee M., Choe G.C. et al. The number of primitive endoderm cells in the inner cell mass is regulated by platelet-derived growth factor signaling in porcine preimplantation embryos. Anim Biosci. 2023;36(8):1180–9. https://doi.org/10.5713/ab.22.0481.; Gauster M., Moser G., Wernitznig S. et al. Early human trophoblast development: from morphology to function. Cell Mol Life Sci. 2022;79(6):345. https://doi.org/10.1007/s00018-022-04377-0.; Wardle F.C. Mesoderm differentiation in vertebrate development and regenerative medicine. Semin Cell Dev Biol. 2022;127:1–2. https://doi.org/10.1016/j.semcdb.2022.02.014.; Adhikari D., Lee I.W., Yuen W.S., Carroll J. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod. 2022;106(2):366–77. https://doi.org/10.1093/biolre/ioac024.; Непша О.С., Кулакова Е.В., Екимов А.Н. и др. Использование митохондриальной ДНК эмбрионов в качества предиктора эффективности программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021;11:125–34. https://doi.org/10.18565/aig.2021.11.125-134.; Kang M.H., Kim Y.J., Lee J.H. Mitochondria in reproduction. Clin Exp Reprod Med. 2023;50(1):1–11. https://doi.org/10.5653/cerm.2022.05659.; Czernik M., Winiarczyk D., Sampino S. et al. Mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos. Sci Rep. 2022;12(1):16152. https://doi.org/10.1038/s41598-022-20374-6.; Marchante M., Ramirez-Martin N., Buigues A. et al. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY). 2023;15(20):10856–74. https://doi.org/10.18632/aging.205086.; Адамян Л.В., Сибирская Е.В., Щерина А.В. Патогенетические аспекты преждевременной недостаточности яичников. Проблемы репродукции. 2021;27(1):6–12.; van der Reest J., Nardini Cecchino G., Haigis M.C., Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378. https://doi.org/10.1016/j.arr.2021.101378.; Jiang Z., Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci. 2022;29(3):711–22. https://doi.org/10.1007/s43032-021-00523-4.; Hudson G., Takeda Y., Herbert M. Reversion after replacement of mitochondrial DNA. Nature. 2019;574(7778):8–11. https://doi.org/10.1038/s41586-019-1623-3.; Блашкив Т.В., Шепель А.А. Вознесенская Т.Ю. Экспрессия генов клетками кумулюсного окружения ооцита в период овуляции и оплодотворения (обзор литературы). Проблемы репродукции. 2014;(1):55–8.; Hu Y., Zhang R., Zhang S. et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res. 2023;16(1):225. https://doi.org/10.1186/s13048-023-01291-2.; Babayev E., Duncan F.E. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod. 2022;106(2):351–65. https://doi.org/10.1093/biolre/ioab241.; Krawczyk K., Marynowicz W., Pich K. et al. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev. 2023;35(3):294–305. https://doi.org/10.1071/RD21326.; Yu L., Liu M., Xu S. et al. Follicular fluid steroid and gonadotropic hormone levels and mitochondrial function from exosomes predict embryonic development. Front Endocrinol (Lausanne). 2022;13:1025523. https://doi.org/10.3389/fendo.2022.1025523.; Gasmi A., Bjørklund G., Mujawdiya P.K. et al. Coenzyme Q10 in aging and disease. Crit Rev Food Sci Nutr. 2024;64(12):3907–19. https://doi.org/10.1080/10408398.2022.2137724.; Yang C.X., Liu S., Miao J.K. et al. CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology. 2021;159:77–86. https://doi.org/10.1016/j.theriogenology.2020.10.009.; Brown A.M., McCarthy H.E. The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. Hum Fertil (Camb). 2023;26(6):1544–52. https://doi.org/10.1080/14647273.2023.2194554.; Yang J., Feng T., Li S. et al. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages. Reprod Biol Endocrinol. 2020;18(1):74. https://doi.org/10.1186/s12958-020-00631-x.; Giannubilo S.R., Orlando P., Silvestri S. et al. CoQ10 Supplementation in patients undergoing IVF-ET: The relationship with follicular fluid content and oocyte maturity. Antioxidants (Basel). 2018;7(10):141. https://doi.org/10.3390/antiox7100141.; Lee C.H., Kang M.K., Sohn D.H. et al. Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture. Zygote. 2022;30(2):249–57. https://doi.org/10.1017/S0967199421000617.; Yang L., Wang H., Song S. et al. Systematic understanding of anti-aging effect of coenzyme Q10 on oocyte through a network pharmacology approach. Front Endocrinol (Lausanne). 