-
1Academic Journal
Authors: V. E. Zavedeeva, K. T. Efendiev, D. M. Kustov, L. Yu. Loschenova, V. B. Loschenov, В. Е. Заведеева, К. Т. Эфендиев, Д. М. Кустов, Л. Ю. Лощенова, В. Б. Лощенов
Source: Biomedical Photonics; Том 14, № 1 (2025); 36-46 ; 2413-9432
Subject Terms: спектры флюоресценции, photodynamic therapy, 5-aminolevulinic acid, porphyrins, protoporphyrin IX, chlorin-type photoproducts, fluorescence spectra, фотодинамическая терапия, 5-аминолевулиновая кислота, порфирины, протопорфирин IX, фотопродукты хлоринового типа
File Description: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/697/482; Beika M., Harada Y., Minamikawa T., Yamaoka Y., Koizumi N., Murayama Y., Konishi H., Shiozaki A., Fujiwara H., Otsuji E., Takamatsu T. and Tanaka H. Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid. International Journal of Molecular Sciences, 2021, Vol. 22(18), рр. 10121. https://doi.org/10.3390/ijms221810121; Du H., Amy Fuh R., Li J., Corkan L.A. and S. Lindsey J. PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochemistry and Photobiology, 1998, Vol. 68, рр.141-142. https://doi.org/10.1111/j.1751-1097.1998.tb02480.x; Dixon J. M., Taniguchi M. and S. Lindsey J. PhotochemCAD 2. A refined program with accompanying spectral data bases for photochemical calculations. Photochemistry and Photobiology, 2004, Vol. 81, рр. 212-213. https://doi.org/10.1111/j.1751-1097.2005.tb01544.x; Khilov, Aleksandr Vladimirovich, et al. "Analytical model of fluorescence intensity for the estimation of fluorophore localisation in biotissue with dual-wavelength fluorescence imaging." Quantum Electronics, 2021, Vol. 51(2), рр. 95. DOI 10.1070/QEL17503; Efendiev K., Alekseeva P.M., Bikmukhametova I.R., Piterskova L.S., Orudzhova K.F., Agabekova U.D., Slovokhodov E.K. and Loschenov V.B. Comparative investigation of 5-aminolevulinic acid and hexyl aminolevulinate-mediated photodynamic diagnostics and therapy of cervical dysplasia and vulvar leukoplakia. Laser Physics Letters, 2021, Vol. 18(6), рр. 065601. DOI 10.1088/1612-202X/abf5cf; Kirillin, M., Khilov, A., Kurakina, D., Orlova, A., Perekatova, V., Shishkova, V., . & Sergeeva, E. (2021). Dual-wavelength fluorescence monitoring of photodynamic therapy: from analytical models to clinical studies. Cancers, 13(22), рр. 5807. https://doi.org/10.3390/cancers13225807; Bagdonas S., Ma L.W., Iani V., Rotomskis R., Juzenas P. and Moan J. Phototransformations of 5-Aminolevulinic Acid–induced Protoporphyrin IX in vitro: A Spectroscopic Study. Photochemistry and photobiology, 2000, Vol. 72(2), рр. 186-192. https://doi.org/10.1562/0031-8655(2000)0720186POAAIP2.0.CO2; Ogbonna Sochi J., Y. York W.B., Nishimura T., Hazama H., Fukuhara H., Inoue K. and Awazu K. Increased fluorescence observation intensity during the photodynamic diagnosis of deeply located tumors by fluorescence photoswitching of protoporphyrin IX. Journal of Biomedical Optics, 2023, рр. 055001-055001. https://doi.org/10.1117/1.JBO.28.5.055001; Sidney Cox G., Bobillier C. and G. Whitten D. Photooxydation and singlet oxygen sensitization by protoporphyrin IX and its photooxydation products. Photochemistry and Photobiology, 1982, Vol. 36, рр. 401-407. https://doi.org/10.1111/j.1751-1097.1982.tb04393.x; Rick K., Sroka R., Stepp H., Kriegmair M.,. Huber R.M, Jacob K. and Baumgartner R. Phototransformations of 5-Aminolevulinic Pharmacokinetics of Saminolevulinic acid-induced protoporphyrin IX in skin and blood. Journal of Photochemistry and Photobiology: Biology, 1997, Vol. 40, рр. 313-319. https://doi.org/10.1016/S1011-1344(97)00076-6; Fritsch C., Lehmann P., Stahl W., Schulte K.W., Blohm E., Lang K., Sies H. and Ruzicka T. Optimum porphyrin accumulation in epithelial skin tumours and psoriatic lesions after topical application of δ-aminolaevulinic acid. British Journal of Cancer, 1999, Vol. 79, рр. 1603-1608. https://doi.org/10.1038/sj.bjc.6690255; Brault D., Aveline B., Delgado O. and Vever-Bizet Ch. Chlorin-type photosensitizers derived from vinyl porphyrins. Photochemistry and Photobiology, 2001, Vol. 73(4), рр. 331-338. https://doi.org/10.1117/12.199160; Robinson D. J., de Brujin H. S., van der Veen N., Stringer M. R., Brown S. B. and Star W. M. Fluorescence photobleaching of ALA-induced PpIX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochemistry and Photobiology, 1998, Vol. 67, рр. 140-149. https://doi.org/10.1111/j.1751-1097.1998.tb05177.x; Ogbonna, Sochi J., Katsuyoshi Masuda, and Hisanao Hazama. "The effect of fluence rate and wavelength on the formation of protoporphyrin IX photoproducts. "Photochemical & Photobiological Sciences, 2024, Vol. 23(9), рр.1627-1639. https://doi.org/10.1007/s43630-024-00611-9