Showing 1 - 9 results of 9 for search '"система точного земледелия"', query time: 0.50s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Agricultural Machinery and Technologies; Том 18, № 4 (2024); 24-33 ; Сельскохозяйственные машины и технологии; Том 18, № 4 (2024); 24-33 ; 2073-7599

    File Description: application/pdf

    Relation: https://www.vimsmit.com/jour/article/view/617/546; Thangaraj R., Anandamurugan S., Pandiyan P et al. Artificial intelligence in tomato leaf disease detection: a comprehensive review and discussion. Journal of Plant Diseases and Protection. 2021. DOI:10.1007/s41348-021-00500-8.; Курченко Н.Ю., Даус Ю.В., Труфляк Е.В., Ильченко Я. А. Параметры применения беспилотных летательных аппаратов при обработке средствами защиты растений сельскохозяйственных культур // Известия Нижневолжского агроуниверситетского комплекса. 2023. N1 (69). С. 527-536. DOI:10.32786/2071-9485-2023-69-1-527-536.; Sladojevic S., Arsenovic M., Anderla A. et al. Deep neural networks based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience. 2016. 1-11. DOI:10.1155/2016/3289801.; Smirnov I., Kutyrev A., Khort D. et al. Developing neural-based hardware and software complex with a mobile application for monitoring apple fruits on tree canopy. Horticulture and Viticulture. 2023. 43-51. DOI:10.31676/0235-2591-2023-1-43-51.; Neupane K., Baysal-Gurel F. Automatic identification and monitoring of plant diseases using Unmanned Aerial Vehicles: a review. Remote Sensing. 2021. Vol. 13. N19. 1-19. DOI:10.3390/rs13193841.; Sankaran S., Khot L.R., Espinoza C.Z. et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy. 2015. Vol. 70. 112-123. DOI:10.1016/j.eja.2015.07.004.; Rokach L., Maimon O. Top-down induction of decision trees classifiers - a survey. IEEE Systems, Man, and Cybernetics. 2005. Vol. 35. N4. 476-487. DOI:10.1109/TSMCC.2004.843178.; Singh A., Ganapathysubramanian B. Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science. 2020. Vol. 25. N1. 11-13. DOI:10.1016/j.tplants.2019.09.003.; Kamilaris A., Prenafeta-Boldu F.X. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture. 2018. Vol. 147. 70-90. DOI:10.1016/j.compag.2018.02.016.; Zhang H., Zhang B., Wei Z. et al. Lightweight integrated solution for a UAV-borne hyperspectral imaging system. Remote Sensing. 2020. Vol. 12.N4. 657-671. DOI:10.3390/rs12040657.; Pittu V.R., Gorantla S.R. Diseased area recognition and pesticide spraying in farming lands by multicopters and image processing system. Journal Europeen des Systemes Automatises. 2020. Vol. 53(1). 123-130. DOI:10.18280/jesa.530115.; Kurbanov R., Litvinov M. Development of a gimbal for the Parrot Sequoia multispectral camera for the UAV DJI Phantom 4 Pro. IOP Series. 2020. 012062 (In English). DOI:10.1088/1757-899X/1001/1/012062.; Albetis J., Jacquin A., Goulard M. et al. On the potentiality of UAV multispectral imagery to detect flavescence doree and grapevine trunk diseases. Remote Sensing. 2019. Vol. 11. N1. 23-37. DOI:10.3390/rs11010023.; Song B., Park K. Detection of aquatic plants using multispectral UAV imagery and vegetation index. Remote Sensing. 2020. 387-400. DOI:10.3390/rs12030387.; Zhang T., Xu Z., Su J. et al. Ir-Unet: irregular segmentation u-shape network for wheat yellow rust detection by UAV multispectral imagery. Remote Sensing. 2021. Vol. 13. N19. 3892. DOI:10.3390/rs13193892.; Sassu A., Motta J., Deidda A. et al. Artichoke deep learning detection network for site-specific agrochemicals UAS spraying. Computers and Electronics in Agriculture. 2023. Vol. 213. 106395. DOI:10.1016/j.compag.2022.106395.; Kerkech M., Hafiane A., Canals R. Plant disease detection using the UAV imagery and deep learning. Computers in Industry. 