2022;13:813772. https://doi.org/10.3389/fendo.2022.813772.; Heydarnejad A., Ostadhosseini S., Varnosfaderani S.R. et al. Supplementation of maturation medium with CoQ10 enhances developmental competence of ovine oocytes through improvement of mitochondrial function. Mol Reprod Dev. 2019;86(7):812–24. https://doi.org/10.1002/mrd.23159.; Ruiz-Conca M., Gardela J., Mogas T. et al. Apoptosis and glucocorticoid-related genes mRNA expression is modulated by coenzyme Q10 supplementation during in vitro maturation and vitrification of bovine oocytes and cumulus cells. Theriogenology. 2022;192:62–72. https://doi.org/10.1016/j.theriogenology.2022.08.030.; Gendelman M., Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol Reprod. 2012;87(5):118. https://doi.org/10.1095/biolreprod.112.101881.; Miao Y., Cui Z., Gao Q. et al. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 2020;32(5):107987. https://doi.org/10.1016/j.celrep.2020.107987.; Nikalayevich E., Terret M.E. Meiosis: Actin and microtubule networks drive chromosome clustering in oocytes. Curr Biol. 2023;33(7):272–4. https://doi.org/10.1016/j.cub.2023.02.061.; Miao Y., Zhou C., Cui Z. et al. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J. 2018;32(3):1328–37. https://doi.org/10.1096/fj.201700908R.; Zhang M., Shi Yang X., Zhang Y. et al. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med. 2019;143:84–94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002.; Shaw E., Talwadekar M., Rashida Z. et al. Anabolic SIRT4 exerts retrograde control over TORC1 signaling by glutamine sparing in the mitochondria. Mol Cell Biol. 2020;40(2):e00212–19. https://doi.org/10.1128/MCB.00212-19.; He L., Liu Q., Cheng J. et al. SIRT4 in ageing. Biogerontology. 2023;24(3):347–62. https://doi.org/10.1007/s10522-023-10022-5.; Xing X., Zhang J., Zhang J. et al. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol. 2022;15(1):190–203. https://doi.org/10.2174/1874467214666210420112819.; Ben-Meir A., Burstein E., Borrego-Alvarez A. et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887–95. https://doi.org/10.1111/acel.12368.; Del Bianco D., Gentile R., Sallicandro L. et al. Electro-metabolic coupling of cumulus-oocyte complex. Int J Mol Sci. 2024;25(10):5349. https://doi.org/10.3390/ijms25105349.; Ben-Meir A., Kim K., McQuaid R. et al. Co-enzyme Q10 supplementation rescues cumulus cells dysfunction in a maternal aging model. Antioxidants (Basel). 2019;8(3):58. https://doi.org/10.3390/antiox8030058.; Bellusci M., García-Silva M.T., Martínez de Aragón A., Martín M.A. Distal phalangeal erythema in an infant with biallelic PDSS1 mutations: expanding the phenotype of primary Coenzyme Q10 deficiency. JIMD Rep. 2021;62(1):3–5. https://doi.org/10.1002/jmd2.12216.; Li M., Yue Z., Lin H. et al. COQ2 mutation associated isolated nephropathy in two siblings from a Chinese pedigree. Ren Fail. 2021;43(1):97–101. https://doi.org/10.1080/0886022X.2020.1864402.; Laugwitz L., Seibt A., Herebian D. et al. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet. 2022;59(9):878–87. https://doi.org/10.1136/jmedgenet-2021-107729.; Wang N., Zheng Y., Zhang L. et al. A family segregating lethal primary coenzyme Q10 deficiency due to two novel COQ6 variants. Front Genet. 2022;12:811833. https://doi.org/10.3389/fgene.2021.811833.; Olgac A., Öztoprak Ü., Kasapkara C.S. et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33(1):165–70. https://doi.org/10.1515/jpem-2019-0245.; Howden S.E., Vanslambrouck J.M., Wilson S.B. et al. Reporter-based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Rep. 2019;20(4):e47483. https://doi.org/10.15252/embr.201847483.; Drovandi S., Lipska-Ziętkiewicz B.S., Ozaltin F. et al.; PodoNet Consortium; mitoNET Consortium; CCGKDD Consortium; Schaefer F. Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency associated glomerulopathy. Kidney Int. 2022;102(3):592–603. https://doi.org/10.1016/j.kint.2022.02.040.; Zhai S.B., Zhang L., Sun B.C. et al. Early-onset COQ8B (ADCK4) glomerulopathy in a child with isolated proteinuria: a case report and literature review. BMC Nephrol. 