Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"сопряженные карбонильные соединения"', χρόνος αναζήτησης: 0,47δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 8-9 (2015); 112-138 ; Альтернативная энергетика и экология (ISJAEE); № 8-9 (2015); 112-138 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/46/47; Williams D.L., Byrne J.J., Driscoll J.S. A High Energy Density Lithium/Dichloroisocyanuric Acid Battery System // J. Electrochem. Soc. 1969. Vol. 116, Iss. 1. P. 2-4.; Yoshino A. The Birth of the Lithium-Ion Battery // Angew. Chem., Int. Ed. 2012. Vol. 51. P. 5798–5800.; Novak P., Muller K., Santhanam K.S.V., Haas O. Electrochemically active polymers for rechargeable batteries // Chem. Rev. 1997. Vol. 97. P. 207-282.; Song Z., Zhou H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials // Energy Environ. Sci. 2013. Vol. 6. P. 2280-2301.; Haupler B., Wild A., Schubert U.S. Carbonyls: powerful organic materials for secondary batteries // Adv. Energy Mater. 2015. 1402034-1402067.; Melot B.C., Tarascon J.-M. Design and Preparation of Materials for Advanced Electrochemical Storage // Acc. Chem. Res. 2013. Vol. 46. P. 1226-1238.; Park C.-M., Sohn H.-J. Black Phosphorus and its Composite for Lithium Rechargeable Batteries // Adv. Mater. 2007. Vol. 19. P. 2465-2468.; Liu F.-C., Liu W.-M., Zhan M.-H., Fu Z.-W., Li H. An all solid-state rechargeable lithium-iodine thin film battery using LiI(3-hydroxypropionitrile)2 as an I−ion electrolyte // Energy Environ. Sci. 2011. Vol. 4. P. 1261-1264.; Nigrey P.J., MacInnes D., Jr, Nairns D.P., MacDiarmid A.G., Heeger A.J. Lightweight Rechargeable Storage Batteries Using Polyacetylene, (CH)x as the Cathode-Active Material // J. Electrochem. Soc. 1981. Vol. 128. P. 1651-1654.; Shacklette L.W., Toth J.E., Murthy N.S., Baughman R.H. Polyacetylene and Polyphenylene as Anode Materials for Nonaqueous Secondary Batteries // J. Electrochem. Soc. 1985. Vol. 132. P. 1529-1535.; Zhu L.M., Lei A.W., Cao Y.L., Ai X.P., Yang H.X. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode // Chem. Commun. 2013. Vol. 49. P. 567-569.; MacDiarmid A.G., Yang L.S., Huang W.S., Humphrey B.D. Polyaniline: electrochemistry and application to rechargeable batteries // Synth. Met. 1987. Vol. 18. P. 393-398.; Gospodinova N., Terlemezyan L. Conducting polymers prepared by oxidative polymerization: polyaniline // Prog. Polym. Sci. 1998. Vol. 23. P. 1443-1484.; Mermilliod N., Tanguy J., Petiot F. A Study of Chemically Synthesized Polypyrrole as Electrode Material for Battery Applications // J. Electrochem. Soc. 1986. Vol. 133. P. 1073-1079.; Zhou M., Qian J., Ai X., Yang H. Redox-Active Fe(CN)64--Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Li-Ion Batteries // Adv. Mater. 2011. Vol. 23. P. 4913-4917.; Kaneto K., Yoshino K., Inuishi Y. Characteristics of Polythiophene Battery // Jpn. J. Appl. Phys. 1983. Vol. 22. P. L567-568.; Liu L., Tian F., Wang X., Yang Z., Zhou M., Wang X. Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability // React. Funct. Polym. 2012. Vol. 72. P. 45-49.; Sakaushi K., Hosono E., Nickerl G., Gemming T., Zhou H., Kaskel S., Eckert J. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device // Nat. Commun. 2013. Vol. 4. P. 1485-1491.; Oyama N., Tatsuma T., Sato T., Sotomura T. Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density // Nature. 1995. Vol. 373. P. 598-600.; Deng S.-R., Kong L.-B., Hu G.-Q., Wu T., Li D., Zhou Y.-H., Li Z.