Showing 1 - 1 results of 1 for search '"системное хроническое воспаление"', query time: 0.40s Refine Results
  1. 1
    Academic Journal

    Source: HIV Infection and Immunosuppressive Disorders; Том 15, № 4 (2023); 25-35 ; ВИЧ-инфекция и иммуносупрессии; Том 15, № 4 (2023); 25-35 ; 2077-9828 ; 10.22328/2077-9828-2023-15-4

    File Description: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/849/565; Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies // Lancet. 2008. Jul 26. Vol. 372, No. 9635. Р. 293–299. doi:10.1016/S0140-6736(08)61113-7.; Deeks S.G., Lewin S.R., Ross A.L. et al. International AIDS Society global scientific strategy: towards an HIV cure 2016 // Nat. Med. 2016. Aug. Vol. 22, No. 8. Р. 839–850. doi:10.1038/nm.4108.; Massanella M., Fromentin R., Chomont N. Residual inflammation and viral reservoirs: alliance against an HIV cure // Curr. Opin HIV AIDS. 2016. Mar. Vol. 11, No. 2. Р. 234–241. doi:10.1097/COH.0000000000000230.; Zilberman-Schapira G., Zmora N., Itav S. et al. The gut microbiome in human immunodeficiency virus infection // BMC Med. 2016. Jun 3. Vol. 14, No. 1. Р. 83. doi:10.1186/s12916-016-0625-3.; Zevin A.S., McKinnon L., Burgener A., Klatt N.R. Microbial translocation and microbiome dysbiosis in HIV-associated immune activation // Curr. Opin HIV AIDS. 2016. Mar. Vol. 11, No. 2. Р. 182–190. doi:10.1097/COH.0000000000000234.; Uprety P., Patel K., Karalius B. et al. Pediatric HIV/AIDS Cohort Study (PHACS). Human Immunodeficiency Virus Type 1 DNA Decay Dynamics With Early, Long-term Virologic Control of Perinatal Infection // Clin. Infect Dis. 2017. Jun 1. Vol. 64, No. 11. Р. 1471–1478. doi:10.1093/cid/cix192.; Persaud D., Patel K., Karalius B. et al. Pediatric HIV/AIDS Cohort Study. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents // JAMA Pediatr. 2014. Dec. Vol. 168, No. 12. Р. 1138–1146. doi:10.1001/jamapediatrics.2014.1560.; Chun T.W., Nickle D.C., Justement J.S. et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy // J. Infect. Dis. 2008. Mar 1. Vol. 197, No. 5. Р. 714–720. doi:10.1086/527324.; Chomont N., El-Far M., Ancuta P. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation // Nat. Med. 2009. Aug. Vol. 15, No. 8. Р. 893–900. doi:10.1038/nm.1972.; Brenchley J.M., Schacker T.W., Ruff L.E. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract // J. Exp. Med. 2004. Sep 20. Vol. 200, No. 6. Р. 749–759. doi:10.1084/jem.20040874.; Mudd J.C., Brenchley J.M. Gut Mucosal Barrier Dysfunction, Microbial Dysbiosis, and Their Role in HIV-1 Disease Progression // J. Infect. Dis. 2016. Oct 1. Vol. 214, Suppl. 2. Р. S58–66. doi:10.1093/infdis/jiw258.; Dillon S.M., Lee E.J., Kotter C.V. et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia // Mucosal Immunol. 2014. Vol. 7. Р. 983–994. doi:10.1038/mi.2013.116.; Lozupone C.A., Campbell T.B., Flores S.C. et al. Alterations in the gut microbiota associated with HIV-1 infection // Cell Host Microbe. 2013. Vol. 14. Р. 329–339. doi:10.1016/j.chom.2013.08.006.; Mutlu E.A., Keshavarzian A., Losurdo J. et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects // PLoS Pathog. 2014. Vol. 10. Р. e1003829. doi:10.1371/journal.ppat.1003829.; Vazquez-Castellanos J.F., Serrano-Villar S., Latorre A. et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals // Mucosal Immunol. 