-
1Academic Journal
Πηγή: Клиническая онкогематология, Vol 18, Iss 1 (2025)
Θεματικοί όροι: хронический миелолейкоз, резистентность, соматические мутации в генах, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, неудача терапии, RC254-282
Σύνδεσμος πρόσβασης: https://doaj.org/article/a61cf768796f41a1b7a8df244f3d8b2a
-
2Academic Journal
Πηγή: Клиническая онкогематология, Vol 16, Iss 3 (2024)
Θεματικοί όροι: соматические мутации, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, множественная миелома, секвенирование нового поколения, наследуемые мутации, экзом, RC254-282, 3. Good health
Σύνδεσμος πρόσβασης: https://doaj.org/article/99f43174a2b844419d7fea30e1d1eccd
-
3Academic Journal
Συγγραφείς: Dribnokhodova O.P., Mironov K.O., Pozdysheva E.A., Vinokurov M.A., Korchagin V.I., Akimkin V.G.
Συνεισφορές: 0
Πηγή: Annals of the Russian academy of medical sciences; Vol 79, No 6 (2024); 481-489 ; Вестник Российской академии медицинских наук; Vol 79, No 6 (2024); 481-489 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.796
Θεματικοί όροι: genetic predisposition, hereditary cancer syndrome, pharmacogenetics, mutations, single nucleotide polymorphisms, онкогенетика, соматические мутации, герминальные мутации, генетическая предрасположенность, фармакогенетика
Περιγραφή αρχείου: application/pdf
Relation: https://vestnikramn.spr-journal.ru/jour/article/view/17937/2076; https://vestnikramn.spr-journal.ru/jour/article/view/17937/2081; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/17937/145521; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/17937/145522; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/17937/145887
-
4Academic Journal
Συγγραφείς: Boyarskih U.A., Kechin A.A., Zyuzyukina A.V., Khrapov Y.A., Oscorbin I.P., Alexeenok Y.Y., Avdiyuk G.A., Zukov R.A., Kushlinskii N.E., Filipenko M.L.
Συνεισφορές: 0
Πηγή: Almanac of Clinical Medicine; Vol 52, No 3 (2024); 132-139 ; Альманах клинической медицины; Vol 52, No 3 (2024); 132-139 ; 2587-9294 ; 2072-0505
Θεματικοί όροι: PIK3CA, NGS, allele specific polymerase chain reaction, breast cancer, somatic mutations, аллель-специфичная полимеразная цепная реакция, рак молочной железы (РМЖ), соматические мутации
Περιγραφή αρχείου: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17228/1677; https://almclinmed.ru/jour/article/downloadSuppFile/17228/160113; https://almclinmed.ru/jour/article/downloadSuppFile/17228/160114; https://almclinmed.ru/jour/article/view/17228
-
5Academic Journal
Quantifying human genome parameters in aging ; Количественные параметры генома человека при старении
Συγγραφείς: V. P. Volobaev, S. S. Kunizheva, L. I. Uralsky, D. A. Kupriyanova, E. I. Rogaev, В. П. Волобаев, С. С. Кунижева, Л. И. Уральский, Д. A. Куприянова, Е. И. Рогаев
Συνεισφορές: This work was supported financially by the Russian Science Foundation under Scientific Project No. 19-75-30039 (R.E.I., K.S.S., U.L.I.) and the Sirius University of Science and Technology under Scientific Project GEN-RND-2019 (V.V.P., K.D.A.).
Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 5 (2023); 495-501 ; Вавиловский журнал генетики и селекции; Том 27, № 5 (2023); 495-501 ; 2500-3259 ; 10.18699/VJGB-23-51
Θεματικοί όροι: соматические мутации, aging, longevity, neurodegenerative disorders, mtDNA, telomere length, somatic mutations, старение, долголетие, нейродегенеративные заболевания, длина теломер
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/3866/1736; Bender A., Krishnan K.J., Morris C.M., Taylor G.A., Reeve A.K., Perry R.H., Jaros E., Hersheson J.S., Betts J., Klopstock T., Taylor R.W., Turnbull D.M. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 2006;38(5):515-517. DOI:10.1038/ng1769.; Bendix L., Gade M.M., Staun P.W., Kimura M., Jeune B., Hjelmborg J.V.B., Aviv A., Christensen K. Leukocyte telomere length and physical ability among Danish Twins age 70+. Mech. Ageing Dev. 2011;132(11-12):568-572. DOI:10.1016/j.mad.2011.10.003.; Benetos A., Okuda K., Lajemi M., Kimura M., Thomas F., Skurnick J., Labat C., Bean K., Aviv A. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. 2001;37(2):381-385. DOI:10.1161/01.hyp.37.2.381.; Blackburn E.H., Epel E.S., Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193-1198. DOI:10.1126/science.aab3389.; Cagan A., Baez-Ortega A., Brzozowska N., Abascal F., Coorens T.H.H., Sanders M.A., Lawson A.R.J., … Bochynska D., Smith E.St.J., Gerstung M., Campbell P.J., Murchison E.P., Stratton M.R., Martincorena I. Somatic mutation rates scale with lifespan across mammals. Nature. 2022;604(7906):517-524. DOI:10.1038/s41586-022-04618-z.; Chan S.W., Chevalier S., Aprikian A., Chen J.Z. Simultaneous quantification of mitochondrial DNA damage and copy number in circulating blood: a sensitive approach to systemic oxidative stress. BioMed Res. Int. 2013;2013:157547. DOI:10.1155/2013/157547.; Coskun P.E., Beal M.F., Wallace D.C. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA. 2004; 101(29):10726-10731. DOI:10.1073/pnas.0403649101.; Debette S., Schilling S., Duperron M., Larsson S.C., Markus H.S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and meta-analysis. JAMA Neurol. 2019;76(1):81-94. DOI:10.1001/jamaneurol.2018.3122.; Deelen J., Evans D.S., Arking D.E., Tesi N., Nygaard M., Liu X., Wojczynski M.K., … Zeng Y., Zheng W., Holstege H., Kiel D.P., Lunetta K.L., Slagboom P.E., Murabito J.M. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 2019;10(1):3669. DOI:10.1038/s41467-019-11558-2.; de Grey A.D.N.J. A proposed refinement of the mitochondrial free radical theory of aging. BioEssays. 1997;19(2):161-166. DOI:10.1002/bies.950190211.; Demanelis K., Jasmine F., Chen L.S., Chernoff M., Tong L., Delgado D., Zhang C., Shinkle J., Sabarinathan M., Lin H., Ramirez E., Oliva M., Kim-Hellmuth S., Stranger B.E., Lai T.-P., Aviv A., Ardlie K.G., Aguet F., Ahsan H., Doherty J.A., Kibriya M.G., Pierce B.L. Determinants of telomere length across human tissues. Science. 2020;369(6509):eaaz6876. DOI:10.1126/science.aaz6876.; Diaz F. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res. 2002;30(21):4626-4633. DOI:10.1093/nar/gkf602.; Dolcini J., Wu H., Nwanaji-Enwerem J.C., Kiomourtozlogu M.A., Cayir A., Sanchez-Guerra M., Vokonas P., Schwarz J., Baccarelli A.A. Mitochondria and aging in older individuals: an analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study. Aging. 2020;12(3):2070-2083. DOI:10.18632/aging.102722.; Dölle C., Flønes I., Nido G.S., Miletic H., Osuagwu N., Kristoffersen S., Lilleng P.K., Larsen J.P., Tysnes O.B., Haugarvoll K., Bindoff L.A., Tzoulis C. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat. Commun. 2016;22(7):13548. DOI:10.1038/ncomms13548.; Forero D.A., González-Giraldo Y., López-Quintero C., Castro-Vega L.J., Barreto G.E., Perry G. Meta-analysis of telomere length in Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71(8): 1069-1073. DOI:10.1093/gerona/glw053.; Franco I., Helgadottir H.T., Moggio A., Larsson M., Vrtačnik P., Johansson A., Norgren N., Lundin P., Mas-Ponte D., Nordström J., Lundgren T., Stenvinkel P., Wennberg L., Supek F., Eriksson M. Whole genome DNA sequencing provides an atlas of somatic mutagenesis in healthy human cells and identifies a tumor-prone cell type. Genome Biol. 2019;20(1):285. DOI:10.1186/s13059-019-1892-z.; Gampawar P., Schmidt R., Schmidt H. Telomere length and brain aging: A systematic review and meta-analysis. Ageing Res. Rev. 2022;80:101679. DOI:10.1016/j.arr.2022.101679.; Garagnani P., Marquis J., Delledonne M., Pirazzini C., Marasco E., Kwiatkowska K.M., Iannuzzi V., … Bertamini L., Martinelli N., Girelli D., Olivieri O., Giuliani C., Descombes P., Franceschi C. Whole-genome sequencing analysis of semi-supercentenarians. eLife. 2021;10:e57849. DOI:10.7554/eLife.57849.; Grünewald A., Rygiel K.A., Hepplewhite P.D., Morris C.M., Picard M., Turnbull D.M. Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons. Ann. Neurol. 