2020;21(1):406. https://doi.org/10.1186/s12882-020-02038-7.; Stańczyk M., Bałasz-Chmielewska I., Lipska-Ziętkiewicz B., Tkaczyk M. CoQ10-related sustained remission of proteinuria in a child with COQ6 glomerulopathy – a case report. Pediatr Nephrol. 2018;33(12):2383–7. https://doi.org/10.1007/s00467-018-4083-3.; Suciu S.K., Caspary T. Cilia, neural development and disease. Semin Cell Dev Biol. 2021;110:34–42. https://doi.org/10.1016/j.semcdb.2020.07.014.; Zoghbi J.F., Licznerski P., Yang M. et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020;34(6):7404–26. https://doi.org/10.1096/fj.202000283RR.; Muigg V., Maier M.I., Kuenzli E., Neumayr A. Delayed cerebellar ataxia, a rare post-malaria neurological complication: Case report and review of the literature. Travel Med Infect Dis. 2021;44:102177. https://doi.org/10.1016/j.tmaid.2021.102177.; Monfrini E., Pesini A., Biella F. et al. Whole-exome sequencing study of fibroblasts derived from patients with cerebellar ataxia referred to investigate CoQ10 deficiency. Neurol Genet. 2023;9(2):e200058. https://doi.org/10.1212/NXG.0000000000200058.; Rius R., Bennett N.K., Bhattacharya K. et al. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Hum Mutat. 2022;43(12):1970–8. https://doi.org/10.1002/humu.24453.; Justine Perrin R., Rousset-Rouvière C., Garaix F. et al. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. JIMD Rep. 2020;54(1):37–44. https://doi.org/10.1002/jmd2.12068.; Turnis M.E., Kaminska E., Smith K.H. et al. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood. 2021;137(14):1945–58. https://doi.org/10.1182/blood.2020006916.; Martinez P.A., Li R., Ramanathan H.N. et al. Smad2/3-pathway ligand trap luspatercept enhances erythroid differentiation in murine β-thalassaemia by increasing GATA-1 availability. J Cell Mol Med. 2020;24(11):6162–77. https://doi.org/10.1111/jcmm.15243.; Martell D.J., Merens H.E., Caulier A. et al. RNA polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. Dev Cell. 2023;58(20):2112–2127.e4. https://doi.org/10.1016/j.devcel.2023.07.018.; Rossmann M.P., Hoi K., Chan V. et al. Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science. 2021;372(6543):716–21. https://doi.org/10.1126/science.aaz2740.; Drakhlis L., Biswanath S., Farr C.M. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021;39(6):737–46. https://doi.org/10.1038/s41587-021-00815-9.; Yan A., Liu Z., Song L. et al. Idebenone Alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson's disease mice. Front Cell Neurosci. 2019;12:529. https://doi.org/10.3389/fncel.2018.00529.; Robichaux D.J., Harata M., Murphy E., Karch J. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol. 2023;174:47–55. https://doi.org/10.1016/j.yjmcc.2022.11.003.; Barajas M., Wang A., Griffiths K.K. et al. The newborn Fmr1 knockout mouse: a novel model of excess ubiquinone and closed mitochondrial permeability transition pore in the developing heart. Pediatr Res. 2021;89(3):456–63. https://doi.org/10.1038/s41390-020-1064-6.; Wang Y., Hekimi S. The CoQ biosynthetic di-iron carboxylate hydroxylase COQ7 is inhibited by in vivo metalation with manganese but remains functional by metalation with cobalt. MicroPubl Biol. 2022;2022:10.17912/micropub.biology.000635. https://doi.org/10.17912/micropub.biology.000635.; Smith A.C., Ito Y., Ahmed A. et al.; Care4Rare Canada Consortium. A family segregating lethal neonatal coenzyme Q10 deficiency caused by mutations in COQ9. J Inherit Metab Dis. 2018;41(4):719–29. https://doi.org/10.1007/s10545-017-0122-7.; Danhauser K., Herebian D., Haack T.B. et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet. 2016;24(3):450–4. https://doi.org/10.1038/ejhg.2015.133.; Teran E., Hernández I., Tana L. et al. Mitochondria and coenzyme Q10 in the pathogenesis of preeclampsia. Front Physiol. 2018;9:1561. https://doi.org/10.3389/fphys.2018.01561.; Budani M.C., Tiboni G.M. Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants (Basel). 2020;9(7):612. https://doi.org/10.3390/antiox9070612.; https://www.gynecology.su/jour/article/view/2136
-
14Academic Journal
Contributors: The work was carried out under the state assignment for the Research Centre for Medical Genetics., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».