2015. Vol. 8. Р. 760–772. doi:10.1038/mi.2014.107.; Zhang Y., Xie Z., Zhou J. et al. The altered metabolites contributed by dysbiosis of gut microbiota are associated with microbial translocation and immune activation during HIV infection // Front Immunol. 2023. Jan 4. Р. 13. Р. 1020822. doi:10.3389/fimmu.2022.1020822.; Yukl S.A., Shergill A.K., Ho T. et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence // J. Infect Dis. 2013 Oct 15. Vol. 208, No. 8. Р. 1212–1220. doi:10.1093/infdis/jit308.; Ananworanich J., Chomont N., Eller L.A. et al. RV217 and RV254/SEARCH010 study groups. HIV DNA Set Point is Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART // EBioMedicine. 2016. Sep. Vol. 11. Р. 68–72. doi:10.1016/j.ebiom.2016.07.024.; Ananworanich J., Sacdalan C.P., Pinyakorn S. et al. Virological and immunological characteristics of HIV-infected individuals at the earliest stage of infection // J. Virus Erad. 2016. Vol. 2, No. 1. Р. 43–48. PMID: 26889497. PMCID: PMC4754199.; Rothenberger M.K., Keele B.F., Wietgrefe S.W. et al. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption // Proc. Natl. Acad. Sci USA. 2015. Mar 10. Vol. 112, No. 10. Р. E1126–34. doi:10.1073/pnas.1414926112.; Yukl S.A., Boritz E., Busch M. et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient // PLoS Pathog. 2013. Vol. 9, No. 5. Р. e1003347. doi:10.1371/journal.ppat.1003347.; Gantner P., Assoumou L., Leruez-Ville M. et al. EVARIST ANRS EP 49 Study Group. HIV-1-RNA in seminal plasma correlates with detection of HIV-1-DNA in semen cells, but not with CMV shedding, among MSM on successful antiretroviral regimens // J. Antimicrob. Chemother. 2016. Nov. Vol. 71, No. 11. Р. 3202–3205. doi:10.1093/jac/dkw271.; Mujugira A., Celum C., Coombs R.W. et al. HIV Transmission Risk Persists During the First 6 Months of Antiretroviral Therapy // J. Acquir. Immune Defic Syndr. 2016. Aug 15. Vol. 72, No. 5. Р. 579–584. doi:10.1097/QAI.0000000000001019.; Klatt N.R., Cheu R., Birse K. et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women // Science. 2017 Jun 2. Vol. 356, No. 6341. Р. 938–945. doi:10.1126/science.aai9383.; Хрянин А.А., Кнорринг Г.Ю., Бочарова В.К. Нарушение вагинального микробиома и риск заражения ВИЧ-инфекцией у женщин // ВИЧ-инфекция и иммуносупрессии. 2023. Vol. 15, No. 1. Р. 23–31. (In Russ.). doi:10.22328/2077-9828-2023-15-1-23-31.; Wong J.K., Yukl S.A. Tissue reservoirs of HIV // Curr Opin HIV AIDS. 2016. Jul. Vol. 11, No. 4. Р. 362–370. doi:10.1097/COH.0000000000000293.; Dillon S.M., Lee E.J., Donovan A.M. et al. Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection // Retrovirology. 2016. Jan 14. Vol. 13. Р. 5. doi:10.1186/s12977-016-0237-1.; Dubourg G., Lagier J.C., Hüe S. et al. Gut microbiota associated with HIV infection is significantly enriched in bacteria tolerant to oxygen // BMJ Open Gastroenterol. 2016. Jul 28. Vol. 3, No. 1. Р. e000080. doi:10.1136/bmjgast-2016-000080.; Gootenberg D.B., Paer J.M., Luevano J.M., Kwon D.S. HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation // Curr. Opin Infect. Dis. 2017. Feb. Vol. 30, No. 1. Р. 31–43. doi:10.1097/QCO.0000000000000341.; Villanueva-Millán M.J., Pérez-Matute P., Recio-Fernández E. et al. Differential effects of antiretrovirals on microbial translocation and gut microbiota composition of HIV-infected patients // J. Int. AIDS Soc. 2017. Mar 9. Vol. 20, No. 1. Р. 21526. doi:10.7448/IAS.20.1.21526.; Хрянин А.