2016;79(3):366-378. DOI:10.1002/ana.24571.; Hackenhaar F.S., Josefsson M., Adolfsson A.N., Landfors M., Kauppi K., Hultdin M., Adolfsson R., Degerman S., Pudas S. Short leukocyte telomeres predict 25-year Alzheimer’s disease incidence in non-APOE ε4-carriers. Alzheimers Res. Ther. 2021;13(1):130. DOI:10.1186/s13195-021-00871-y.; Haussmann M.F., Winkler D.W., O’Reilly K.M., Huntington C.E., Nisbet I.C., Vleck C.M. Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc. Biol. Sci. 2003; 270(1522):1387-1392. DOI:10.1098/rspb.2003.2385.; Haussmann M.F., Winkler D.W., Huntington C.E., Nisbet I.C., Vleck C.M. Telomerase activity is maintained throughout the lifespan of long-lived birds. Exp. Gerontol. 2007;42(7):610-618. DOI:10.1016/j.exger.2007.03.004.; Hägg S., Zhan Y., Karlsson R., Gerritsen L., Ploner A., van der Lee S.J., Broer L., … Kuh D., Starr J.M., Deary I.J., Slagboom P.E., van Duijn C.M., Codd V., Pedersen N.L. Short telomere length is associated with impaired cognitive performance in European ancestry cohorts. Transl. Psychiatry. 2017;7(4):e1100. DOI:10.1038/tp.2017.73.; He Y.H., Lu X., Wu H., Cai W.W., Yang L.Q., Xu L.Y., Sun H.P., Kong Q.P. Mitochondrial DNA content contributes to healthy aging in Chinese: a study from nonagenarians and centenarians. Neurobiol. Aging. 2014;35(7):1779.e1-1779.e4. DOI:10.1016/j.neurobiolaging.2014.01.015.; Herbst A., Widjaja K., Nguy B., Lushaj E.B., Moore T.M., Hevener A.L., McKenzie D., Aiken J.M., Wanagat J. Digital PCR quantitation of muscle mitochondrial DNA: age, fiber type, and mutation-induced changes. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72(10):1327-1333. DOI:10.1093/gerona/glx058.; Herbst A., Lee C.C., Vandiver A.R., Aiken J.M., McKenzie D., Hoang A., Allison D., Liu N., Wanagat J. Mitochondrial DNA deletion mutations increase exponentially with age in human skeletal muscle. Aging Clin. Exp. Res. 2021a;33(7):1811-1820. DOI:10.1007/s40520-020-01698-7.; Herbst A., Prior S.J., Lee C.C., Aiken J.M., McKenzie D., Hoang A., Liu N., Chen X., Xun P., Allison D.B., Wanagat J. Skeletal muscle mitochondrial DNA copy number and mitochondrial DNA deletion mutation frequency as predictors of physical performance in older men and women. Geroscience. 2021b;43(3):1253-1264. DOI:10.1007/s11357-021-00351-z.; Holt A.G., Davies A.M. The effect of mitochondrial DNA half-life on deletion mutation proliferation in long lived cells. Acta Biotheor. 2021;69(4):671-695. DOI:10.1007/s10441-021-09417-z.; Huang Z., Sun S., Lee M., Maslov A.Y., Shi M., Waldman S., Marsh A., Siddiqui T., Dong X., Peter Y., Sadoughi A., Shah C., Ye K., Spivack S.D., Vijg J. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat. Genet. 2022;54(4):492-498. DOI:10.1038/s41588-022-01035-w.; Hudson G., Nalls M., Evans J.R., Breen D.P., Winder-Rhodes S., Morrison K.E., Morris H.R., Williams-Gray C.H., Barker R.A., Singleton A.B., Hardy J., Wood N.E., Burn D.J., Chinnery P.F. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology. 2013;80(22):2042-2048. DOI:10.1212/WNL.0b013e318294b434.; Hunt S.C., Chen W., Gardner J.P., Kimura M., Srinivasan S.R., Eckfeldt J.H., Berenson G.S., Aviv A. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell. 2008;7(4):451-458. DOI:10.1111/j.1474-9726.2008.00397.x.; Ikebe S., Tanaka M., Ohno K., Sato W., Hattori K., Kondo T., Mizuno Y., Ozawa T. Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem. Biophys. Res. Commun. 1990;170(3):1044-1048. DOI:10.1016/0006-291x(90)90497-b.; Just R.S., Irwin J.A., Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci. Int. Genet. 2015;18:131-139. DOI:10.1016/j.fsigen.2015.05.003.; Kennedy S.R., Loeb L.A., Herr A.J. Somatic mutations in aging, cancer and neurodegeneration. Mech. Ageing Dev. 2012;133(4):118-126. DOI:10.1016/j.mad.2011.10.009.; Kim J.-H., Kim H.K., Ko J.-H., Bang H., Lee D.-C. The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women. PLoS One. 2013; 8(6):e67227. DOI:10.1371/journal.pone.0067227.; Kowald A., Kirkwood T. Resolving the enigma of the clonal expansion of mtDNA deletions. Genes (Basel). 2018;9(3):126. DOI:10.3390/genes9030126.; Lee J.W., Park K.D., Im J.A., Kim M.Y., Lee D.C. Mitochondrial DNA copy number in peripheral blood is associated with cognitive function in apparently healthy elderly women Clin. Chim. Acta. 2010; 411(7-8):592-596. DOI:10.1016/j.cca.2010.01.024.; Levstek T., Redenšek S., Trošt M., Dolžan V., Podkrajšek K.T. Assessment of the telomere length and its effect on the symptomatology of Parkinson’s disease. Antioxidants (Basel). 2021;10(1):137. DOI:10.3390/antiox10010137.; Li H., Slone J., Fei L., Huang T. Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019;8(6):608. DOI:10.3390/cells8060608.; Lodato M.A., Rodin R.E., Bohrson C.L., Coulter M.E., Barton A.R., Kwon M., Sherman M.A., Vitzthum C.M., Luquette L.J., Yandava C.N., Yang P., Chittenden T.W., Hatem N.E., Ryu S.C., Wood-worth M.B., Park P.J., Walsh C.A. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science. 2018;359(6375):555-559. DOI:10.1126/science.aao4426.; Machado H.E., Mitchell E., Øbro N.F., Kübler K., Davies M., Leongamornlert D., Cull A., Maura F., Sanders M.A., Cagan A.T.J., McDonald C., Belmonte M., Shepherd M.S., Vieira Braga F.A., Osborne R.J., Mahbubani K., Martincorena I., Laurenti E., Green A.R., Getz G., Polak P., Saeb-Parsy K., Hodson D.J., Kent D.G., Campbell P.J. Diverse mutational landscapes in human lymphocytes. Nature. 2022;608(7924):724-732. DOI:10.1038/s41586-022-05072-7.; Mahoney E.R., Dumitrescu L., Seto M., Nudelman K.N.H., Buckley R.F., Gifford K.A., Saykin A.J., Jefferson A.J., Hohman T.J. Telomere length associations with cognition depend on Alzheimer’s disease biomarkers. Alzheimers Dement. (NY). 2019;5:883-890. DOI:10.1016/j.trci.2019.11.003.; Melicher D., Illés A., Pállinger É., Kovács Á.F., Littvay L., Tárnoki Á.D., Tárnoki D.L., Bikov A., Molnár M.J., Buzás E.I., Falus A. Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity. Cell. Mol. Life Sci. 2018;75(13):2447-2456. DOI:10.1007/s00018-017-2738-z.; Mengel-From J., Thinggaard M., Dalgård C., Kyvik K.O., Christensen K., Christiansen L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum. Genet. 2014;133(9):1149-1159. DOI:10.1007/s00439-014-1458-9.; Mikhailova A.G., Mikhailova A.A., Ushakova K., Tretiakov E.O., Iliushchenko D., Shamansky V., Lobanova V., Kozenkov I., Efimenko B., Yurchenko A.A., Kozenkova E., Zdobnov E.M., Makeev V., Yurov V., Tanaka M., Gostimskaya I., Fleischmann Z., Annis S., Franco M., Wasko K., Denisov S., Kunz W.S., Knorre D., Mazunin I., Nikolaev S., Fellay J., Reymond A., Khrapko K., Gunbin K., Popadin K. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand. Nucleic Acids Res. 2022;50(18):10264-10277. DOI:10.1093/nar/gkac779.; Milholland B., Dong X., Zhang L., Hao X., Suh Y., Vijg J. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 2017;8(1):15183. DOI:10.1038/ncomms15183.; Miller M.B., Huang A.Y., Kim J., Zhou Z., Kirkham S.L., Maury E.A., Ziegenfuss J.S., Reed H.C., Neil J.E., Rento L., Ryu S.C., Ma C.C., Luquette L.J., Ames H.M., Oakley D.H., Frosch M.P., Hyman B.T., Lodato M.A., Lee E.A., Walsh C.A. Somatic genomic changes in single Alzheimer’s disease neurons. Nature. 2022;604(7907):714-722. DOI:10.1038/s41586-022-04640-1.; Miwa S., Kashyap S., Chini E., von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 2022;132(13): e158447. DOI:10.1172/JCI158447.; Movérare-Skrtic S., Johansson P., Mattsson N., Hansson O., Wallin A., Johansson J.O., Zetterberg H., Blennow K., Svensson J. Leukocyte telomere length (LTL) is reduced in stable mild cognitive impairment but low LTL is not associated with conversion to Alzheimer’s disease: a pilot study. Exp. Gerontol. 2012;47(2):179-182. DOI:10.1016/j.exger.2011.12.005.; Müezzinler A., Zaineddin A.K., Brenner H. A systematic review of leukocyte telomere length and age in adults. Ageing Res. Rev. 2013; 12:509-519. DOI:10.1016/j.arr.2013.01.003.; Müller-Nedebock A.C., Meldau S., Lombard C., Abrahams S., van der Westhuizen F.H., Bardien S. Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson’s disease. Parkinsonism Relat. Disord. 2022;101:1-5. DOI:10.1016/j.parkreldis.2022.06.003.; Nido G.S., Dölle C., Flønes I., Tuppen H.A., Alves G., Tysnes O.-B., Haugarvoll K., Tzoulis C. Ultradeep mapping of neuronal mitochondrial deletions in Parkinson’s disease. Neurobiol. Aging. 2018;63: 120-127. DOI:10.1016/j.neurobiolaging.2017.10.024.; Perier C., Bender A., García-Arumí E., Melià M.J., Bové J., Laub C., Klopstock T., Elstner M., Mounsey R.B., Teismann P., Prolla T., Andreu A.L., Vila M. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms. Brain. 2013;136(Pt. 8):2369-2378. DOI:10.1093/brain/awt196.; Poovathingal S.K., Gruber J., Lakshmanan L., Halliwell B., Gunawan R. Is mitochondrial DNA turnover slower than commonly assumed? Biogerontology. 2012;13(5):557-564. DOI:10.1007/s10522-012-9390-7.; Qiu C., Enquobahrie D., Gelaye B., Hevner K., Williams M. The association between leukocyte telomere length and mitochondrial DNA copy number in pregnant women: A pilot study. Clin. Lab. 2015; 61(3-4):363-369. DOI:10.7754/Clin.Lab.2014.140313.; Rice A.C., Keeney P.M., Algarzae N.K., Ladd A.C., Thomas R.R., Bennett J.P. Jr. Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer’s disease hippocampi. J. Alzheimer’s Dis. 2014;40(2):319-330. DOI:10.3233/JAD-131715.; Rose G., Romeo G., Dato S., Crocco P., Bruni A.C., Hervonen A., Majamaa K., Sevini F., Franceschi C., Passarino G. Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: A GEHA study. PLoS One. 2010;5(10):e13395. DOI:10.1371/journal.pone.0013395.; Sallevelt S.C., de Die-Smulders C.E., Hendrickx A.T., Hellebrekers D.M., de Coo I.F., Alston C.L., Knowles C., Taylor R.W., McFarland R., Smeets H.J. De novo mtDNA point mutations are common and have a low recurrence risk. J. Med. Genet. 2017;54(2):73-83. DOI:10.1136/jmedgenet-2016-103876.; Sanders J.L., Newman A.B. Telomere length in epidemiology: A biomarker of aging, age-related disease, both, or neither? Epidemiol. Rev. 2013;35(1):112-131. DOI:10.1093/epirev/mxs008.; Sondheimer N., Glatz C.E., Tirone J.E., Deardorff M.A., Krieger A.M., Hakonarson H. Neutral mitochondrial heteroplasmy and the influence of aging. Hum. Mol. Genet. 2011;20(8):1653-1659. DOI:10.1093/hmg/ddr043.; Tedone E., Huang E., O’Hara R., Batten K., Ludlow A.T., Lai T.-P., Arosio B., Mari D., Wright W.E., Shay J.W. Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. Aging Cell. 2019;18(1):e12859. DOI:10.1111/acel.12859.; Terry D.F., Nolan V.G., Andersen S.L., Perls T.T., Cawthon R. Association of longer telomeres with better health in centenarians. J. Gerontol. A Biol. Sci. Med. Sci. 2008;63(8):809-812. DOI:10.1093/gerona/63.8.809.; Thomas P., O’ Callaghan N.J., Fenech M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer’s disease. Mech. Ageing Dev. 2008;129(4):183-190. DOI:10.1016/j.mad.2007.12.004.; Tranah G.J., Nalls M.A., Katzman S.M., Yokoyama J.S., Lam E.T., Zhao Y., Mooney S., Thomas F., Newman A.B., Liu Y., Cummings S.R., Harris T.B., Yaffe K. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J. Alzheimers. Dis. 2012;32(2):357-372. DOI:10.3233/JAD-2012-120466.; Tyrka A.R., Carpenter L.L., Kao H.-T., Porton B., Philip N.S., Ridout S.J., Ridout K.K., Price L.H. Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults. Exp. Gerontol. 2015;66:17-20. DOI:10.1016/j.exger.2015.04.002.; van den Berg N. Family matters in unraveling human longevity. Aging. 2020;12(22):22354-22355. DOI:10.18632/aging.104218.; van Leeuwen N., Beekman M., Deelen J., van den Akker E.B., de Craen A.J.M., Slagboom P.E., ’t Hart L.M. Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. Age (Dordr.). 2014;36(3):9629. DOI:10.1007/s11357-014-9629-0.; Vera E., Bernardes de Jesus B., Foronda M., Flores J.M., Blasco M.A. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2012;2(4):732-737. DOI:10.1016/j.celrep.2012.08.023.; Victorelli S., Passos J.F. Telomeres and cell senescence – size matters not. EBioMedicine. 2017;21:14-20. DOI:10.1016/j.ebiom.2017.03.027.; Vijg J., Dong X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell. 2020;182(1):12-23. DOI:10.1016/j.cell.2020.06.024.; Wachsmuth M., Hübner A., Li M., Madea B., Stoneking M. Age-related and heteroplasmy-related variation in human mtDNA copy number. PLoS Genet. 2016;12(3):e1005939. DOI:10.1371/journal.pgen.1005939.; Yang S.Y., Castellani C.A., Longchamps R.J., Pillalamarri V.K., O’Rourke B., Guallar E., Arking D.E. Blood-derived mitochondrial DNA copy number is associated with gene expression across multiple tissues and is predictive for incident neurodegenerative disease. Genome Res. 2021;31(3):349-358. DOI:10.1101/gr.269381.120.; Zhang R., Wang Y., Ye K., Picard M., Gu Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genomics. 2017;18(1):890. DOI:10.1186/s12864-017-4287-0.; Zhao X., Liu X., Zhang A., Chen H., Huo Q., Li W., Ye R., Chen Z., Liang L., Liu Q.A., Shen J., Jin X., Li W., Nygaard M., Liu X., Hou Y., Ni T., Bolund L., Gottschalk W., Tao W., Gu J., Tian X.L., Yang H., Wang J., Xu X., Lutz M.W., Min J., Zeng Y., Nie C. The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. Aging (Albany NY). 2018; 10(6):1206-1222. DOI:10.18632/aging.101461.; https://vavilov.elpub.ru/jour/article/view/3866
-
6Academic Journal
Συγγραφείς: M. V. Nemtsova, I. V. Bure, М. В. Немцова, И. В. Буре
Συνεισφορές: This work was supported by the Russian Science Foundation (project Ref. No. 20-75-10117)., Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-75-10117).
Πηγή: Advances in Molecular Oncology; Том 10, № 1 (2023); 8-17 ; Успехи молекулярной онкологии; Том 10, № 1 (2023); 8-17 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-1
Θεματικοί όροι: ингибиторы бромодоменов, SWI/ SNF, somatic mutations, synthetic lethality of cancer cells, bromodomain inhibitors, соматические мутации, синтетическая летальность опухолевых клеток
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/507/287; Kouzarides T. Chromatin modifications and their function. Cell 2007;128(4):693–705. DOI:10.1016/j.cell.2007.02.005; Patty B.J., Hainer S.J. Non-coding RNAs and nucleosome remodeling complexes: an intricate regulatory relationship. Biology 2020;9(8):213. DOI:10.3390/biology9080213; Sharma T. Cancer epigenetics: chromatin remodeling and other epigenetic mechanisms. In: Understanding cancer. Elsevier, 2022. Pp. 149–58.; Clapier C.R., Iwasa J., Cairns B.R. et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 2017;18(7):407–22. DOI:10.1038/nrm. 2017.26; Krishnamurthy N., Kato S., Lippman S. et al. Chromatin remodeling (SWI/SNF) complexes, cancer, and response to immunotherapy. J Immunother Cancer 2022;10:e004669. DOI:10.1136/jitc-2022-004669; Mullen J., Kato S., Sicklick J.K. et al. Targeting ARID1A mutations in cancer. Cancer Treat Rev 2021;100:102287. DOI:10.1016/ j.ctrv.2021.102287; Wanior M., Krämer A., Knapp S. et al. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 2021;40(21):3637–54. DOI:10.1038/s41388-021-01781-x; Mathur R. ARID1A loss in cancer: Towards a mechanistic understanding. Pharmacol Ther 2018;190:15–23. DOI:10.1016/ j.pharmthera.2018.05.001; Mashtalir N., Suzuki H., Farrell D.P. et al. A Structural model of the endogenous human BAF complex informs disease mechanisms. Cell 2020;183(3):802–17.e24. DOI:10.1016/ j.cell.2020.09.051; Sima X., He J., Peng J. et al. The genetic alteration spectrum of the SWI/SNF complex: the oncogenic roles of BRD9 and ACTL6A. PLoS One 2019;14(9):e0222305. DOI:10.1371/journal. pone.0222305; Torres-Martín M., Kusak M.E., Isla A. et al. Whole exome sequencing in a case of sporadic multiple meningioma reveals shared NF2, FAM109B, and TPRXL mutations, together with unique SMARCB1 alterations in a subset of tumor nodules. Cancer Genet 2015;208(6):327–32. DOI:10.1016/j.cancergen.2015.03.012; Tokunaga R., Xiu J., Goldberg R.M. et al. The impact of ARID1A mutation on molecular characteristics in colorectal cancer. Eur J Cancer 2020;140:119–29. DOI:10.1016/j.ejca.2020.09.006; Ahadi M.S., Fuchs T.L., Clarkson A. et al. Switch/sucrose-nonfermentable (SWI/SNF) complex (SMARCA4, SMARCA2, INI1/SMARCB1)-deficient colorectal carcinomas are strongly associated with microsatellite instability: an incidence study in 4508 colorectal carcinomas. Histopathology 2022;80(6):906–21. DOI:10.1111/ his.14612; Clarke B.A., Witkowski L., Ton Nu T.N. et al. Loss of SMARCA4 (BRG1) protein expression as determined by immunohistochemistry in small-cell carcinoma of the ovary, hypercalcaemic type distinguishes these tumours from their mimics. Histopathology 2016;69(5):727–38. DOI:10.1111/his.12988; Wang J., Xi Z., Xi J. et al. Somatic mutations in renal cell carcinomas from Chinese patients revealed by whole exome sequencing. Cancer Cell Int 2018;18:159. DOI:10.1186/s12935-018-0661-5; Nargund A.M., Pham C.G., Dong Y. et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep 2017;18(12):2893–906. DOI:10.1016/j.celrep.2017.02.074; Högner A., Krause H., Jandrig B. et al. PBRM1 and VHL expression correlate in human clear cell renal cell carcinoma with differential association with patient’s overall survival. Urol Oncol 2018;36(3):94.e1–14. DOI:10.1016/j.urolonc.2017.10.027; Braun D.A., Hou Y., Bakouny Z. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med 2020;26(6):909–18. DOI:10.1038/s41591-020-0839-y; Miao D., Margolis C.A., Gao W. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 2018;359(6377):801–6. DOI:10.1126/science. aan5951; Liu X.-D., Kong W., Peterson C.B. et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun 2020;11(1):2135. DOI:10.1038/s41467-020-15959-6; Wu J.N., Roberts C.W.M. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov 2013;3(1):35–43. DOI:10.1158/2159-8290.CD-12-0361; Nemtsova M.V., Kalinkin A.I., Kuznetsova E.B. et al. Mutations in epigenetic regulation genes in gastric cancer. Cancers 2021;13(18):4586. DOI:10.3390/cancers13184586; Yamamoto H., Watanabe Y., Maehata T. et al. An updated review of gastric cancer in the next-generation sequencing era: insights from bench to bedside and vice versa. World J Gastroenterol 2014;20(14):3927–37. DOI:10.3748/wjg.v20.i14.3927; Li L., Li M., Jiang Z. et al. ARID1A Mutations are associated with increased immune activity in gastrointestinal cancer. Cells 2019;8(7):678. DOI:10.3390/cells8070678; Moe K.C., Maxwell J.N., Wang J. et al. The SWI/SNF ATPase BRG1 facilitates multiple pro-tumorigenic gene expression programs in SMARCB1-deficient cancer cells. Oncogenesis 2022;11(1):30. DOI:10.1038/s41389-022-00406-6; Oike T., Ogiwara H., Tominaga Y. et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res 2013;73(17): 5508–18. DOI:10.1158/0008-5472.CAN-12-4593; Bitler B.G., Aird K.M., Zhang R. Epigenetic synthetic lethality in ovarian clear cell carcinoma: EZH2 and ARID1A mutations. Mol Cell Oncol 2016;3(1):e1032476. DOI:10.1080/23723556.2015.1032476; Huang K., Sun R., Chen J. et al. A novel EZH2 inhibitor induces synthetic lethality and apoptosis in PBRM1-deficient cancer cells. Cell Cycle 2020;19(7):758–71. DOI:10.1080/15384101.2020.1729450; Yamada L., Saito M., Thar Min A.K. et al. Selective sensitivity of EZH2 inhibitors based on synthetic lethality in ARID1Adeficient gastric cancer. Gastric Cancer 2021;24(1):60–71. DOI:10.1007/s10120-020-01094-0; Park Y., Chui M.H., Suryo Rahmanto Y. et al. Loss of ARID1A in tumor cells renders selective vulnerability to combined ionizing radiation and PARP inhibitor therapy. Clin Cancer Res2019;25(18):5584–94. DOI:10.1158/1078-0432.CCR-18-4222; Park J.-H., Park E.-J., Lee H.-S. et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J 2006;25(17):3986–97. DOI:10.1038/sj.emboj.7601291; Shen J., Peng Y., Wei L. et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov 2015;5(7):752–67. DOI:10.1158/2159-8290.CD-14-0849; Chabanon R.M., Morel D., Eychenne T. et al. PBRM1 deficiency confers synthetic lethality to DNA repair inhibitors in cancer. Cancer Res 2021;81(11):2888–902. DOI:10.1158/0008-5472. CAN-21-0628; Tsuda M., Fukuda A., Kawai M. et al. The role of the SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma. Cancer Sci 2021;112(2):490–7. DOI:10.1111/cas.14768; Zhou M., Yuan J., Deng Y. et al. Emerging role of SWI/SNF complex deficiency as a target of immune checkpoint blockade in human cancers. Oncogenesis 2021;10(1):3. DOI:10.1038/s41389-020-00296-6; Pan D., Kobayashi A., Jiang P. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 2018;359(6377):770–5. DOI:10.1126/science.aao1710; Villarino A.V., Kanno Y., O’Shea J.J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017;18(4):374–84. DOI:10.1038/ni.3691; Leruste A., Tosello J., Ramos R.N. et al. Clonally expanded T cells reveal immunogenicity of rhabdoid tumors. Cancer Cell 2019;36(6):597–612.e8. DOI:10.1016/j.ccell.2019.10.008; Shen J., Ju Z., Zhao W. et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 2018;24(5):556–62. DOI:10.1038/s41591-018-0012-z; Jancewicz I., Szarkowska J., Konopinski R. et al. PD-L1 Overexpression, SWI/SNF Complex deregulation, and profound transcriptomic changes characterize cancer-dependent exhaustion of persistently activated CD4+ T Cells. Cancers 2021;13(16):4148. DOI:10.3390/cancers13164148; Carbognin L., Pilotto S., Milella M. et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One 2015;10(6):e0130142. DOI:10.1371/journal.pone.0130142; Cochran A.G., Conery A.R., Sims R.J. Bromodomains: a new target class for drug development. Nat Rev Drug Discov 2019;18(8):609–28. DOI:10.1038/s41573-019-0030-7; Vangamudi B., Paul T.A., Shah P.K. et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNFmutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res 2015;75(18):3865–78. DOI:10.1158/0008- 5472.CAN-14-3798; Papillon J.P.N., Nakajima K., Adair C.D. et al. Discovery of orally active inhibitors of brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J Med Chem 2018;61(22):10155–72. DOI:10.1021/acs.jmedchem.8b01318; Rago F., Rodrigues L.U., Bonney M. et al. Exquisite sensitivity to dual BRG1/BRM ATPase inhibitors reveals broad SWI/SNF dependencies in acute myeloid leukemia. Mol Cancer Res 2022;20(3):361–72. DOI:10.1158/1541-7786.MCR21-0390; Xiao L., Parolia A., Qiao Y. et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 2022;601(7893): 434–9. DOI:10.1038/s41586-021-04246-z; Schick S., Grosche S., Kohl K.E. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat Genet 2021;53(3):269–78. DOI:10.1038/s41588-021-00777-3; Iurlaro M., Stadler M.B., Masoni F. et al. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat Genet 2021;53(3):279–87. DOI:10.1038/s41588-020-00768-w; Soldi R., Ghosh Halder T., Weston A. et al. The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/ Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS One 2020;15(7):e0235705. DOI:10.1371/journal. pone.0235705; Patnaik S., Anupriya. Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front Pharmacol 2019;10:588. DOI:10.3389/fphar.2019.00588; https://umo.abvpress.ru/jour/article/view/507
-
7Academic Journal
Συγγραφείς: Dyakov L.M., Krivtsova O.M., Khesina P.A., Kustova I.F., Dyakova N.A., Muge N.S., Kudashkin N.E., Patyutko Y.I., Lazarevich N.L.
Συνεισφορές: The work was carried out with the financial support of the Russian Foundation for Basic Research (grant No. 18-29-09164)., Работа выполнена при финансовой поддержке Российского фонда научных исследований (грант № 18-29-09164).
Πηγή: Advances in Molecular Oncology; Vol 9, No 3 (2022); 24-37 ; Успехи молекулярной онкологии; Vol 9, No 3 (2022); 24-37 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: hepatocellular carcinoma, circulating DNA, somatic mutations, liquid biopsy, гепатоцеллюлярная карцинома, циркулирующая ДНК, соматические мутации, жидкостная биопсия
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/457/269; https://umo.abvpress.ru/jour/article/view/457
-
8Academic Journal
Συγγραφείς: Georgieva, V. D., Burkitsova, A. A., Satonkina, O. A., Георгиева, В. Д., Буркицова, А. А., Сатонкина, О. А.