-Y. Benzene-based polyorganodisulfide cathode materials for secondary lithium batteries // Electrochim. Acta. 2006. Vol. 51. P. 2589-2593.; Zhan L., Song Z., Zhang J., Tang J., Zhan H., Zhou Y., Zhan C. PEDOT: Cathode active material with high specific capacity in novel electrolyte system // Electrochim. Acta. 2008. Vol. 53. P. 8319-8323.; Zhan L., Song Z., Shan N., Zhang J., Tang J., Zhan H., Zhou Y., Li Z., Zhan C. Poly(tetrahydrobenzodithiophene): High discharge specific capacity as cathode material for lithium batteries // J. Power Sources. 2009. Vol. 193. P. 859-863.; Oyaizu K., Nishide H., Radical polymers for organic electronic devices: A radical departure from conjugated polymers? // Adv. Mater. 2009. Vol. 21. P. 2339-2344.; Nakahara K., Oyaizu K., Nishide H. Organic radical battery approaching practical use // Chem. Lett. 2011. Vol. 40. P. 222-227.; Janoschka T., Hager M.D., Schubert U.S. Powering up the Future: Radical Polymers for Battery Applications // Adv. Mater. 2012. Vol. 24. P. 6397-6409.; Han X., Chang C., Yuan L., Sun T., Sun J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials // Adv. Mater. 2007. Vol. 19. P. 1616-1621.; Oyama N., Sarukawa T., Mochizuki Y., Shimomura T., Yamaguchi S. Significant effects of poly(3,4-ethylenedioxythiophene) additive on redox responses of poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) cathode for rechargeable Li batteries // J. Power Sources. 2009. Vol. 189. P. 230-239.; Namazian M., Almodarresieh H.A. Computational electrochemistry: aqueous two-electron reduction potentials for substituted quinones // J. Mol. Struct.: THEOCHEM. 2004. Vol. 686. P. 97-102.; Alizadeh K., Shamsipur M. Calculation of the two-step reduction potentials of some quinones in acetonitrile // J. Mol. Struct.: THEOCHEM. 2008. Vol. 862. P. 39-43.; Sun Y.-K., Myung S.-H., Kim M.-H., Prakash J., Amine K. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core-Shell Structure as the Positive Electrode Material for Lithium Batteries // J. Am. Chem. Soc. 2005. Vol. 127. P. 13411-13418.; Cho J., Kim Y.-W., Kim B., Lee J.-G., Park B. A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AlPO4 Nanoparticles // Angew. Chem. Int. Ed. 2003. Vol. 42. P. 1618-1621.; Wain A.J., Wildgoose G.G., Heald C.G.R., Jiang L., Jones T.G.J., Compton R.G. Electrochemical ESR and Voltammetric Studies of Lithium Ion Pairing with Electrogenerated 9,10-Anthraquinone Radical Anions Either Free in Acetonitrile Solution or Covalently Bound to Multiwalled Carbon Nanotubes // J. Phys. Chem. B. 2005. Vol. 109. P. 3971-3978.; Senoh H., Yao M., Sakaebe H., Yasuda K., Siroma Z. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries // Electrochim. Acta. 2011. Vol. 56. P. 10145-10150.; Zhao L., Wang W.-K., Wang A.-B., Yu Z.-B., Chen S., Yang Y.-S. A MC/AQ Parasitic Composite as Cathode Material for Lithium Battery // J. Electrochem. Soc. 2011. Vol. 158. P. A991-996.; Bu P., Liu S., Lu Y., Zhuang S., Wang H., Tu F. Effects of Carbon Black on the Electrochemical Performance of Lithium-Organic Coordination Compound Batteries // Int. J.Electrochem. Sci. 2012. Vol. 7. P. 4617-4624.; Zeng R., Xing L., Qiu Y., Wang Y., Huang W., Li W., Yang S. Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries // Electrochimica Acta. 2014. Vol. 146. P. 447–454.; Reddy A.L.M., Nagarajan S., Chumyim P., Gowda S.R., Pradhan P., Jadhav S.R., Dubey M., John G., Ajayan P.M. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes // Sci. Rep. 2012. Vol. 2. P. 960-964.; Liang Y.L., Zhang P., Yang S.Q., Tao Z.L., Chen. J. Fused Heteroaromatic Organic Compounds for High-Power Electrodes of Rechargeable Lithium Batteries // Adv. Energy Mater. 2013. Vol. 3. P. 600–605.; Tobishima S.-i., Yamaki J.