Source: Medical Genetics; Том 23, № 3 (2024); 3-11 ; Медицинская генетика; Том 23, № 3 (2024); 3-11 ; 2073-7998
Subject Terms: фертильность, male infertility, meiosis, germ cells, spermatogenesis, fertility, мужское бесплодие, мейоз, половые клетки, сперматогенез
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2451/1775; Zegers-Hochschild F., Adamson G.D., de Mouzon J., et al. International Committee for Monitoring Assisted Reproductive Technology; World Health Organization. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92(5):1520-4. doi:10.1016/j.fertnstert.2009.09.009.; Sharlip I.D., Jarow J.P., Belker A.M., et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873-82. doi:10.1016/s0015-0282(02)03105-9.; Thonneau P., Marchand S., Tallec A., et al. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988-1989). Hum Reprod. 1991;6(6):811-6. doi:10.1093/oxfordjournals.humrep.a137433.; WHO laboratory manual for the examination and processing of human semen. 5th ed. WHO, 2010. 271 p.; Chandley A.C. The chromosomal basis of human infertility. Br Med Bull. 1979;35(2):181-6. doi:10.1093/oxfordjournals.bmb.a071567.; Mattei M.G., Mattei J.F., Ayme S., Giraud F. X-autosome translocations: cytogenetic characteristics and their consequences. Hum Genet. 1982;61(4):295-309. doi:10.1007/BF00276593.; McKinlay Gardner R.J., Amor D.J. Gardner and Sutherland’s Chromosome Abnormalities and Genetic Counseling, 5 edn, Oxford Monographs on Medical Genetics (New York, 2018; online edn, Oxford Academic, 1 Feb. 2018), https://doi.org/10.1093/med/9780199329007.001.0001; Madan K. Balanced structural changes involving the human X: effect on sexual phenotype. Hum Genet. 1983;63(3):216-21. doi:10.1007/BF00284652.; Diedrich U., Hansmann I. A familial X-autosome translocation with the breakpoint in the “critical region”. Hum Genet. 1985;70(3):281-3. doi:10.1007/BF00273458.; Choi L., Levy G., Donlon T., et al. Azoospermia Secondary to a Novel X-Autosomal Reciprocal Translocation: 46,Y, t(X:16) (p22.1:p11.2). Mil Med. 2020;185(9-10):e1860-e1863. doi:10.1093/milmed/usaa047.; Karaer K., Ergun M.A., Weise A., et al. The case of an infertile male with an uncommon reciprocal X-autosomal translocation: how does this affect male fertility? Genet Couns. 2010;21(4):397-404. PMID: 21290969.; Leichtman D.A., Schmickel R.D., Gelehrter T.D., et al. Familial Turner syndrome. Ann Intern Med. 1978;89(4):473-6. doi:10.7326/0003-4819-89-4-473.; Li Y., Sha Y., Wei Z., et al. A familial analysis of two brothers with azoospermia caused by maternal 46,Y, t(X;1)(q28;q21) chromosomal abnormality. Andrologia. 2021;53(1):e13867. doi:10.1111/and.13867.; Dutrillaux B., Couturier J., Rotman J., et al. Stérilité et translocation familiale t (1q-;Xq+ [Sterility and familial t (1q-;Xq+) translocation]. C R Acad Hebd Seances Acad Sci D. 1972 12;274(24):3324-7. French. PMID: 4626028.; Quack B., Speed R.M., Luciani J.M., et al. Meiotic analysis of two human reciprocal X-autosome translocations. Cytogenet Cell Genet. 1988;48(1):43-7. doi:10.1159/000132583.; Solari A.J., Rahn I.M., Ferreyra M.E., Carballo M.A. The behavior of sex chromosomes in two human X-autosome translocations: failure of extensive X-inactivation spreading. Biocell. 2001;25(2):155-66. PMID: 11590891.; Perrin A., Vialard F., Douet-Guilbert N., et al. Meiotic segregation of X-autosome translocation in two carriers and implications for assisted reproduction. Reprod Biomed Online. 2009;18(6):850-5. doi:10.1016/s1472-6483(10)60036-3.; Dong Y., Pan Y., Wang R., et al. Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res. 2015;14(4):16041-9. doi:10.4238/2015.December.7.17.; Chamayou S., Sicali M., Lombardo D., et al. The decision on the embryo to transfer after Preimplantation Genetic Diagnosis for X-autosome reciprocal translocation in male carrier. Mol Cytogenet. 2018;11:63. doi:10.1186/s13039-018-0409-x.; Kalz-Füller B., Sleegers E., Schwanitz G., Schubert R. Characterisation, phenotypic manifestations and X-inactivation pattern in 14 patients with X-autosome translocations. Clin Genet. 1999;55(5):362-6. doi:10.1034/j.1399-0004.1999.550511.x.; Cantú J.M., Díaz M., Möller M., et al. Azoospermia and duplication 3qter as distinct consequences of a familial t(X;3) (q26;q13.2). Am J Med Genet. 1985;20(4):677-84. doi:10.1002/ajmg.1320200413.; Stengel-Rutkowski S., Zankl H., Rodewald A., et al. Aspermia, associated with a presumably balanced X/autosomal translocation karyotype 46,Y,t(X;5)(q28;q11). Hum Genet. 1976 28;31(1):97-106. doi:10.1007/BF00270405.; Требка Е.Г., Богачева А.В., Гусина Н.Б. Хромосомные транслокации как причина олигозооспермии тяжелой степени и необструктивной азооспермии у мужчин. Молекулярная и прикладная генетика. 2019;26:115-125.; Lee S., Lee S.H., Chung T.G., et al. Molecular and cytogenetic characterization of two azoospermic patients with X-autosome translocation. J Assist Reprod Genet. 2003;20(9):385-9. doi:10.1023/a:1025437329427.; Zhang H.G., Wang R.X., Li L.L., et al. Male carriers of balanced reciprocal translocations in Northeast China: sperm count, reproductive performance, and genetic counseling. Genet Mol Res. 2015;14(4):18792-8. doi:10.4238/2015.; Alhalabi M., Jaber B., Al-Baroudi B., Alchamat G.A. A Rare Inherited Reciprocal Translocation Found in Two Male Infertile Siblings. JFIV Reprod Med Genet 2014; 2:1 doi:10.4172/2375-4508.1000120; Ishikawa T., Kondo Y., Yamaguchi K., et al. An unusual reciprocal X-autosome translocation in an infertile azoospermic man. Fertil Steril. 2007;88(3):705.e15-7. doi:10.1016/j.fertnstert.2006.12.067.; Buckton K.E., Jacobs P.A., Rae L.A., et al. An inherited X-autosome translocation in man. Ann Hum Genet. 1971;35(2):171-8. doi:10.1111/j.1469-1809.1956.tb01390.x.; Hwang S.H., Lee S.M., Seo E.J., et al. [A case of male infertility with a reciprocal translocation t(X;14)(p11.4;p12)]. Korean J Lab Med. 2007;27(2):139-42. Korean. doi:10.3343/kjlm.2007.27.2.139.; Fraccaro M., Maraschio P., Pasquali F., Scappaticci S. Women heterozygous for deficiency of the (p21 leads to pter) region of the X chromosome are fertile. Hum Genet. 1977;39(3):283-92. doi:10.1007/BF00295421.; Szvetko A., Martin N., Joy C., et al. Detection of chromosome x;18 breakpoints and translocation of the xq22.3;18q23 regions resulting in variable fertility phenotypes. Case Rep Genet. 2012;2012:681747. doi:10.1155/2012/681747.; Ma S., Yuen B.H., Penaherrera M., et al. ICSI and the transmission of X-autosomal translocation: a three-generation evaluation of X;20 translocation: case report. Hum Reprod. 2003;18(7):1377-82. doi:10.1093/humrep/deg247.; Ghieh F., Barbotin A.L., Prasivoravong J., et al. Azoospermia and reciprocal translocations: should whole-exome sequencing be recommended? Basic Clin Androl. 2021;31(1):27. doi:10.1186/s12610-021-00145-5.; Faed M.J., Robertson J., Lamont M.A., et al. A cytogenetic survey of men being investigated for subfertility. J Reprod Fertil. 1979;56(1):209-16. doi:10.1530/jrf.0.0560209.; Cuoco C., Gimelli G., Maraschio P., Pasquali F. X-autosomal translocations and male sterility. Clin Genet. 