Πηγή: Сборник статей
Θεματικοί όροι: MITOCHONDRIA, SOMATIC MUTATIONS, AGING, mtDNA, МИТОХОНДРИЯ, СОМАТИЧЕСКИЕ МУТАЦИИ, СТАРЕНИЕ, мтДНК
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г.; http://elib.usma.ru/handle/usma/7911
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/7911
-
9Academic Journal
Συγγραφείς: E. N. Telysheva, E. G. Shaikhaev, G. P. Snigireva, Е. Н. Телышева, Е. Г. Шайхаев, Г. П. Снигирева
Πηγή: Siberian journal of oncology; Том 21, № 1 (2022); 47-56 ; Сибирский онкологический журнал; Том 21, № 1 (2022); 47-56 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-1
Θεματικοί όροι: таргетная терапия, somatic mutations, next generation sequencing (NGS), targeted therapy, соматические мутации, секвенирование нового поколения (NGS)
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2027/950; Arnold M., Sierra M.S., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017; 66(4): 683–91. doi:10.1136/gutjnl-2015-310912.; Stewart B.W., Bray F., Forman D., Ohgaki H., Straif K., Ullrich A., Wild C.P. Cancer prevention as part of precision medicine: ‘plenty to be done’. Carcinogenesis. 2016; 37(1): 2–9. doi:10.1093/carcin/bgv166.; Состояние онкологической помощи населению России в 2016 году / под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М., 2017. 236 c.; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). М., 2017. 250 с.; Armaghany T., Wilson J.D., Chu Q., Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012; 5(1): 19–27.; Кит О.И., Водолажский Д.И. Молекулярная биология колоректального рака в клинической практике. Молекулярная биология. 2015; 49(4): 531–40.; Price T.J., Tang M., Gibbs P., Haller D.G., Peeters M., Arnold D., Segelov E., Roy A., Tebbutt N., Pavlakis N., Karapetis C., Burge M., Shapiro J. Targeted therapy for metastatic colorectal cancer. Expert Rev Anticancer Ther. 2018; 18(10): 991–1006. doi:10.1080/14737140.2018.1502664.; Cai Z.X., Tang X.D., Gao H.L., Tang C., Nandakumar V., Jones L., Ye H., Lou F., Zhang D., Sun H., Dong H., Zhang G., Liu Z., Dong Z., Guo B., Yan H., Yan C., Wang L., Su Z., Wang F.Y., Wan J.J., Fang F.O., Chen H.L., Shang D., Huang X.F., Chen S.Y., Guo H.S. APC, FBXW7, KRAS, PIK3CA, and TP53 Gene Mutations in Human Colorectal Cancer Tumors Frequently Detected by Next-Generation DNA Sequencing. J Mol Genet Med. 2014; 8: 4. doi:10.4172/1747-0862.1000145.; Afrăsânie V.A., Marinca M.V., Alexa-Stratulat T., Gafton B., Păduraru M., Adavidoaiei A.M., Miron L., Rusu C. KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer – practical implications for the clinician. Radiol Oncol. 2019; 53(3): 265–74. doi:10.2478/raon-2019-0033.; Lupini L., Bassi C., Mlcochova J., Musa G., Russo M., Vychytilova- Faltejskova P., Svoboda M., Sabbioni S., Nemecek R., Slaby O., Negrini M. Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients. BMC Cancer. 2015; 15: 808. doi:10.1186/s12885-015-1752-5.; Гервас П.А., Литвяков Н.В., Попова Н.О., Добродеев А.Ю., Тарасова А.С., Юмов Е.Л., Иванова Ф.Г., Черемисина О.В., Афанасьев С.Г., Гольдберг В.Е., Чердынцева Н.В. Проблемы и перспективы совершенствования молекулярно-генетической диагностики для назначения таргетных препаратов в онкологии. Сибирский онкологический журнал. 2014; 2: 46–55.; Therkildsen C., Bergmann T.K., Henrichsen-Schnack T., Ladelund S., Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis. Acta Oncol. 2014; 53(7): 852–64. doi:10.3109/0284186X.2014.895036.; Lin P.S., Semrad T.J. Molecular Testing for the Treatment of Advanced Colorectal Cancer: An Overview. Methods Mol Biol. 2018; 1765: 281–97. doi:10.1007/978-1-4939-7765-9_18.; Ben Brahim E., Ayari I., Jouini R., Atafi S., Koubaa W., Elloumi H., Chadli A. Expression of epidermal growth factor receptor (EGFR) in colorectal cancer: An immunohistochemical study. Arab J Gastroenterol. 2018; 19(3): 121–4. doi:10.1016/j.ajg.2018.08.002.; Gleeson F.C., Kipp B.R., Voss J.S., Campion M.B., Minot D.M., Tu Z.J., Klee E.W., Sciallis A.P., Graham R.P., Lazaridis K.N., Henry M.R., Levy M.J. Endoscopic ultrasound fine-needle aspiration cytology mutation profiling using targeted next-generation sequencing: personalized care for rectal cancer. Am J Clin Pathol. 2015; 143(6): 879–88. doi:10.1309/AJCPU3J7FGAYQBRL.; Chang P.Y., Chen J.S., Chang N.C., Chang S.C., Wang M.C., Tsai S.H., Wen Y.H., Tsai W.S., Chan E.C., Lu J.J. NRAS germline variant G138R and multiple rare somatic mutations on APC in colorectal cancer patients in Taiwan by next generation sequencing. Oncotarget. 2016; 7(25):37566–80. doi:10.18632/oncotarget.8885.; Cornejo K.M., Cosar E.F., Paner G.P., Yang P., Tomaszewicz K., Meng X., Mehta V., Sirintrapun S.J., Barkan G.A., Hutchinson L. Mutational Profile Using Next-Generation Sequencing May Aid in the Diagnosis and Treatment of Urachal Adenocarcinoma. Int J Surg Pathol. 2020; 28(1): 51–9. doi:10.1177/1066896919872535.; Dallol A., Buhmeida A., Al-Ahwal M.S., Al-Maghrabi J., Bajouh O., Al-Khayyat S., Alam R., Abusanad A., Turki R., Elaimi A., Alhadrami H.A., Abuzenadah M., Banni H., Al-Qahtani M.H., Abuzenadah A.M. Clinical significance of frequent somatic mutations detected by high-throughput targeted sequencing in archived colorectal cancer samples. J Transl Med. 2016; 14(1): 118. doi:10.1186/s12967-016-0878-9.; Имянитов Е.Н. Клинико-молекулярные аспекты колоректального рака: этиопатогенез, профилактика, индивидуализация лечения. Практическая онкология. 2005; 6 (2): 65–70.; Schell M.J., Yang M., Teer J.K., Lo F.Y., Madan A., Coppola D., Monteiro A.N., Nebozhyn M.V., Yue B., Loboda A., Bien-Willner G.A., Greenawalt D.M., Yeatman T.J. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat Commun. 2016; 7: 11743. doi:10.1038/ncomms11743.; Wang C., Ouyang C., Cho M., Ji J., Sandhu J., Goel A., Kahn M., Fakih M. Wild-type APC Is Associated with Poor Survival in Metastatic Microsatellite Stable Colorectal Cancer. Oncologist. 2021; 26(3): 208–14. doi:10.1002/onco.13607.; Li X.L., Zhou J., Chen Z.R., Chng W.J. P53 mutations in colorectal cancer – molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 2015; 21(1): 84–93. doi:10.3748/wjg.v21.i1.84.; Conlin A., Smith G., Carey F.A., Wolf C.R., Steele R.J. The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut. 2005; 54(9): 1283–6. doi:10.1136/gut.2005.066514.; https://www.siboncoj.ru/jour/article/view/2027
-
10Academic Journal
Συγγραφείς: O. A. Mailyan, A. S. Kalpinskiy, I. V. Reshetov, Yu. V. Anzhiganova, K. M. Nyushko, А. D. Kaprin, M. P. Golovashchenko, S. P. Kokin, V. A. Stakanov, B. Ya. Alekseev, О. А. Маилян, А. С. Калпинский, И. В. Решетов, Ю. В. Анжиганова, К. М. Нюшко, А. Д. Каприн, М. П. Головащенко, С. П. Кокин, В. А. Стаканов, Б. Я. Алексеев
Συνεισφορές: The study was performed without external funding., Исследование проведено без спонсорской поддержки.
Πηγή: Cancer Urology; Том 18, № 3 (2022); 60-66 ; Онкоурология; Том 18, № 3 (2022); 60-66 ; 1996-1812 ; 1726-9776
Θεματικοί όροι: мутации в российской популяции, metastatic castration-resistant prostate cancer, mutations in DNA repair genes, somatic mutations, mutations in the Russian population, метастатический кастрационно-резистентный рак предстательной железы, мутации в генах репарации ДНК, соматические мутации
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1570/1397; Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.; Scher H.I., Morris M.J., Stadler W.M. et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol 2016;34(12):1402–18. DOI:10.1200/JCO.2015.64.2702; Oh M., Alkhushaym N., Fallatah S. et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate 2019;79(8):880–95. DOI:10.1002/pros.23795; De Bono J.S., Oudard S., Ozguroglu M. et al. 2010 Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010;376(9747):1147–54. DOI:10.1016/S0140-6736(10)61389-X; Fizazi K., Shore N., Teuvo L. Tammela et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N Engl J Med 2020;383(11):1040–9. DOI:10.1056/NEJMoa2001342; Smith M.R., Saad F., Chowdhury S. et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018;378(15):1408–18. DOI:10.1056/NEJMoa1715546; Scher H.I., Fizazi K., Saad F. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367(13):1187–97. DOI:10.1056/NEJMoa1207506; Beer T.M., Armstrong A.J., Rathkopf D.E. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014;371(5):424–33. DOI:10.1056/NEJMoa1405095; Fizazi K., Tran N., Fein L. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017;377(4):352–60. DOI:10.1056/NEJMoa1704174; Ku S.Y., Gleave M.E., Beltran H. Towards precision oncology in advanced prostate cancer. Nat Rev Urol 2019;16(11):645–54. DOI:10.1038/s41585-019-0237-8; De Bono J., Mateo J., Fizazi K. et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020;382(22):2091–102. DOI:10.1056/NEJMoa1911440; Abida W., Patnaik A., Campbell D. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 2020;38(32):3763–72. DOI:10.1200/JCO.20.01035; Abida W., Campbell D., Patnaik A. et al. Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study. Clin Cancer Res 2020;26(11):2487–96. DOI:10.1158/1078-0432.CCR-20-0394; Abida W., Cheng M., Armenia J. et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 2019;5(4):471–8. DOI:10.1001/jamaoncol.2018.5801; Alexeev B., Lyubchenko L., Gordiev M. et al. ADAM: a multicenter, non-interventional, prospective cohort study for determination of prevalence of homologous recombination repair genes mutations (HRRm) in metastatic castrate-resistant prostate cancer (mCRPC) – Interim analysis. J Clin Oncol 2022;40(6_suppl):169. DOI:10.1200/JCO.2022.40.6_suppl.169; Castro E., Romero-Laorden N., Del Pozo A. et al. PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2019;37(6):490–503. DOI:10.1200/jco.18.00358; Abida W., Armenia J. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017;2017:PO.17.00029. DOI:10.1200/PO.17.00029; De Bono J.S., Mateo J., Fizazi K. et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020;382:2091–102. DOI:10.1056/NEJMoa1911440; De Bono J.S., Fizazi K., Saad F. et al. Central, prospective detection of homologous recombination repair gene mutations (HRRm) in tumour tissue from >4000 men with metastatic castration-resistant prostate cancer (mCRPC) screened for the PROfound study. Annal Oncol 2019;30(suppl_5):v325–55. DOI:10.1093/annonc/mdz248; https://oncourology.abvpress.ru/oncur/article/view/1570