-i., Yamaji A. Cathode Characteristics of Organic Electron Acceptors for Lithium Batteries // J. Electrochem. Soc. 1984. Vol. 131. P. 57-63.; Shimizu A., Kuramoto H., Tsujii Y., Nokami T., Inatomi Y., Hojo N., Suzuki H., Yoshida J.-i. Introduction of two lithiooxycarbonyl groups enhances cyclability of lithium batteries with organic cathode materials // Journal of Power Sources. 2014. Vol. 260. P. 211-217.; Senoh H., Yao M., Sakaebe H., Yasuda K., Siroma Z. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries // Electrochimica Acta. 2011. Vol. 56. P. 10145– 10150.; Yao M., Senoh H., Yamazaki S., Siroma Z., Sakai T., Yasuda K. High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries // Journal of Power Sources.2010. Vol. 195. P. 8336–8340.; Yao M., Ando H., Kiyobayashi T. Dialkoxybenzoquinone-type active materials for rechargeable lithium batteries: the effect of the alkoxy group length on the cycle-stability // Energy Procedia. 2013. Vol. 34. P. 880–887.; Kalaiselvi D., Renuka R. Zeolite modification of organic cathodes: clean technology for improved cycle life of the zinc– chloranil organic secondary battery // J. Chem. Technol. Biotechnol. 2000. Vol. 75. P. 285-293.; Xu Y., Wen Y., Cheng J., Cao G., Yang Y. Study on a single flow acid Cd–chloranil battery // Electrochem. Commun. 2009. Vol. 11, Iss. 7. P. 1422-1424.; Hanyu Y., Ganbe Y., Honma I. Application of quinonic cathode compounds for quasi-solid lithium batteries // J. Power Sources. 2013. Vol. 221. P. 186-190.; Hanyu Y., Honma I. Rechargeable quasi-solid state lithium battery with organic crystalline cathode // Sci. Rep. 2012. Vol. 2. P. 453-458.; Yao M., Senoh H., Sakai T., Kiyobayashi T. 5,7,12,14-Pentacenetetrone as a High-Capacity Organic Positive Electrode Material for Use in Rechargeable Lithium Batteries // Int. J. Electrochem. Sci. 2011. Vol. 6. P. 2905-2911.; Boschi T., Pappa R., Pistoia G., Tocci M. On the use of nonylbenzo-hexaquinone as a substitute for monomeric quinones in non-aqueous cells // J. Electroanal. Chem. 1984. Vol. 176. P. 235-242.; Pasquali M., Pistoia G., Boschi T., Tagliatesta P. Redox mechanism and cycling behaviour of nonylbenzo-hexaquinone electrodes in Li cells // Solid State Ionics. 1987. Vol. 23. P. 261-266.; Ohzuku T., Wakamatsu H., Takehara Z., Yoshizawa S. Nonaqueous lithium/pyromellitic dianhydride cell // Electrochim. Acta. 1979. Vol. 24. P. 723-726.; Han X., Qing G., Sun J., Sun T. How Many Lithium Ions Can Be Inserted onto Fused C6 Aromatic Ring Systems? // Angew. Chem., Int. Ed. 2012. Vol. 51. P. 5147-5151.; Geng J., Bonnet J.-P., Renault S., Dolhem F., Poizot P. Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit // Energy Environ. Sci. 2010. Vol. 3. P. 1929-1933.; Yao M., Araki M., Senoh H., Yamazaki S.-i., Sakai T., Yasuda K. Indigo Dye as a Positive-electrode Material for Rechargeable Lithium Batteries // Chem. Lett. 2010. Vol. 39. P. 950-952.; Huang W., Zhu Z., Wang L., Wang S., Tao Z., Shi J., Guan L., Chen J. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4]quinone Cathode and Gel Polymer Electrolyte // Angew. Chem. Int. Ed. 2013. Vol. 52. P. 9162–9166.; Iordache A., Maurel V., Mouesca J.-M., Pecaut J., Dubois L., Gutel T. Monothioanthraquinone as an organic active material for greener lithium batteries // Journal of Power Sources. 2014. Vol. 267. P. 553-559.; Goriparti S., Harish M.N.K., Sampath S. Ellagic acid – a novel organic electrode material for high capacity lithium ion batteries // Chem. Commun. 2013. Vol. 49. P. 7234-7236.; Foos J.S., Erker S.M., Rembetsy L.M. Synthesis and Characterization of Semiconductive Poly-1,4-Dimethoxybenzene and Its Derived Polyquinone // J. Electrochem. Soc. 1986. Vol. 133. P. 836-841.; Haringer D., Novak P., Haas O., Piro B., Pham M.