1980;17:61-62.; Grzesiuk J.D., Pereira C.S., Grangeiro C.H., et al. Familial chromosomal translocation X; 22 associated with infertility and recurrent X mosaicism. Mol Cytogenet. 2016 Jun 15;9:45. doi:10.1186/s13039-016-0249-5. Erratum in: Mol Cytogenet. 2016;9:53.; Marmor D., Taillemite J.L., Van den Akker J., et al. Semen analysis in subfertile balanced-translocation carriers. Fertil Steril. 1980;34(5):496-502. doi:10.1016/s0015-0282(16)45144-7.; Jalbert P., Sele B., Jalbert H. Reciprocal translocations: a way to predict the mode of imbalanced segregation by pachytene-diagram drawing. Hum Genet. 1980;55(2):209-22. doi:10.1007/BF00291769.; Alavattam K.G., Maezawa S., Andreassen P.R., Namekawa S.H. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci. 2021;79(1):18. doi:10.1007/s00018-021-04075-3.; Oliver-Bonet M., Ko E., Martin R.H. Male infertility in reciprocal translocation carriers: the sex body affair. Cytogenet Genome Res. 2005;111(3-4):343-6. doi:10.1159/000086908.; Gabriel-Robez O., Ratomponirina C., Dutrillaux B., et al. Meiotic association between the XY chromosomes and the autosomal quadrivalent of a reciprocal translocation in two infertile men, 46,XY,t(19;22) and 46,XY,t(17;21). Cytogenet Cell Genet. 1986;43(3-4):154-60. doi:10.1159/000132314.; Perrin A., Douet-Guilbert N., Le Bris M.J., et al. Segregation of chromosomes in sperm of a t(X;18)(q11;p11.1) carrier inherited from his mother: case report. Hum Reprod. 2008;23(1):227-30. doi:10.1093/humrep/dem359.
-
15Academic Journal
Authors: M. I. Shtaut, N. V. Oparina, M. V. Andreeva, L. F. Kurilo, A. O. Solovova, T. M. Sorokina, N. V. Shilova, A. V. Polyakov, V. B. Chernykh, М. И. Штаут, Н. В. Опарина, М. В. Андреева, Л. Ф. Курило, О. А. Соловова, Т. М. Сорокина, Н. В. Шилова, А. В. Поляков, В. Б. Черных
Contributors: The study was carried out under the state assignment for the Research Centre for Medical Genetics., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ»
Source: Medical Genetics; Том 23, № 2 (2024); 46-54 ; Медицинская генетика; Том 23, № 2 (2024); 46-54 ; 2073-7998
Subject Terms: AZF локус, microdeletions, male infertility, sex chromosomes, spermatogenesis, translocations, AZF locus, олигозооспермия, микроделеции, мужское бесплодие, половые хромосомы, сперматогенез, транслокации
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2421/1773; Gardner and Sutherland’s Chromosome abnormalities and genetic counseling. 5th edition. R.J. McKinlay Gardner, D.J. Amor. Oxford University Press 2018.; Nielsen J., Rasmussen K. Y/autosomal translocations. Clin Genet. 1976;9(6):609-617.; Hsu L.Y. Phenotype/karyotype correlations of Y chromosome aneuploidy with emphasis on structural aberrations in postnatally diagnosed cases. Am J Med Genet. 1994;53(2):108-140.; Alitalo T., Tiihonen J., Hakola P., de la Chapelle A. Molecular characterization of a Y;15 translocation segregating in a family. Hum Genet. 1988;79(1):29-35.; Черных В.Б. Макро- и микроструктурные перестройки Y хромосомы. Медицинская генетика. 2007; 10: 45-52.; Onrat S.T., Söylemez Z., Elmas M. 46,XX,der(15),t(Y;15)(q12;p11) karyotype in an azoospermic male. Indian J Hum Genet. 2012;18(2):241-245.; Gonzales J., Lesourd S., Dutrillaux B. Mitotic and meiotic analysis of a reciprocal translocation t(Y;3) in an azoospermic male. Hum Genet. 1981;57(1):111-114.; Viguié F., Romani F., Dadoune J.P. Male infertility in a case of (Y; 6) balanced reciprocal translocation. Mitotic and meiotic study. Hum Genet. 1982;62(3):225-7.; Brisset S., Izard V., Misrahi M. et al. Cytogenetic, molecular and testicular tissue studies in an infertile 45,X male carrying an unbalanced (Y;22) translocation: case report. Hum Reprod. 