-
11Academic Journal
Συγγραφείς: K. V. Menshikov, A. V. Sultanbaev, Sh. I. Musin, A. A. Izmailov, I. A. Menshikova, N. I. Sultanbaeva, E. V. Popova, L. A. Khammatova, К. В. Меньшиков, А. В. Султанбаев, Ш. И. Мусин, А. А. Измайлов, И. А. Меньшиков, Н. И. Султанбаева, Е. В. Попова, Л. А. Хамматова
Πηγή: Creative surgery and oncology; Том 12, № 1 (2022); 48-55 ; Креативная хирургия и онкология; Том 12, № 1 (2022); 48-55 ; 2076-3093 ; 2307-0501
Θεματικοί όροι: соматические мутации, BRCA1/2 protein, chemotherapy, targeted therapy, PARP inhibitors, germinal mutations, genetic screening, somatic mutations, BRCA1/2 белок, химиотерапия, таргетная терапия, PARP-ингибиторы, герминальные мутации, генетический скрининг
Περιγραφή αρχείου: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/674/484; Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21. DOI:10.1158/0008-5472. CAN-14-0155; Cancer Stat Facts: Pancreatic Cancer. National Cancer Institute: SEER [cited 2022 Feb 28]. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html.; Ansari D., Friess H., Bauden M., Samnegård J., Andersson R. Pancreatic cancer: disease dynamics, tumor biology and the role of the microenvironment. Oncotarget. 2018;9(5):6644–51. DOI:10.18632/oncotarget.24019; Azar I., Virk G., Esfandiarifard S., Wazir A., Mehdi S. Treatment and survival rates of stage IV pancreatic cancer at VA hospitals: a nationwide study. J Gastrointest Oncol. 2019;10(4):703–11. DOI:10.21037/jgo.2018.07.08; Sultanbaev A., Minniakhmetov I., Menshikov K., Sultanbaeva N., Nasretdinov A., Musin S. Identification of gene mutations in patients with breast cancer in a region located in the southeast of the European part of Russia. Ann Oncol. 2020;31(6):S1241–54. DOI:10.1016/annonc/annonc351; Ben-David U., Beroukhim R., Golub T.R. Genomic evolution of cancer models: perils and opportunities. Nat Rev Cancer. 2019;19(2):97–109. DOI:10.1038/s41568-018-0095-3; Birrer N., Chinchilla C., Del Carmen M., Dizon D.S. Is hormone replacement therapy safe in women with a BRCA mutation?: a systematic review of the contemporary literature. Am J Clin Oncol. 2018;41(3):313–5. DOI:10.1097/COC.0000000000000269; Bartsch D.K., Matthäi E., Mintziras I., Bauer C., Figiel J., Sina-Boemers M., et al. The German national case collection for familial pancreatic carcinoma (FaPaCa)—knowledge gained in 20 years. Dtsch Arztebl Int. 2021;118(Forthcoming):163–8. DOI:10.3238/arztebl.m2021.0004; Miki Y., Swensen J., Shattuck-Eidens D., Futreal P.A., Harshman K., Tavtigian S., et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. DOI:10.1126/science.7545954; Wooster R., Bignell G., Lancaster J., Swift S., Seal S., Mangion J., et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92. DOI:10.1038/378789a0; Choi M., Kipps T., Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15(8):1781–91. DOI:10.1158/1535-7163.MCT-15-0945; Chartron E., Theillet C., Guiu S., Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data. Crit Rev Oncol Hematol. 2019;133:58–73. DOI:10.1016/j.critrevonc.2018.10.012; Lowery M.A., Wong W., Jordan E.J., Lee J.W., Kemel Y., Vijai J., et al. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst. 2018;110(10):1067–74. DOI:10.1093/jnci/djy024; Elta G.H., Enestvedt B.K., Sauer B.G., Lennon A.M. ACG clinical guideline: diagnosis and management of pancreatic cysts. Am J Gastroenterol. 2018;113(4):464–79. DOI:10.1038/ajg.2018.14; Sekine M., Nishino K., Enomoto T. Differences in ovarian and other cancers risks by population and BRCA mutation location. Genes (Basel). 2021;12(7):1050. DOI:10.3390/genes12071050; European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic cystic neoplasms. Gut. 2018;67(5):789–804. DOI:10.1136/gutjnl-2018-316027; Faraoni I., Graziani G. Role of BRCA mutations in cancer treatment with Poly (ADP-ribose) polymerase (PARP) inhibitors. Cancers (Basel). 2018;10(12):487. DOI:10.3390/cancers10120487; Hu C., Hart S.N., Polley E.C., Gnanaolivu R., Shimelis H., Lee K.Y., et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319(23):2401–9. DOI:10.1001/jama.2018.6228; Hu C., Hart S.N., Bamlet W.R., Moore R.M., Nandakumar K., Eckloff B.W., et al. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev. 2016;25(1):207–11. DOI:10.1158/1055-9965.EPI-15-0455; Salo-Mullen E.E., O’Reilly E.M., Kelsen D.P., Ashraf A.M., Lowery M.A., Yu K.H., et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121(24):4382–8. DOI:10.1002/cncr.29664; Shindo K., Yu J., Suenaga M., Fesharakizadeh S., Cho C., MacgregorDas A., et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35(30):3382–90. DOI:10.1200/JCO.2017.72.3502; Murphy K.M., Brune K.A., Griffin C., Sollenberger J.E., Petersen G.M., Bansal R., et al. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17 %. Cancer Res. 2002;62(13):3789–93. PMID: 12097290; George A., Kaye S., Banerjee S. Delivering widespread BRCA testing and PARP inhibition to pa tients with ovarian cancer. Nat Rev Clin Oncol. 2017;14(5):284–96. DOI:10.1038/nrclinonc.2016.191; Golan T., Hammel P., Reni M., Van Cutsem E., Macarulla T., Hall M.J., et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27. DOI:10.1056/NEJMoa1903387; Sultanbaev A., Sultanbaeva N., Nasretdinov A., Menshikov K., Minniakhmetov I., Musin S., et al. Organization of screening for prostate cancer in carriers of germinal mutations in the BRCA1/2 genes. Eur Urol Open Sci. 2020;21(Suppl. 2):S59. DOI:10.1016/S2666-1683(20)36064-X; Gröschel S., Hübschmann D., Raimondi F., Horak P., Warsow G., Fröhlich M., et al. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat Commun. 2019;10(1):1635. DOI:10.1038/s41467-019-09633-9; Gorodetska I., Kozeretska I., Dubrovska A. BRCA genes: the role in genome stability, cancer stemness and therapy resistance. J Cancer. 2019;10(9):2109–27. DOI:10.7150/jca.30410; Godet I., Gilkes D.M. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1):10.15761/ICST.1000228. DOI:10.15761/ICST.1000228; Roberts N.J., Jiao Y., Yu J., Kopelovich L., Petersen G.M., Bondy M.L., et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6. DOI:10.1158/2159-8290.CD-11-0194; Sultanbaev A., Nasretdinov A., Sultanbaeva N., Menshikov K., Musin S., Izmailov A., et al. Hereditary prostate cancer screening. Eur Urol Open Sci. 2020;21(Suppl. 3):S155. DOI:10.1016/S2666-1683(20)36212-1; van Os N.J., Roeleveld N., Weemaes C.M., Jongmans M.C., Janssens G.O., Taylor A.M., et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17. DOI:10.1111/cge.12710; Zhen D.B., Rabe K.G., Gallinger S., Syngal S., Schwartz A.G., Goggins M.G., et al. BRCA1, BRCA2, PALB2, and CDKN2A muta tions in familial pancreatic cancer: a PACGENE study. Genet Med. 2014;17(7):569–77. DOI:10.1038/gim.2014.153; Matsubayashi H., Takaori K., Morizane C., Kiyozumi Y. Familial pancreatic cancer and surveillance of high-risk individuals. Gut Liver. 2019;13(5):498–505. DOI:10.5009/gnl18449; Konings I.C.A.W., Harinck F., Poley J-W., Aalfs C.M., van Rens A., Krak N.C., et al. Prevalence and progression of pancreatic cystic precursor lesions differ between groups at high risk of developing pancreatic cancer. Pancreas. 2017;46(1):28–34. DOI:10.1097/MPA.0000000000000725; Chaffee K.G., Oberg A.L., McWilliams R.R., Majithia N., Allen B.A., Kidd J., et al. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med. 2018;20(1):119–27. DOI:10.1038/gim.2017.85; Borecka M., Zemankova P., Vocka M., Soucek P., Soukupova J., Kleiblova P., et al. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic. Cancer Genet. 2016;209(5):199–204. DOI:10.1016/j.cancergen.2016.03.003; Wong W., Raufi A.G., Safyan R.A., Bates S.E., Manji G.A. BRCA Muta - tions in pancreas cancer: spectrum, current management, challenges and future prospects. Cancer Manag Res. 2020:12 2731–42. DOI:10.2147/CMAR.S211151; Masamune A., Kikuta K., Hamada S., Nakano E., Kume K., Inui A., et al. Nationwide survey of hereditary pancreatitis in Japan. J Gastroen - terol. 2018;53(1):152–60. DOI:10.1007/s00535-017-1388-0; Rebours V., Boutron-Ruault M.C., Schnee M., Férec C., Maire F., Hammel P., et al. Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroen - terol. 