-C. Poly(5-amino-1,4-naphthoquinone), a NovelLithium-Inserting Electroactive Polymer with High Specific Charge // J. Electrochem. Soc. 1999. Vol. 146. P. 2393-2396.; Le Gall T., Reiman K.H., Grossel M.C., Owen J.R. Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries // J. Power Sources. 2003. Vol. 121. P. 316-320.; Song Z., Zhan H., Zhou Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries // Chem. Commun. 2009. P. 448-450.; Xu W., Read A., Koech P. K., Hu D., Wang C., Xiao J., Padmaperuma A.B., Graff G.L., Liu J., Zhang J.-G. Factors affecting the battery performance of anthraquinone-based organic cathode materials // J. Mater. Chem. 2012. Vol. 22. P. 4032-4039.; Choi W., Harada D., Oyaizu K., Nishide H. Aqueous Electrochemistry of Poly(vinylanthraquinone) for Anode-Active Materials in High-Density and Rechargeable Polymer/Air Batteries // J. Am. Chem. Soc. 2011. Vol. 133. P. 19839-19843.; Nokami T., Matsuo T., Inatomi Y., Hojo N., Tsukagoshi T., Yoshizawa H., Shimizu A., Kuramoto H., Komae K., Tsuyama H., Yoshida J.-i. Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity // J. Am. Chem. Soc. 2012. Vol. 134. P. 19694-19700.; Song Z., Zhan H., Zhou Y. Polyimides: Promising Energy-Storage Materials // Angew. Chem., Int. Ed. 2010. Vol. 49. P. 8444-8448.; Song Z., Xu T., Gordin M.L., Jiang Y.-B., Bae I.-T., Xiao Q., Zhan H., Liu J., Wang D. Polymer-Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries // Nano Lett. 2012. Vol. 12. P. 2205−2211.; Liu K., Zheng J., Zhong G., Yang Y. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries // J. Mater. Chem. 2011. Vol. 21. P. 4125–4131.; Sharma P., Damien D., Nagarajan K., Manikoth M. Shaijumon M.M., Hariharan M. Perylene-polyimide-Based Organic Electrode Materials for Rechargeable Lithium Batteries // J. Phys. Chem. Lett. 2013. Vol. 4. P. 3192−3197.; Zhao L., Wang W., Wang A., Yuan K., Chen S., Yang Y. A novel polyquinone cathode material for rechargeable lithium batteries // Journal of Power Sources. 2013. Vol. 233. P. 23-27.; Ярмоленко О.В., Игнатова А.А., Мумятов А.В., Трошин П.А., Шестаков А.Ф. Структурные изменения полиимидных органических катодных материалов при допировании литием. Тезисы на VII Всероссийскую молодежную школу-конференцию «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул». 14-17 апреля 2015 г. Иваново. C. 389-392. (Yarmolenko O.V., Ignatov A.A., Mumyatov A.V., Troshin P.A., Shestakov A.F. Structural changespolyimide organic cathode materials when doped with lithium // Abstracts for the VII National Youth School-Conference "Quantum chemical calculations: The structure and reactivity of organic and inorganic molecules." 14-17 April 2015 Ivanovo. P. 389-392.); http://lomonosov-msu.ru/archive/Lomonosov_2015/data/section_32_7117.htm.; Forrest S.R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques // Chem. Rev. 1997. Vol. 97. P. 1793-1896.; Sylvester-Hvid K.O. Two-Dimensional Simulations of CuPc−PCTDA Solar Cells: The Importance of Mobility and Molecular π Stacking // J. Phys. Chem. B 2006. Vol. 110. P. 2618-2627.; Crecelius G., Fink J., Ritsko J.J., Stamm M., Freund H.-J., Gonska H. π-electron delocalization in poly(p−phenylene), poly(p−phenylenesulfide), and poly(p−phenyleneoxide) // Phys. Rev. B: Condens. Matter Mater. Phys. 1983. Vol. 28. P. 1802-1808.; MacDiarmid A.G., in Conjugated Polymers and Related Materials (Eds: W.R. Salaneck, I. Lundström, B. Ranby), Oxford University Press, Oxford, 1993. pp. XV + 501.; Wu H., Wang K., Meng Y., Lua K., Wei Z. An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries // J. Mater. Chem. A. 2013. Vol. 1. P. 6366–6372.; Chung S.