2005;20(8):2168-2172.; McGowan-Jordan J., Hantings R.J., Moore S. ISCN 2020: an international system for human cytogenomic nomenclature (2020). S. Karger: Medical and Scientific Publishers; 2020.; WHO laboratory manual for the examination and processing of human semen. 5th edition. 2010; Курило Л.Ф., Дубинская В.П., Остроумова Т.В. и др. Оценка сперматогенеза по незрелым половым клеткам эякулята. Проблемы репродукции 1995;3:33-38.; Mekkawy M.K., El Guindi A.M., Mazen I.M. et al. An infertile azoospermic male with 45,X karyotype and a unique complex (Y;14);(Y;22) translocation: cytogenetic and molecular characterization. J Assist Reprod Genet. 2018;35(8):1503-1508.; Mancini A., Zollino M., Leone E. et al. A case of 45,X male: genetic reevaluation and hormonal and metabolic follow-up in adult age. Fertil Steril. 2008;90(5):2011.e17-21.; Bilen S., Okten A., Karaguzel G. et al. A 45 X male patient with 7q distal deletion and rearrangement with SRY gene translocation: a case report. Genet Couns. 2013;24(3):299-305.; Qin S., Wang X., Wang J. et al. Verification of a cryptic t(Y;15) translocation in a male with an apparent 45,X karyotype. Mol Cytogenet. 2022;15(1):3.; Maraschio P., Tupler R., Dainotti E. et al. Molecular analysis of a human Y;1 translocation in an azoospermic male. Cytogenet Cell Genet. 1994;65(4):256-260.; Buonadonna A.L., Cariola F, Caroppo E et al. Molecular and cytogenetic characterization of an azoospermic male with a de-novo Y;14 translocation and alternate centromere inactivation. Hum Reprod. 2002;17(3):564-569.; Jiang Y.T., Zhang H.G., Wang R.X. et al. Novel Y chromosome breakpoint in an infertile male with a de novo translocation t(Y;16): a case report. J Assist Reprod Genet. 2012;29(12):1427-1430.; Pinho M.J., Neves R., Costa P. et al. Unique t(Y;1)(q12;q12) reciprocal translocation with loss of the heterochromatic region of chromosome 1 in a male with azoospermia due to meiotic arrest: a case report. Hum Reprod. 2005;20(3):689-696.; Wang D., Chen R., Kong S. et al. Cytogenic and molecular studies of male infertility in cases of Y chromosome balanced reciprocal translocation. Mol Med Rep. 2017;16(2):2051-2054.; Deng S., Zhang H., Liu X. et al. Cytogenetic and molecular detection of a rare unbalanced Y;3 translocation in an infertile male: A case report. Medicine (Baltimore). 2020;99(26):e20863.; Röpke A., Stratis Y., Dossow-Scheele D. et al. Mosaicism for an unbalanced Y;21 translocation in an infertile man: a case report. J Assist Reprod Genet. 2013;30(12):1553-1558.; Giltay J.C., Kastrop P.M., Tiemessen C.H. et al. Sperm analysis in a subfertile male with a Y;16 translocation, using four-color FISH. Cytogenet Cell Genet. 1999;84(1-2):67-72.; Alves C., Carvalho F., Cremades N. et al. Unique (Y;13) translocation in a male with oligozoospermia: cytogenetic and molecular studies. Eur J Hum Genet. 2002;10(8):467-474.; Vialard F., Molina-Gomes D., Roume J. et al. Case report: Meiotic segregation in spermatozoa of a 46,X,t(Y;10)(q11.2;p15.2) fertile translocation carrier. Reprod Biomed Online. 2009;18(4):549-554.; Delobel B., Djlelati R., Gabriel-Robez O. et al. Y-autosome translocation and infertility: usefulness of molecular, cytogenetic and meiotic studies. Hum Genet. 1998;102(1):98-102.; Mennicke K., Diercks P., Schlieker H. et al. Molecular cytogenetic diagnostics in sperm. Int J Androl. 1997;20 Suppl 3:11-19.; Kékesi A., Erdei E., Török M. et al. Segregation of chromosomes in spermatozoa of four Hungarian translocation carriers. Fertil Steril. 2007;88(1):212.e5-11.