2008;103(1):111–9. DOI:10.1111/j.1572-0241.2007.01597.x; Shelton C.A., Umapathy C., Stello K., Yadav D., Whitcomb D.C. Hereditary pancreatitis in the United States: survival and rates of pan - creatic cancer. Am J Gastroenterol. 2018;113(9):1376. DOI:10.1038/s41395-018-0194-5; Keihanian T., Barkin J.A., Souto E.O. Early detection of pancreatic cancer: risk factors and the current state of screening modalities. Gas - troenterol Hepatol (NY). 2021;17(6):254–62. PMID: 34776799; Syngal S., Brand R.E., Church J.M., Giardiello F.M., Hampel H.L., Burt R.W., et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62. DOI:10.1038/ajg.2014.435; Tattersall A., Ryan N., Wiggans A.J., Rogozińska E., Morrison J. Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev. 2022;2(2):CD007929. DOI:10.1002/14651858.CD007929.pub4; Tutt A., Robson M., Garber J.E., Domchek S.M., Audeh M.W., Weitzel J.N., et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44. DOI:10.1016/S0140-6736(10)60892-6; Lowery M.A., Lee A, Tobias E., Sung P., Bhanot U., Shakya R., et al. Evaluation of PARP inhibition as a platinum sparing strategy in Brca2-deficient pancreatic tumors. J Clin Oncol. 2014;32:e15237. DOI:10.1200/jco.2014.32.15_suppl.e15237; McCabe N., Lord C.J., Tutt A.N., Martin N.M., Smith G.C., Ashworth A. BRCA2-deficient CAPAN-1 cells are extremely sensitive to the in - hibition of Poly (ADP-Ribose) polymerase: an issue of potency. Cancer Biol Ther. 2005;4(9):934–6. DOI:10.4161/cbt.4.9.2141; Lowery M.A., Kelsen D.P., Stadler Z.K., Yu K.H., Janjigian Y.Y., Ludwig E., et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implica - tions, and future directions. Oncologist. 2011;16(10):1397–402. DOI:10.1634/theoncologist.2011-0185; Kaufman B., Shapira-Frommer R., Schmutzler R.K., Audeh M.W., Friedlander M., Balmaña J., et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50. DOI: 10. 1200/JCO.2014.56.2728; Lowery M.A., Kelsen D.P., Capanu M., Smith S.C., Lee J.W., Stadler Z.K., et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur J Cancer. 2017;89:19–26. DOI:10.1016/j.ejca.2017.11.004; Kunzmann V., Algül N., Goekkurt E., Siegler G.M., Martens U.M., Waldschmidt D., et al. 671OConversion rate in locally advanced pancreatic cancer (LAPC) after nab-paclitaxel/gemcitabine- or FOLFIRINOX-based induction chemotherapy (NEOLAP): Final results of a multicenter randomised phase II AIO trial. Ann Oncol. 2019;30(5):247. DOI:10.1093/annonc/mdz247; Dahan L., Williet N., Le Malicot K., Phelip J.M., Desrame J., Bouché O., et al. Randomized phase II trial evaluating two sequential treatments in first line of metastatic pancreatic cancer: results of the PANOPTIMOXPRODIGE 35 Trial. J Clin Oncol. 2021;39(29):3242–50. DOI:10.1200/JCO.20.03329; Golan T., Hammel P., Reni M., Cutsem E.V., Macarulla T., Hall M.J., et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–27. DOI:10.1056/NEJMoa1903387; O’Reilly E.M., Lee J.W., Lowery M.A., Capanu M., Stadler Z.K., Moore M.J., et al. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer. 2018;124(7):1374– 82. DOI:10.1002/cncr.31218; O’Reilly E.M., Lee J.W., Zalupski M., Capanu M., Park J., Golan T., et al. Randomized, multicenter, phase ii trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adeno - carcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020;38(13):1378–88. DOI:10.1200/JCO.19.02931; Murai J., Zhang Y., Morris J., Ji J., Takeda S., Doroshow J.H., et al. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J Pharmacol Exp Ther. 2014;349(3):408–16. DOI:10.1124/jpet.113.210146; Yap T.A., Plummer R., Azad N.S., Helleday T. The DNA damaging revolution: PARP inhibitors and beyond. Am Soc Clin Oncol Edu. 2019;39:185–95. DOI:10.1200/EDBK_238473; McCann K.E. Advances in the use of PARP inhibitors for RCA1/2associated breast cancer: talazoparib. Future Oncol. 2019;15(15):1707–15. DOI:10.2217/fon-2018-0751; Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764–75. DOI:10.1158/1078-0432.CCR-13-2287; Golmard L., Castéra L., Krieger S., Moncoutier V., Abidallah K., Tenreiro H., et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur J Hum Genet. 2017;25(12):1345–53. DOI:10.1038/s41431-017-0021-2; Villarroel M.C., Rajeshkumar N.V., Garrido-Laguna I., De Jesus-Acosta A., Jones S., Maitra A., et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther. 2011;10(1):3–8. DOI:10.1158/1535-7163.MCT-10-0893; Chan D., Clarke S., Gill A.J., Chantrill L., Samra J., Li B.T., et al. Patho - genic PALB2 mutation in metastatic pancreatic adenocarcinoma and neuroendocrine tumour: a case report. Mol Clin Oncol. 2015;3(4):817– 9. DOI:10.3892/mco.2015.533; Shroff R.T., Hendifar A., McWilliams R.R., Geva R., Epelbaum R., Rolfe L., et al. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precis Oncol. 2018;2018:PO.17.00316. DOI:10.1200/PO.17.00316; Lowery M.A., Jordan E.J., Basturk O., Ptashkin R.N., Zehir A., Berger M.F., et al. Real-time genomic profiling of pancreatic ductal adenocar - cinoma: potential actionability and correlation with clinical phenotype. Clin Cancer Res. 2017;23 (20):6094–100. DOI:10.1158/1078-0432.CCR-17-0899; Mirza M.R., Monk B.J., Herrstedt J., Sc D.M., Oza A.M., Mahner S., et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64. DOI:10.1056/NEJMoa1611310; Swisher E.M., Lin K.K., Oza A.M., Scott C.L., Giordano H., Sun J., et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18(1):75–87. DOI:10.1016/S1470-2045(16)30559-9; Clarke N., Wiechno P., Alekseev B., Sala N., Jones R., Kocak I., et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018;19(7):975–86. DOI:10.1016/S1470-2045(18)30365-6; Hussain M., Mateo J., Fizazi K., Saad F., Shore N.D., Sandhu S., et al. LBA12_PR — PROfound: Phase III study of olaparib versus enzaluta - mide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene altera - tions. Ann Oncol. 2019;30(suppl.5):v881–2. DOI:10.1093/annonc/mdz394.039; https://www.surgonco.ru/jour/article/view/674
-
12Academic Journal
Συγγραφείς: Голотюк, М. А., Казанцева, Н. В.
Πηγή: Сборник статей
Θεματικοί όροι: МЕЛАНОМА КОЖИ, ГЕН BRAF, МУТАЦИЯ V600E, СОМАТИЧЕСКИЕ МУТАЦИИ
Περιγραφή αρχείου: application/pdf
Relation: Клеточные технологии — практическому здравоохранению : материалы X межрегиональной научно-практической конференции, 26 ноября 2021 г.; http://elib.usma.ru/handle/usma/4935
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/4935
-
13Academic Journal
Συγγραφείς: O. A. Mailyan, A. S. Kalpinskiy, I. V. Reshetov, K. M. Nyushko, B. Ya. Alekseev, S. P. Kokin, V. A. Stakanov, M. P. Golovashchenko, О. А. Маилян, А. С. Калпинский, И. В. Решетов, К. М. Нюшко, Б. Я. Алексеев, С. П. Кокин, В. А. Стаканов, М. П. Головащенко
Πηγή: Cancer Urology; Том 17, № 1 (2021); 82-88 ; Онкоурология; Том 17, № 1 (2021); 82-88 ; 1996-1812 ; 1726-9776
Θεματικοί όροι: герминальные мутации, metastatic castration-resistant prostate cancer, mutations in DNA repair genes, PARP inhibitor, somatic mutations, germline mutations, метастатический кастрационно-резистентный рак предстательной железы, мутации в генах репарации ДНК, PARP-ингибитор, соматические мутации
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1432/1252; Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 250 с.; Lang S.H., Swift S.L., White H. et al. A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int J Oncol 2019;55(3):597-616. DOI:10.3892/ijo.2019.4842.; Castro E., Mateo J., Olmos D. et al. Targeting DNA repair: the role of parp inhibition in the treatment of castrationresistant prostate cancer. Cancer J 2016;22(5):353-6. DOI:10.1097/PPO.0000000000000219.; Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215-28. DOI:10.1016/j.cell.2015.05.001.; Chung J.H., Dewal N., Sokol E. et al. Prospective comprehensive genomic profiling of primary and metastatic prostate tumors. JCO Precis Oncol 2019;3:PO.18.00283. DOI:10.1200/PO.18.00283.; Abida W., Armenia J., Gopalan A. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017;2017:PO.17.00029. DOI:10.1200/PO.17.00029.; Caldecott K.W. Single-strand break repair and genetic disease. Nat Rev Genet 2008;9(8):619-31. DOI:10.1038/nrg2380.; Hoeijmakers J.H. DNA damage, aging, and cancer. N Engl J Med 2009;361(15):1475-85. DOI:10.1056/NEJMra0804615.; Clancy S. Genetic Recombination. Nat Educat 2008;1(1):41.; Burkle A., Virag L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol Aspects Med 2013;34(6):1046-65. DOI:10.1016/j.mam.2012.12.010.; Литвинов С.В. Основные пути репарации двойных разрывов геномной ДНК и взаимодействия между ними. Цитология и генетика 2014;48(3):64-77.; Heeke A.L., Pishvaian M.J., Lynce F. et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis Oncol 2018;2018:PO.17.00286. DOI:10.1200/PO.17.00286.; Langelier M.F., Eisemann T., Riccio A.A. et al. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr Opin Struct Biol 2018;53:187-98. DOI:10.1016/j.sbi.2018.11.002.; Caffo O., Veccia A., Kinspergher S. et al. Aberrations of DNA repair pathways in prostate cancer: future implications for clinical practice? Front Cell Dev Biol 2018;6:71. DOI:10.3389/fcell.2018.00071.; Rouleau M., Patel A., Hendzel M.J. et al. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010;10(4):293-301. DOI:10.1038/nrc2812.; Virtanen V., Paunu K., Ahlskog J.K. et al. Rationale and current clinical development. Genes (Basel) 2019;10(8):565. DOI:10.3390/genes10080565.; Cook S.A., Tinker A.V. PARP Inhibitors and the evolving landscape of ovarian cancer management: a review. BioDrugs 2019;33(3):255-73. DOI:10.1007/s40259-019-00347-4.; Keung M.Y.T., Wu Y., Vadgama J.V. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J Clin Med 2019;8(4):435. DOI:10.3390/jcm8040435.; Kote-Jarai Z., Leongamornlert D., Saunders E. et al. BRCA2 is a moderate penetrance gene contributing to youngonset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 2011;105(8):1230-4. DOI:10.1038/bjc.2011.383.; Antoniou A., Pharoah P.D., Narod S. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003;72(5):1117-30. DOI:10.1086/375033.; Swift S.L., Lang S.H., White H. et al. Effect of DNA damage response mutations on prostate cancer prognosis: a systematic review. Future Oncol 2019;15(28):3283-303. DOI:10.2217/fon-2019-0298.; Edwards S.M., Evans D.G., Hope Q. et al. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 2010;103(6):918-24. DOI:10.1038/sj.bjc.6605822.; Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком предстательной железы. Онкоурология 2018;14(4):53-67. DOI:10.17650/1726-9776-2018-14-4-53-67.; Fachal L., Gomez-Caamano A., Celeiro-Munoz C. et al. BRCA1 mutations do not increase prostate cancer risk: results from a meta-analysis including new data. Prostate 2011;71(16):1768-79. DOI:10.1002/pros.21394.; Cui M., Gao X.S., Gu X. et al. BRCA2 mutations should be screened early and routinely as markers of poor prognosis: evidence from 8,988 patients with prostate cancer. Oncotarget 2017;8(25):40222-32. DOI:10.18632/oncotarget.16712.; Oh M., Alkhushaym N., Fallatah S. et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate 2019;79(8):880-95. DOI:10.1002/pros.23795.; NCCN Guideline with Evidence Blocks - Prostate Cancer Version 2.2021. Available at: http://www.nccn.org/professionals/physician_gls/pdf/prostate_blocks.pdf.; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443-53. DOI:10.1056/NEJMoa1603144.; Castro E., Romero-Laorden N., Del Pozo A. et al. PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2019;37(6):490-503. DOI:10.1200/JCO.18.00358.; Матвеев В.Б., Киричек А.А., Филиппова М.Г. и др. Влияние герминальных мутаций в генах BRCA2 и CHEK2 на время до развития кастрационной резистентности у больных метастатическим гормоночувствительным раком предстательной железы. Урология 2019;(5):79-85. DOI: https://dx.doi.org/10.18565/urology.2019.5.79-85.; Kaufman B., Shapira-Frommer R., Schmutzler R.K. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33(3):244-50. DOI:10.1200/JCO.2014.56.2728.; Mateo J., Carreira S., Sandhu S. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015;373(18):1697-708. DOI:10.1056/NEJMoa1506859.; Mateo J., Porta N., Bianchini D. et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 2020;21(1):162-74. DOI:10.1016/S1470-2045(19)30684-9.; Abida W., Patnaik A., Campbell D. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 2020;38(32):3763-72. DOI:10.1200/JCO.20.01035.; Smith M.R., Sandhu S.K., Kelly W.K. et al. Pre-specified interim analysis of GALAHAD: a phase II study of niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD). Annal Oncol 2019;30(suppl_5):v851-934. DOI:10.1093/annonc/mdz394.; de Bono J., Mateo J., Fizazi K. et al. Olaparib for metastatic castrationresistant prostate cancer. N Engl J Med 2020;382(22):2091-102. DOI:10.1056/NEJMoa1911440.; https://oncourology.abvpress.ru/oncur/article/view/1432
-
14Academic Journal
Συγγραφείς: Pryvalova, A. O., Vynnychenko, I. O., Harbuzova, V. Yu., Vynnychenko, O. I., Moskalenko, Yu. V.
Πηγή: Zaporozhye Medical Journal; Vol. 22 No. 4 (2020) ; Запорожский медицинский журнал; Том 22 № 4 (2020) ; Запорізький медичний журнал; Том 22 № 4 (2020) ; 2310-1210 ; 2306-4145
Θεματικοί όροι: рак грудної залози, соматичні мутації, ген PIK3CA, сигнальний каскад PI3K/Akt, breast cancer, somatic mutations, PIK3CA gene, signaling cascade PI3K/Akt, рак молочной железы, соматические мутации, сигнальный каскад PI3K/Akt
Περιγραφή αρχείου: application/pdf
Relation: http://zmj.zsmu.edu.ua/article/view/208402/211698; http://zmj.zsmu.edu.ua/article/view/208402
Διαθεσιμότητα: http://zmj.zsmu.edu.ua/article/view/208402
-
15Academic Journal
Συγγραφείς: M. V. Nemtsova, A. I. Kalinkin, E. B. Kuznetsova, E. A. Alekseeva, I. V. Bure, D. S. Mikhaylenko, A. S. Tanas, V. V. Strelnikov, М. В. Немцова, А. И. Калинкин, Е. Б. Кузнецова, Е. А. Алексеева, И. В. Буре, Д. С. Михайленко, А. С. Танас, В. В. Стрельников
Πηγή: Medical Genetics; Том 19, № 6 (2020); 75-76 ; Медицинская генетика; Том 19, № 6 (2020); 75-76 ; 2073-7998
Θεματικοί όροι: соматические мутации, genes, epigenetic regulators, NGS, somatic mutations, гены эпигенетические регуляторы, высокопроизводительное секвенирование (NGS)
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: https://www.medgen-journal.ru/jour/article/view/1410
-
16Academic Journal
Θεματικοί όροι: прививочная операция, возраст привоя, приживаемость растений, Pinus sylvestris, спонтанные соматические мутации, ведьмины метлы, прививка хвойных
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/30297
-
17Academic Journal
Πηγή: Head and neck Russian Journal.
Θεματικοί όροι: рак щито-видной железы, соматические мутации, follicular thyroid tumor, фолликулярная неоплазия, 3. Good health, hemithyroidectomy, тиреоидэктомия лимфаденэктомия, thyroidectomy lymphadenectomy, follicular neoplasia, тонкоигольная аспирационная биопсия, thyroid cancer, fine-needle aspiration biopsy, гемитиреоидэктомия, somatic mutations, фолликулярная опухоль щитовидной железы
-
18Academic Journal
Θεματικοί όροι: прививочная операция, возраст привоя, приживаемость растений, Pinus sylvestris, спонтанные соматические мутации, ведьмины метлы, прививка хвойных
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://openrepository.ru/article?id=46215
-
19Academic Journal
Συνεισφορές: Казанский (Приволжский) федеральный университет
Θεματικοί όροι: полное экзомное секвенирование, соматические мутации, герминальные мутации, рак предстательной железы
Σύνδεσμος πρόσβασης: https://openrepository.ru/article?id=190778
-
20Academic Journal
Συγγραφείς: V. D. Yakushina, M. A. Zaytseva, A. E. Pavlov, L. V. Lerner, A. V. Lavrov, В. Д. Якушина, М. А. Зайцева, А. Е. Павлов, Л. В. Лернер, А. В. Лавров
Πηγή: Medical Genetics; Том 15, № 9 (2016); 44-48 ; Медицинская генетика; Том 15, № 9 (2016); 44-48 ; 2073-7998
Θεματικοί όροι: PTC, таргетная панель, соматические мутации, гены, геномные перестройки, генетическая диагностика, KRAS, NRAS, BRAF, targeted panel, somatic mutations, genes, translocations, genetic diagnostics, thyroid cancer
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/172/160; Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301-T313. doi:10.1530/ERC-14-0166.; Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta Cytol. 2012;56(4):333-339. doi:10.1159/000339959.; Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(D1):D805-D811. doi:10.1093/nar/gku1075.; Cerami E, Gao J, Dogrusoz U, et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401-404. doi:10.1158/2159-8290.CD-12-0095.; Gao J, Aksoy BA, Dogrusoz U, et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal. 2013;6(269):pl1-pl1. doi:10.1126/scisignal.2004088.; Cancer Genome Atlas Research Network N, Akbani R, Aksoy BA, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-690. doi:10.1016/j.cell.2014.09.050.; Hall, R.D., & Kudchadkar, R.R. (2014). BRAF Mutations: Signaling, Epidemiology, and Clinical Experience in Multiple Malignancies. Cancer Control, 21(221). Retrieved from www.henrydomke.com.; Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052-1066. doi:10.1172/JCI85271.; Xing M, Pylayeva-Gupta Y, Grabocka E, et al. Clinical utility of RAS mutations in thyroid cancer: a blurred picture now emerging clearer. BMC Med. 2016;14(1):12. doi:10.1186/s12916-016-0559-9.; Lazzereschi D, Nardi F, Turco A, et al. A complex pattern of mutations and abnormal splicing of Smad4 is present in thyroid tumours. Oncogene. 2005;24(34):5344-5354. doi:10.1038/sj.onc.1208603.; D’Inzeo S, Nicolussi A, Donini CF, et al. A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. Endocr Relat Cancer. 2012;19(1):39-55. doi:10.1530/ERC-11-0233.; Figlioli G, Landi S, Romei C, Elisei R, Gemignani F. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: Mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res - Rev Mutat Res. 2013;752(1):36-44. doi:10.1016/j.mrrev.2012.09.002.; Karunamurthy A, Panebianco F, Hsiao S, et al. Prevalence and phenotypic characteristics of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;(February):ERC - 16-0043 -. doi:10.1530/ERC-16-0043.; Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115(1):94-101. doi:10.1172/JCI200523237.; Marotta V, Guerra A, Sapio MR, Vitale M. RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol. 2011;165(4):499-507. doi:10.1530/eje-11-0499.; Eberhardt NL, Grebe SKG, McIver B, Reddi H V. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321(1):50-56. doi:10.1155/2008/672829.; Duan J, Zhang J-G, Deng H-W, Wang Y-P. Comparative Studies of Copy Number Variation Detection Methods for Next-Generation Sequencing Technologies. Salamin N, ed. PLoS ONE. 2013;8(3):e59128. doi:10.1371/journal.pone.0059128.