-
1Academic Journal
Συγγραφείς: Tsemenko, K. V., Kireyev, I. V., Koshoviy, O. M., Tolmachova, K. S., Botsula, I. V.
Πηγή: Clinical pharmacy; Vol. 23 No. 3 (2019); 52-56
Клиническая фармация; Том 23 № 3 (2019); 52-56
Клінічна фармація; Том 23 № 3 (2019); 52-56
Klìnìčna farmacìâ; Том 23, № 3 (2019); 52-56
Клиническая фармация; Том 23, № 3 (2019); 52-56
Клінічна фармація; Том 23, № 3 (2019); 52-56Θεματικοί όροι: phytosubstance, Vaccinum vitis-idaea, 582.929.4-035.22, сполука-лідер, гостра токсичність, УДК 615.322.099, UDC 615.322.099:582.929.4-035.22, фітосубстанція, acute toxicity, UDC 615.322.099, 16. Peace & justice, lead-compound, брусниця звичайна, фитосубстанция, 3. Good health, УДК 615.322.099:582.929.4-035.22, брусника обыкновенная, соединение-лидер, острая токсичность
Περιγραφή αρχείου: application/pdf
-
2Academic Journal
Συγγραφείς: M. A. Samotrueva, A. A. Ozerov, A. A. Starikova, N. M. Gabitova, D. V. Merezhkina, A. A. Tsibizova, I. N. Tyurenkov, М. А. Самотруева, А. А. Озеров, А. А. Старикова, Н. М. Габитова, Д. В. Мережкина, А. А. Цибизова, И. Н. Тюренков
Συνεισφορές: This work was carried out within the framework of the state assignment of the Ministry of Health of the Russian Federation in terms of conducting research on the topic “Search and development of promising compounds with antibacterial activity among pyrimidine derivatives for the creation of drugs” 48.2-2021., Данная работа выполнена в рамках государственного задания Министерства здравоохранения РФ в части проведения НИР по теме «Поиск и разработка перспективных соединений с антибактериальной активностью среди производных пиримидина для создания лекарственных препаратов» 48.2-2021.
Πηγή: Pharmacy & Pharmacology; Том 9, № 4 (2021); 318-329 ; Фармация и фармакология; Том 9, № 4 (2021); 318-329 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2021-9-4
Θεματικοί όροι: большой мобильный элемент, antimicrobial activity, lead-compound, electron-donating centers, enzyme active site, minimum inhibitory concentration, minimum suppressing concentration, bacteriostatic action, bactericidal activity, resistance, ATP-dependent efflux pump, plasmids, transposones, large mobile element, антимикробная активность, соединение-лидер, электронодонорные центры, активный сайт фермента, минимальная подавляющая концентрация, минимальная ингибирующая концентрация, бактериостатическое действие, бактерицидная активность, резистентность, АТФ-зависимый эффлюксный насос, плазмиды, транспозоны
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmpharm.ru/jour/article/view/885/750; https://www.pharmpharm.ru/jour/article/view/885/751; Abrusán G., Marsh J.A. Ligands and receptors with broad binding capabilities have common structural characteristics: An antibiotic design perspective // J. Med. Chem. – 2019. – Vol. 62. – Р. 9357−9374. DOI:10.1021/acs.jmedchem.9b00220.; Beyzaei H., Ghasemi B. In vitro Antibacterial evaluation of newly synthesized heterocyclic compounds against Streptococcus Pneumoniae // Journal of Sciences, Islamic Republic of Iran. – 2018. – Vol. 29, No.3. – Р. 211–220. DOI:10.22059/JSCIENCES.2018.67436.; Цибизова А.А., Ясенявская А.Л., Озеров А.А., Самотруева М.А., Тюренков И.