А., Осипенко М.Ф., Немчанинова О.Б. и др. Стратегии восстановления слизистого барьера кишечника // Экспериментальная и клиническая гастроэнтерология. 2021. Т. 1, № 6. С. 88–95. doi:10.31146/1682-8658-ecg-190-6-88-95.; Garrett W.S., Gallini C.A., Yatsunenko T. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis // Cell Host Microbe. 2010. Sep 16. Vol. 8, No. 3. Р. 292–300. doi:10.1016/j.chom.2010.08.004.; Armstrong A.J.S., Shaffer M., Nusbacher N.M. et al. An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men // Microbiome. 2018. Nov 5. Vol. 6, No. 1. Р. 198. doi:10.1186/s40168-018-0580-7.; Lu W., Feng Y., Jing F. et al. Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients // Front Microbiol. 2018. Jul 2. Vol. 9. Р. 1451. doi:10.3389/fmicb.2018.01451.; Lee S.C., Chua L.L., Yap S.H. et al. Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals // Sci Rep. 2018. Sep 24. Vol. 8, No. 1. Р. 14277. doi:10.1038/s41598-018-32585-x.; Ling Z., Jin C., Xie T. et al. Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population // Sci Rep. 2016. Vol. 6. Р. 30673. doi:10.1111/jcmm.13508.; Larsen J.M. The immune response to Prevotella bacteria in chronic inflammatory disease // Immunology. 2017. Aug. Vol. 151, No. 4. Р. 363–374. doi:10.1111/imm.12760. Epub 2017 Jun 20.; Jiang F., Meng D., Weng M. et al. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1 -induced inflammation in human fetal enterocytes via toll receptors 2 and 4 // PLoS One. 2017. Mar 9. Vol. 12, No. 3. Р. e0172738. doi:10.1371/journal.pone.0172738.; Noguera-Julian M., Rocafort M., Guillén Y. et al. Gut Microbiota Linked to Sexual Preference and HIV Infection // EBioMedicine. 2016. Jan 28. Vol. 5. Р. 135–146. doi:10.1016/j.ebiom.2016.01.032.; Pinto-Cardoso S., Lozupone C., Briceño O. et al. Fecal Bacterial Communities in treated HIV infected individuals on two antiretroviral regimens // Sci. Rep. 2017. Mar 6. Vol. 7. Р. 43741. doi:10.1038/srep43741.; Nowak R.G., Bentzen S.M., Ravel J. et al. TRUSTRV368 Study Group. Rectal microbiota among HIV-uninfected, untreated HIV, and treated HIV-infected in Nigeria // AIDS. 2017. Mar 27. Vol. 31, No. 6. Р. 857–862. doi:10.1097/QAD.0000000000001409.; Winter S.E., Winter M.G., Xavier M.N. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut // Science. 2013. Feb 8. Vol. 339, No. 6120. Р. 708–711. doi:10.1126/science.1232467.; Winter S.E., Thiennimitr P., Winter M.G. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella // Nature. 2010. Sep 23. Vol. 467, No. 7314. Р. 426–429. doi:10.1038/nature09415.; Deleage C., Schuetz A., Alvord W.G. et al. Impact of early cART in the gut during acute HIV infection // JCI Insight. 