-Y., Bloking J.T., Chiang Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes // Nat. Mater. 2002. Vol. 1. P. 123-128.; Wang D., Choi D., Li J., Yang Z., Nie Z., Kou R., Hu D., Wang C., Saraf L. V., Zhang J., Aksay I.A., Liu J. Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion // ACS Nano. 2009. Vol. 3. P. 907−914.; Kozhemyakina N.V., Englert J.M., Yang G., Spiecker E., Schmidt C.D., Hauke F., Hirsch A. Non-Covalent Chemistry of Graphene: Electronic Communication with Dendronized Perylene Bisimides // Adv. Mater. 2010. Vol. 22. P. 5483−5487.; Xiang J., Chang C., Li M., Wu S., Yuan L., Sun J. A Novel Coordination Polymer as Positive Electrode Material for Lithium Ion Battery // Cryst. Growth Des. 2008. Vol. 8. № 1. P. 280-282.; Chen H., Armand M., Demailly G., Dolhem F., Poizot P., Tarascon J.M. From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries // ChemSusChem. 2008. Vol. 1. P. 348-355.; Chen H., Armand M., Courty M., Jiang M., Grey C. P., Dolhem F., Tarascon J.-M., Poizot P. Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery // J. Am. Chem. Soc. 2009. Vol. 131. P. 8984-8988.; Zeng R.-H., Li X.-P., Qiu Y.-C., Li W.-S., Yi J., Lu D.-S., Tan C.-L., Xu M.-Q. Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries // Electrochem. Commun. 2010. Vol. 12. P. 1253-1256.; Renault S., Brandell D., Gustafsson T., Edstrom K. Improving the electrochemical performance of organic Li-ion battery electrodes // Chem. Commun. 2013. Vol. 49. P. 1945-1947.; Armand M., Grugeon S., Vezin H., Laruelle S., Ribiere P., Poizot P., Tarascon J.-M. Conjugated dicarboxylate anodes for Li-ion batteries // Nat. Mater. 2009. Vol. 8. P. 120-125.; Zhang Y.Y., Sun Y.Y., Du S.X., Gao H.-J., Zhang S.B. Organic salts as super-high rate capability materials for lithium-ion batteries // Applied physics letters. 2012. Vol. 100, 091905; doi:10.1063/1.3689764.; Walker W., Grugeon S., Vezin H., Laruelle S., Armand M., Wudl F., Tarascon J.-M. Electrochemical characterization of lithium 4,4′-tolane-dicarboxylate for use as a negative electrode in Li-ion batteries // J. Mater. Chem. 2011. Vol. 21. P. 1615-1620.; Walker W., Grugeon S., Mentre O., Laruelle S., Tarascon J.-M., Wudl F. Ethoxycarbonyl-Based Organic Electrode for Li-Batteries // J. Am. Chem. Soc. 2010. Vol. 132. P. 6517-6523.; Zhao R.R., Cao Y.L., Ai X.P., Yang H.X. Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries // Journal of Electroanalytical Chemistry. 2013. Vol. 688. P. 93-97.; Renault S., Geng J., Dolhem F., Poizot P. Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of pyromellitic diimide dilithium salt // Chem. Commun. 2011. Vol. 47. P. 2414-2416.; Kim D.J., Je S.H., Sampath S., Choi J.W., Coskun A. Effect of N-substitution in naphthalenediimides on the electrochemical performance of organic rechargeable batteries // RSC Adv. 2012. Vol. 2. P. 7968-7970.; Zhao L., Zhao J., Hu Y.-S., Li H., Zhou Z., Armand M., Chen L. Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery // Adv. Energy Mater. 2012. Vol. 2. P. 962-965.; Park Y., Shin D.-S., Woo S.H., Choi N.S., Shin K.H., Oh S.M., Lee K.T. and Hong S.Y. Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries // Adv. Mater. 2012. Vol. 24. P. 3562-3567.; Abouimrane A., Weng W., Eltayeb H., Cui Y., Niklas J., Poluektov O., Amine K. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells // Energy Environ. Sci. 2012. Vol. 5. P. 9632-9638.; Gottis S., Barrès A.-L., Dolhem F., Poizot P. Voltage Gain in Lithiated Enolate-Based Organic Cathode Materials by Isomeric Effect // ACS Appl. Mater. Interfaces. 2014. Vol. 6, No. 14. P. 10870–10876.; https://www.isjaee.com/jour/article/view/46