2020. Vol. 123. 103316. DOI:10.1016/j.compind.2020.103316.; Li J., Huang W., Zhao C., Jin J. UAV-based multispectral remote sensing for precision agriculture: A case study on wheat nitrogen and water stress. International Journal of Remote Sensing. 2019. Vol. 40(4). 1325-1346. DOI:10.1080/01431161.2018.1525662.; Shi Y., Han L., Kleerekoper A. et al. Novel CropdocNet model for automated potato late blight disease detection from unmanned aerial vehicle-based hyperspectral imagery. Remote Sensing. 2022. 20396. DOI:10.3390/rs14020396.; Yu J., Cheng T., Cai N. et al. Wheat lodging segmentation based on LSTM-PSPNet deep learning network. Drones. 2023. Vol. 7. N2. 53-66. DOI:10.3390/drones7020053.; Xu W., Chen P, Zhan Y. et al. Cotton yield estimation model based on machine learning using time series UAV remote sensing data. International Journal of Applied Earth Observation and Geoinformation. 2021. Vol. 104. 102511. DOI:10.1016/j.jag.2021.102511.; Duarte-Carvajalino J.M., Alzate D.F., Ramirez A.A. et al. Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing. 2018. Vol. 10. 1513. DOI:10.3390/rs10101513.; Ценч Ю.С., Курбанов РК., Захарова Н.И. История развития систем управления полетом и средств аэрофотосъемки беспилотных воздушных судов сельскохозяйственного назначения // Сельскохозяйственные машины и технологии. 2024. Т 18. N2. С. 11-19. DOI:10.22314/2073-7599-2024-18-2-11-19.; Курбанов Р.К., Захарова Н.И., Захарова О.М., Горшков Д.М. Оценка перезимовки всходов селекционной озимой пшеницы с помощью БПЛА // Инновации в сельском хозяйстве. 2019. N3(32). С. 133-139. EDN: YYRCTL.; Zhang X., Han L., Dong Y. et al. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote Sensing. 2019. Vol. 11. N13. 1554. DOI:10.3390/rs11131554.; Zhang B., Zhao D. An ensemble learning model for detecting soybean seedling emergence in UAV imagery. Sensors. 2023. Vol. 23. N15. 6662. DOI:10.3390/s23156662.; Su J., Yi D., Su B. et al. Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring. IEEE Transactions on Industrial Informatics. 2020. Vol. 17. N3. 2242-2249. DOI:10.1109/TII.2020.2979237.; Behmann J., Mahlein A.-K., Rumpf T. et al. A Review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agriculture. 2015. Vol. 16. N3. 239-260. DOI:10.1007/s11119-014-9372-7.; Mahlein A.-K., Kuska M.T., Behmann J. et al. Hyperspectral and thermal imaging of plant diseases in horticulture. Sensors. 2018. Vol. 18. N9. 2936. DOI:10.3390/s18092936.; Shahzaad B., Bouguettaya A., Mistry S. et al. Resilient composition of drone services for delivery. Future Generation Computer Systems. 2021. Vol. 115. 335-350. DOI:10.1016/j.future.2020.09.023.; Курбанов РК., Захарова Н.И., Гайдук О.М. Использование теплового канала (LWIR) для оценки состояния посевов и прогнозирования урожайности сельскохозяйственных культур // Электротехнологии и электрооборудование в АПК. 2020. Т. 67. N3(40). С. 87-94. DOI:10.22314/2658-4859-2020-67-3-87-94.; Лелюхин Д., Тутыгин В. Система диагностики заболеваний листьев растений по фотоизображениям, полученным с помощью БПЛА // Известия Тульского государственного университета. 2018. N2. С. 129-137. EDN: RAQZLK.; Pan Q., Gao M., Wu P et al. A deep-learning-based approach for wheat yellow rust disease recognition from unmanned aerial vehicle images. Sensors. 2021. 6540-6553. DOI:10.3390/s21196540.; https://www.vimsmit.com/jour/article/view/617

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Вестник Федерального государственного образовательного учреждения высшего профессионального образования «Московский государственный агроинженерный университет им. В.П. Горячкина».

    File Description: text/html