Н. Оценка острой токсичности нового пиримидинового производного // Астраханский медицинский журнал. – 2021. – Т. 16, № 1. – С. 82–87. DOI:10.17021/2021.16.1.82.87.; Jampilek J. Heterocycles in Medicinal Chemistry // Molecules. – 2019. -Vol. 24. – Art. No.3839. DOI:10.3390/molecules24213839.; Patel P.R., Joshi H., Shah U., Bapna M., Patel B. New generation of quinazolinone derivatives as potent antimicrobial agents // Asian Pac. J. Health Sci. – 2021. – Vol. 8, No.2. – Р. 61–66. DOI:10.21276/apjhs.2021.8.2.12.; Etebu E., Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives // Int. J. Appl. Microbiol. Biotechnol.Res. – 2016. – Vol. 4. – Р. 90–101.; Alanazi A.M., Abdel-Aziz A.A.M., Shawer T.Z., Ayyad R.R., Al-Obaid A.M., Al-Agamy M.H.M., Maarouf A.R., El-Azab A.S. Synthesis, antitumor and antimicrobial activity of some new 6-methyl-3-phenyl-4(3H)-quinazolinone analogues: in silico studies // Journal of Enzyme Inhibition and Medicinal Chemistry. – 2016. – Vol. 31, No.5. – Р. 721–735. DOI:10.3109/14756366.2015.1060482.; El-Sayed N.N.E., Al-Otaibi T.M., Alonazi M., Masand V.H., Barakat A., Almarhoon Z.M., Ben Bacha A. Synthesis and characterization of some new quinoxalin-2(1H)-one and 2-methyl-3H-quinazolin-4-one derivatives targeting the onset and progression of CRC with SRA, Molecular Docking, and ADMET analyses // Molecules. – 2021. – Vol. 26. – Art. No.3121. DOI:10.3390/molecules26113121.; Hassan K.A., Liu Q., Elbourne L.D.H., Ahmad I., Sharples D., Naidu V., Chan C.L., Li L., Harborne S.P.D., Pokhrel A., Postis V.L.G., Goldman A., Henderson P.J.F., Paulsen I.T. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in gram-negative pathogens // Research in Microbiology. – 2018. – Vol. 169. – P. 450–454. DOI:10.1016/j.resmic.2018.01.001.; Vila J., Moreno-Morales J., Balleste-Delpierre C. Current landscape in the discovery of novel antibacterial agents // Clinical Microbiology and Infection. – 2020. – Vol. 26. – P. 596–603. DOI:10.1016/j.cmi.2019.09.015.; Nagaraja V., Godbole A.A., Henderson S.R., Maxwell A. DNA topoisomerase I and DNA gyrase as targets for TB therapy // Drug Discovery Today. – 2017. – Vol. 22, Nо. 3. – P. 510–518. DOI:10.1016/j.drudis.2016.11.006.; D’Atanasio N., Capezzone de Joannon A., Di Sante L., Mangano G., Ombrato R., Vitiello M., Antibacterial activity of novel dual bacterial DNA type II topoisomerase inhibitors // Plos One. – 2020. – Vol. 15, No. 2. – Р. 1–21. DOI:10.1371/journal.pone.0228509.; Karaman R., Jubeh B., Breijyeh Z., Karaman R. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches // Molecules. – 2020. – Vol. 25, No.12. – Art. No.2888. DOI:10.3390/molecules25122888.; Lepak A.J., Seiler P., Surivet J.P., Ritz D., Kohl C., Andes D.R. In vivo pharmacodynamic target investigation of two bacterial topoisomerase inhibitors, ACT-387042 and ACT-292706, in the neutropenic murine thigh model against Streptococcus pneumoniaeand Staphylococcus aureus // Antimicrobial Agents and Chemotherapy. – 2016. – Vol. 60, No. 6. – Р. 3626–3632. DOI:10.1128/AAC.00363-16.; Li L., Wang Q., Zhang H., Yang M., Khan M.I., Zhou X. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics // Microbiology. – 2016. – Vol. 113, No.6. – P. 1648–1653. DOI:10.1073/pnas.1520300113.; Qiao Y., Srisuknimit V., Rubino F., Schaefer K., Ruiz N., Walker S., Kahne D. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams // Nat Chem Biol. – 2017. – Vol. 13, No.7. – Р. 793–798. DOI:10.1038/nchembio.2388.; Janardhanan J., Bouley R., Martнnez-Caballero S., Peng Z., Batuecas-Mordillo M., Meisel J.E., Ding D., Schroeder V.A., Wolter W.R., Mahasenan K.V., Hermoso J.A., Mobashery S., Chang M. The quinazolinone allosteric inhibitor of PBP 2a synergizes with piperacillin and tazobactam against methicillin-resistant Staphylococcus aureus // Antimicrobial Agents and Chemotherapy. – 2019. – Vol. 63, No.5. – Р. 1–12. DOI:10.1128/AAC.02637-18.; Liu J., Chen D., Peters B.M., Li L., Li B., Xu Z., Shirliff M.