-
16Academic Journal
Authors: I. A. Panchenko, R. I. Panchenko, V. K. Naumov, И. А. Панченко, Р. И. Панченко, В. К. Наумов
Source: Andrology and Genital Surgery; Том 25, № 2 (2024); 104-109 ; Андрология и генитальная хирургия; Том 25, № 2 (2024); 104-109 ; 2412-8902 ; 2070-9781
Subject Terms: сперматопротекторы, spermatogenesis, fertility, DNA fragmentation, spermatoprotectors, сперматогенез, фертильность, фрагментация ДНК
File Description: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/764/587; Neto FT, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. Seminars in cell & developmental biology 2016;59:10-26.; Jensen CFS, Ostergren P, Dupree JM, Ohl DA, Sonksen J, Fode M. Varicocele and male infertility. Nature reviews Urology 2017;14:523-33.; Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nature reviews Urology 2012;9:678-90.; Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian journal of andrology 2016;18:186-93.; Wang YJ, Zhang RQ, Lin YJ, Zhang RG, Zhang WL. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reproductive biomedicine online 2012;25:307-14.; Qiu D, Shi Q, Pan L. Efficacy of varicocelectomy for sperm DNA integrity improvement: A meta-analysis. Andrologia 2021;53:e13885.; Birowo P, Rahendra Wijaya J, Atmoko W, Rasyid N. The effects of varicocelectomy on the DNA fragmentation index and other sperm parameters: a meta-analysis. Basic Clin Androl 2020;30:15.; https://agx.abvpress.ru/jour/article/view/764
-
17Academic Journal
Source: Репродуктивное здоровье. Восточная Европа. :701-709
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, мужское бесплодие, сперматогенез, coronavirus, коронавирус, COVID-19, reproductive health, репродуктивное здоровье, male infertility, spermatogenesis, 3. Good health
-
18Academic Journal
Source: Health of Man; No. 3 (2023); 51-56
Здоровье мужчины; № 3 (2023); 51-56
Здоров'я чоловіка; № 3 (2023); 51-56Subject Terms: assisted reproductive technologies, порушення репродуктивної функції, сперматогенез, DNA fragmentation, антиспермальні антитіла, антибіотикотерапія, фрагментація ДНК, spermatogenesis, 3. Good health, antisperm antibodies, antibiotic therapy, допоміжні репродуктивні технології, disorders of reproductive function, 616.697_021.3
File Description: application/pdf
Access URL: https://health-man.com.ua/article/view/290636
-
19Academic Journal
Source: ScienceRise: Medical Science; № 5 (38) (2020); 57-62
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, УДК: 616.697:616.69:616.43-008.6, нонилфенол, репродуктивная система, гонады, сперматогенез, Nonylphenol, reproductive system, gonads, spermatogenesis, нонілфенол, репродуктивна система, гонади
File Description: application/pdf
-
20Academic Journal
Authors: Koval , D.B., Levenets , O.O., Shandra , J.-M.V., Mykolenko , A.Z.
Source: Morphologia; Vol. 17 No. 3 (2023); 56-59 ; Morphologia; Том 17 № 3 (2023); 56-59 ; 1997-9665
Subject Terms: acetylsalicylic acid poisoning, testes, hemodynamic disorders, spermatogenesis, отруєння ацетилсаліциловою кислотою, сім’яники, розлади гемодинаміки, сперматогенез
File Description: application/pdf
Relation: http://morphology.dma.dp.ua/article/view/325966/315854; http://morphology.dma.dp.ua/article/view/325966
Availability: http://morphology.dma.dp.ua/article/view/325966