2016. Jul 7. Vol. 1, No. 10. Р. e87065. doi:10.1172/jci.insight.87065.; Mahjoub-Messai F., Bidet P., Caro V. et al. Escherichia coli isolates causing bacteremia via gut translocation and urinary tract infection in young infants exhibit different virulence genotypes // J. Infect Dis. 2011. Jun 15. Vol. 203, No. 12. Р. 1844–1849. doi:10.1093/infdis/jir189.; Li S.X., Armstrong A., Neff C.P. et al. Complexities of Gut Microbiome Dysbiosis in the Context of HIV Infection and Antiretroviral Therapy // Clin. Pharmacol. Ther. 2016. Jun. Vol. 99, No. 6. Р. 600–611. doi:10.1002/cpt.363.; Nowak P., Troseid M., Avershina E. et al. Gut microbiota diversity predicts immune status in HIV-1 infection // AIDS. 2015. Vol. 29. Р. 2409–2418. doi:10.1097/QAD.0000000000000869.; Yang L., Poles M.A., Fisch G.S. et al. HIV-induced immunosuppression is associated with colonization of the proximal gut by environmental bacteria // AIDS. 2016. Vol. 30. Р. 19–29. doi:10.1097/QAD.0000000000000935.; Yu G., Fadrosh D., Ma B., Ravel J., Goedert J.J. Anal microbiota profiles in HIV-positive and HIV-negative MSM // AIDS. 2014. Vol. 28. Р. 753–760. doi:10.1097/QAD.0000000000000154.; Vujkovic-Cvijin I., Dunham R.M., Iwai S. et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism // Sci. Transl. Med. 2013. Vol. 5. Р. 193ra91. doi:10.1126/scitranslmed.aar3209.; Bender J.M., Li F., Martelly S. et al. Maternal HIV infection influences the microbiome of HIV-uninfected infants // Sci Transl Med. 2016. Jul 27. Vol. 8, No. 349. Р. 349ra100. doi:10.1126/scitranslmed.aaf5103.; Vesterbacka J., Rivera J., Noyan K. et al. Richer gut microbiota with distinct metabolic profile in HIV infected Elite Controllers // Sci Rep. 2017. Jul 24. Vol. 7, No. 1. Р. 6269. doi:10.1038/s41598-017-06675-1.; Hoenigl M., Pérez-Santiago J., Nakazawa M. et al. (1➝3)-β-d-Glucan: A Biomarker for Microbial Translocation in Individuals with Acute or Early HIV Infection? // Front Immunol. 2016. Oct 3. Vol. 7. Р. 404. doi:10.3389/fimmu.2016.00404.; Serrano-Villar S., Rojo D., Martínez-Martínez M. et al. Gut Bacteria Metabolism Impacts Immune Recovery in HIV-infected Individuals // EBioMedicine. 2016. Jun. Vol. 8. Р. 203–216. doi:10.1016/j.ebiom.2016.04.033.; Rivière A., Selak M., Lantin D. et al. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut // Front Microbiol. 2016. Jun 28. Vol. 7. Р. 979. doi:10.3389/fmicb.2016.00979.; Imai K., Yamada K., Tamura M. et al. Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria // Cell Mol. Life Sci. 2012. Aug. Vol. 69, No. 15. Р. 2583–2592. doi:10.1007/s00018-012-0936-2.; Bolduc J.F., Hany L., Barat C. et al. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T-Cells // J. Virol. 2017. Jul 27. Vol. 91, No. 16. Р. e01943–16. doi:10.1128/JVI.01943-16.; Rasmussen T.A., Lewin S.R. Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? // Curr. Opin HIV AIDS. 2016. Jul. Vol. 11, No. 4. Р. 394–401. doi:10.1097/COH.0000000000000279.; Nix L.M., Tien P.C. Metabolic syndrome, diabetes, and cardiovascular risk in HIV // Curr. HIV/AIDS Rep. 2014. Vol. 11. Р. 271–278. doi:10.1007/s11904-014-0219-7.; Aron-Wisnewsky J., Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders // Nat. Rev. Nephrol. 2016. Vol. 12, No. 3. Р. 169–181. doi:10.1038/nrneph.2015.191; Srinivasa S., Fitch K.V., Lo J. et al. Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine // AIDS. 2015. Vol. 29. Р. 443–452. doi:10.1097/QAD.0000000000000565.; Haissman J.M., Knudsen A., Hoel H. et al. Microbiota-Dependent Marker TMAO Is Elevated in Silent Ischemia but Is Not Associated With FirstTime Myocardial Infarction in HIV Infection // J. Acquir Immune Defic Syndr. 