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus // Microbial Pathogenesis. – 2016. – Vol. 101. – Р. 56–67. DOI:10.1016/j.micpath.2016.10.028.; Cai Z.Q., Jin Z.S., Zheng D.Q, Hou L., Huang G.W., Tian J.Q., Wang G.J. Synthesis of several new quinazolin-4-amines containing p-toluenesulfonate moiety // Journal of chemical research. – 2016. – Vol. 40. – Р. 573–575. DOI:10.3184/174751916X14725679922221.; Khan I., Zaib S., Batool S., Abbas N., Ashraf Z., Iqbal J., Saeed A. Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification // Bioorg. Med. Chem. – 2016. – Vol. 24. – Р. 2361–2381. DOI:10.1016/j.bmc.2016.03.031.; Badshah S.L., Ullah A. New developments in non-quinolone-based antibiotics for the inhibition of bacterial gyrase and topoisomerase IV // European Journal of Medicinal Chemistry. – 2018. – Vol. 152. – Р. 393–400. DOI:10.1016/j.ejmech.2018.04.059.; Qian Y., Allegretta G., Janardhanan J., Peng Z., Mahasenan K.V., Lastochkin E., Gozun M.M.N., Tejera S., Schroeder V.A., Wolter W.R., Feltzer R., Mobashery S., Chang M. Exploration of the structural space in 4(3H)-quinazolinone antibacterials // J Med Chem. – 2020. – Vol. 63, No.10. – Р. 5287–5296. DOI:10.1021/acs.jmedchem.0c00153.; Masri A., Anwar A., Khan N.A., Shahbaz M.S., Khan K.M., Shahabuddin S., Siddiqui R. Antibacterial effects of quinazolin-4(3H)-one functionalized-conjugated silver nanoparticles // Antibiotics. – 2019. – Vol. 8. – Р. 179. DOI:10.3390/antibiotics8040179.; Bouley R., Ding D., Peng Z., Bastian M., Lastochkin E., Song W., Suckow M.A., Schroeder V.A., Wolter W.R., Mobashery S., Chang M. Structure−activity relationship for the 4(3H) quinazolinoneantibacterials // Journal of Medicinal Chemistry. – 2016. – Vol. 59. – P. 5011–5021. DOI:10.1021/acs.jmedchem.6b00372.; Nakano S., Fujisawa T., Ito Y., Chang B., Matsumura Y., Yamamoto M., Suga S., Ohnishi M., Nagao M. Penicillin-binding protein typing, antibiotic resistance gene identification, and molecular phylogenetic analysis of meropenem-resistant Streptococcus pneumoniaeserotype 19A-CC3111 strainsin Japan // Antimicrob Agents Chemother. – 2019. – Vol. 63. – Р. 1–9. DOI:10.1128/AAC.00711-19.; Brouwers R., Vass H., Dawson A., Squires T., Tavaddod S., Allen R.J. Stability of β-lactam antibiotics in bacterial growth media // PLoS One. – 2020. – Vol. 15, No.7. – Р. e0236198. DOI:10.1371/journal.pone.0236198.; Ligozzi M., Galia L., Bertoncelli A., Mazzariol A. Intrinsic role of coagulase negative staphylococcinor A-like efflux system in fluoroquinolones resistance // AIMS Microbiology. – 2017. – Vol. 3, No.4. – Р. 908–914. DOI:10.3934/microbiol.2017.4.908.; Ankireddy A.R., Rambabu G., Balaraju T., Banothu V., Gundla P.L., Addepally U., Mantipally M. Synthesis, characterization and antibacterial activity of some novel C-7-Substituted-2-morpholino-N-(pyridin-2-ylmethyl)quinazolin-4-amine derivatives // Der PharmaChemica. – 2018. – Vol. 10, No.11. – Р. 40–48.; Ghorab M.M., Alqahtani A.S., Soliman A.M., Askar A.A. Novel N-(Substituted) thioacetamide quinazolinone benzene sulfonamides as antimicrobial agents // International Journal of Nanomedicine. – 2020. – Vol. 15. – Р. 3161–3180. DOI:10.2147/IJN.S241433.; De Rosa M., Verdino A., Soriente A., Marabotti A. The Odd Couple(s): An overview of Beta-Lactam antibiotics bearing more than one pharmacophoric group // Int. J. Mol. Sci. – 2021. – Vol. 22. – Р. 2–21. DOI:10.3390/ijms22020617.; Kahlmeter G., Brown D. F. J., Goldstein F. W., MacGowan A. P., Mouton J. W., Odenholt I., Rodloff A., Soussy C-J., Steinbakk M., Soriano F., Stetsiouk O. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing // Clinical Microbiology and Infection. – 2006. – Vol. 12, No. 6. – Р. 501–503. DOI:10.1111/j.1469-0691.2006.01454.x.; Turnidge J., Kahlmeter, G., Kronvall, G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values // ClinMicrobiol Infect. – 2006. – Vol. 12, No.5. – Р. 418–425. DOI:10.1111/j.1469-0691.2006.01377.x.; Лужнова С.А., Воронков А.В., Кодониди И.П., Габитова Н.М., Храпова А.В., Бель С. Активность новых производных 1,3-диазинона-4 и их нециклических предшественников в отношении Staphilococcus aureus // Астраханский медицинский журнал. – 2017. – Т. 12, № 2. – С. 56–63.; Gajdács M. The continuing threat of methicillin-resistant Staphylococcus aureus // Antibiotics. – 2019. – Vol. 8. – Р. 52. DOI:10.3390/antibiotics8020052.; Nandwana N.K., Singh R.P., Patel O.P.S., Dhiman S., Saini H.K., Jha P.N., Kumar A. Design and synthesis of Imidazo/Benzimidazo[1,2-c]quinazolinederivatives and evaluation of their antimicrobial activity// ACS Omega. – 2018. – Vol.3, No. 11. – Р. 16338−16346. DOI:10.1021/acsomega.8b01592.; Maruthamuthu D., Rajam S., Christina Ruby Stella P., BharathiDileepan A.G., Ranjith R. The chemistry and biological significance of imidazole, benzimidazole, benzoxazole, tetrazole and quinazolinone nucleus // J. Chem. Pharm. Res. – 2016. – Vol. 8, No. 5. – Р. 505–526.; Mahato A., Shrivastava B., Shanthi N. Synthesis, Molecular Docking and Biological Evaluation of Substituted Quinazolinones as Antibacterial Agents // Chemical Science Transactions. – 2015. – Vol. 4, No. 2. – Р. 595–603. DOI:10.7598/cst2015.995.; Fisher J.F., Mobashery S. Constructing and deconstructing the bacterial cell wall // Protein Science. – 2020. – Vol. 29. – Р. 629–646. DOI:10.1002/pro.3737.; Ibrahim M.A.A., Abdeljawaad K.A.A., Abdelrahman A.H.M., Alzahrani O.R., Alshabrmi F.M., Khalaf E., Moustafa M.F., Alrumaihi F., Allemailem K.S., Soliman M.E.S., Paré P.W., Hegazy M.E.F., Atia M.A.M. Non-b-Lactam allosteric inhibitors target methicillin-resistant Staphylococcus aureus: an in silico drug discovery study // Antibiotics. – 2021. – Vol. 10, No. 8. – Art. No. 934. DOI:10.3390/antibiotics10080934.; Mahasenan K.V., Molina R., Bouley R., Batuecas M.T., Fisher J.F., Hermoso J.A., Chang M., Mobashery S. Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis // J Am Chem Soc. – 2017. – Vol. 139, No. 5. – Р. 2102–2110. DOI:10.1021/jacs.6b12565.; Higgins D.L., Chang R., Debabov D.V., Leung J., Wu T., Krause K.M., Sandvik E., Hubbard J.M., Kaniga K., Schmidt D.E. Jr, Gao Q., Cass R.T., Karr D.E., Benton B.M., Humphrey P.P. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus // Antimicrobial agents and chemotherapy. – 2005. – Vol. 49, No. 3. – P. 1127–1134. DOI:10.1128/AAC.49.3.1127-1134.2005.; Bayer A.S., Schneider T., Sahl H.G. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall // Ann N Y Acad Sci. – 2013. – Vol. 1277, No. 1. – Р. 139-158. DOI:10.1111/j.1749-6632.2012.06819.x.; Зубарева И.В., Беренштейн Т.Ф., Федянин С.Д. Об адгезии грамположительных кокков // Вестник ВГМУ. – 2010. – Т. 9, №1. – C. 1–15.; https://www.pharmpharm.ru/jour/article/view/885