2016. Vol. 71, No. 2. Р. 130–136. doi:10.1097/QAI.0000000000000843.; Dieffenbach C.W., Fauci A.S. Thirty years of HIV and AIDS: future challenges and opportunities // Ann. Intern. Med. 2011. Vol. 154. Р. 766–771. doi:10.7326/0003-4819-154-11-201106070-00345.; Kartalija M., Sande M.A. Diarrhea and AIDS in the era of highly active antiretroviral therapy // Clin. Infect Dis. 1999. Vol. 28. Р. 701–705. quiz 6–7. doi:10.1086/515191.; Montessori V., Press N., Harris M., Akagi L., Montaner J.S. Adverse effects of antiretroviral therapy for HIV infection // CMAJ. 2004. Vol. 170. Р. 229–238.; Lozupone C.A., Rhodes M.E., Neff C.P. et al. HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy // Gut Microbes. 2014. Vol. 5. Р. 562–570.; Weingarden A., Gonzalez A., Vazquez-Baeza Y. et al. Dynamic changes in shortand long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection // Microbiome. 2015. Vol. 3. Р. 10. doi:10.1186/s40168-015-0070-0.; Iida N., Dzutsev A., Stewart C.A. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment // Science. 2013. Vol. 342. Р. 967–970. doi:10.1126/science.1240527.; Clayton T.A., Baker D., Lindon J.C., Everett J.R., Nicholson J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism // Proc. Natl. Acad. Sci USA. 2009. Vol. 106. Р. 14728–14733. doi:10.1073/pnas.0904489106.; Haiser H.J., Gootenberg D.B., Chatman K. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta // Science. 2013. Vol. 341. Р, 295–298. doi:10.1126/science.1235872.; Caceres C.F., O’Reilly K.R., Mayer K.H., Baggaley R. PrEP implementation: moving from trials to policy and practice // J. Int. AIDS Soc. 2015. Vol. 18. Р. 20222. doi:10.7448/IAS.18.4.20222.; Lee C.H., Steiner T., Petrof E.O. et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium diffi Infection: A Randomized Clinical Trial // JAMA. 2016. Jan 12. Vol. 315, No. 2. Р. 142–149. doi:10.1001/jama.2015.18098.; Vujkovic-Cvijin I., Rutishauser R.L., Pao M. et al. Limited engraftment of donor microbiome via one-time fecal microbial transplantation in treated HIV-infected individuals // Gut Microbes. 2017. Sep 3. Vol. 8, No. 5. Р. 440–450. doi:10.1080/19490976.2017.1334034.; Hensley-McBain T., Zevin A.S., Manuzak J. et al. Effects of Fecal Microbial Transplantation on Microbiome and Immunity in Simian Immunodeficiency Virus-Infected Macaques // J. Virol. 2016. Apr 29. Vol. 90, No. 10. Р. 4981–4989. doi:10.1128/JVI.00099-16.; D’Ettorre G., Ceccarelli G., Giustini N. et al. Probiotics Reduce Inflammation in Antiretroviral Treated, HIV-Infected Individuals: Results of the «Probio-HIV» Clinical Trial // PLoS One. 2015. Vol. 10, No. 9. Р. e0137200. doi:10.1371/journal.pone.0137200.; Falasca K., Vecchiet J., Ucciferri C. et al. Effect of Probiotic Supplement on Cytokine Levels in HIV-Infected Individuals: A Preliminary Study // Nutrients. 2015. Vol. 7. Р. 8335–8347. doi:10.3390/nu7105396.; Villar-Garcia J., Hernandez J.J., Guerri-Fernandez R. et al. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treated patients: a double-blind, randomized, placebo-controlled trial // J. Acquir Immune Defic Syndr. 2015. Vol. 68. Р. 256–263. doi:10.1097/QAI.0000000000000468.