-
1Academic Journal
Πηγή: Исследование проблем экономики и финансов, Iss 1 (2025)
Θεματικοί όροι: Economics as a science, аграрный сектор, китайский опыт, digital-инновации, сельскохозяйственные дроны, цифровизация, HB71-74
Σύνδεσμος πρόσβασης: https://doaj.org/article/3d775d7a84db4d88a63421e268208440
-
2Academic Journal
Θεματικοί όροι: беспилотный летательный аппарат-опрыскиватель, обработка сельскохозяйственных угодий, беспилотные летательные аппараты, сельскохозяйственные работы, сельскохозяйственные дроны
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/66347
-
3Academic Journal
Συγγραφείς: E. G. Raevskaya, Е. Г. Раевская
Συνεισφορές: the research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of Russian Institute for Scientific and Technical Information (theme No. FFF-2022-0003)., работа выполнена при поддержке Минобрнауки РФ в рамках Государственного задания ФГБУН Всероссийский институт научной и технической информации Российской академии наук (тема № FFF-2022-0003). Автор благодарит рецензентов за их вклад в экспертную оценку этой работы.
Πηγή: Agricultural Science Euro-North-East; Том 25, № 5 (2024); 739–753 ; Аграрная наука Евро-Северо-Востока; Том 25, № 5 (2024); 739–753 ; 2500-1396 ; 2072-9081
Θεματικοί όροι: устойчивое сельское хозяйство, agricultural drones, precision farming, smart farm, sustainable agriculture, сельскохозяйственные дроны, точное земледелие, умная ферма
Περιγραφή αρχείου: application/pdf
Relation: https://www.agronauka-sv.ru/jour/article/view/1751/806; The state of AI in 2023: Generative AI’s breakout year. McKinsey, 2023. Survey. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year; AI Index Report 2023 – Artificial Intelligence Index. URL: https://aiindex.stanford.edu/report/; Monostori L. Artificial Intelligence. In: Laperrière L., Reinhart G. (eds). CIRP Encyclopedia of Production Engineering. Berlin, Heidelberg: Springer, 2014. pp. 47–50. DOI: https://doi.org/10.1007/978-3-642-20617-7_16703; Russell S. J., Norvig P. Artificial Intelligence: A Modern Approach (4th ed.). Hoboken: Pearson, 2021. p. 18.; Ask the AI experts: What's driving today's progress in AI? McKinsey & Company, 2017. URL: https://www.mckinsey.com/capabilities/quantumblack/our-insights/ask-the-ai-experts-whats-driving-todays-progress-in-ai; Струкова П. Э. Искусственный интеллект в Китае: современное состояние отрасли и тенденции развития. Вестник Санкт-Петербургского университета. Востоковедение и африканистика. 2020;12(4):588–606. DOI: https://doi.org/10.21638/spbu13.2020.409 EDN: NMYQLN; Матвеенков К. Искусственный интеллект с китайской спецификой: станет ли Китай мировым лидером в сфере ИИ к 2030 году? Аналитическая статья. РМСД. 2022. Режим доступа: https://russiancouncil.ru/analyticsand-comments/analytics/iskusstvennyy-intellekt-s-kitayskoy-spetsifikoy-stanet-li-kitay-mirovym/; Johansson A. C. China's AI ecosystem – Stockholm School of Economics (Report). 2022. 68 p. URL: https://www.hhs.se/contentassets/bc962221471a415ba8ac01fbbf160277/chinas-ai-ecosystem-nov-2022.pdf; Haan K., Watts R. 24 Top AI Statistics and Trends in 2024. URL: https://www.forbes.com/advisor/business/ai-statistics/; Zhou Y., Li X., Liu Y. Rural land system reforms in China: History, issues, measures and prospects. Land Use Policy. 2020;91:104330. DOI: https://doi.org/10.1016/j.landusepol.2019.104330; Textor C. Distribution of the gross domestic product (GDP) across economic sectors in China from 2013 to 2023. Statista. URL: https://www.statista.com/statistics/270325/distribution-of-gross-domestic-product-gdp-acrosseconomic-sectors-in-china/; Chen S., Chen X., Xu J. Impacts of climate change on agriculture: Evidence from China. Journal of Environmental Economics and Management. 2016;76:105–124. DOI: https://doi.org/10.1016/j.jeem.2015.01.005; Chen A., He H., Wang J., Li M., Guan Q., Hao J. A Study on the Arable Land Demand for Food Security in China. Sustainability. 2019;11(17):4769. DOI: https://doi.org/10.3390/su11174769; Wang L., Anna H., Zhang L., Xiao Y., Wang Y., Xiao Y., Liu J., Ouyang Z. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chinese Geographical Science. 2019;29:809–819. DOI: https://doi.org/10.1007/s11769-018-0983-1; Li Y., Yang W., Shen X., Yuan G., Wang J. Water Environment Management and Performance Evaluation in Central China: A Research Based on Comprehensive Evaluation System. Water. 2019;11(12):2472. DOI: https://doi.org/10.3390/w11122472; Voumik L. C., Sultana T. Impact of urbanization, industrialization, electrification and renewable energy on the environment in BRICS: fresh evidence from novel CS-ARDL model. Heliyon. 2022;8(11):e11457. DOI: https://doi.org/10.1016/j.heliyon.2022.e11457; Su Y., He S., Wang K., Shahtahmassebi A. R., Zhang L., Zhang J., Zhang M., Gan M. Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production. 2020;252:119650. DOI: https://doi.org/10.1016/j.jclepro.2019.119650; Cai J., Li X., Liu L., Chen Y., Wang X., Lu S. Coupling and coordinated development of new urbanization and agro-ecological environment in China. Science of the Total Environment. 2021;776:145837. DOI: https://doi.org/10.1016/j.scitotenv.2021.145837; Wang J., Cao Y., Fang X., Li G., Cao Y. Does land tenure fragmentation aggravate farmland abandonment? Evidence from big survey data in rural China. Journal of Rural Studies. 2022;91:126–135. DOI: https://doi.org/10.1016/j.jrurstud.2022.03.013; Hua J., Wang H., Kang M., Wang X., Guo S., Chang F., Wang F. Y. The design and implementation of a distributed agricultural service system for smallholder farmers in China. International Journal of Agricultural Sustainability. 2023;21(1):2221108. DOI: https://doi.org/10.1080/14735903.2023.2221108; Liu Y., Zang Y., Yang Y. China’s rural revitalization and development: Theory, technology and management. Journal of Geographical Sciences. 2020;30:1923–1942. DOI: https://doi.org/10.1007/s11442-020-1819-3; Li D., Yang H. State-of-the-art Review for Internet of Things in Agriculture. Transactions of the Chinese Society for Agricultural Machinery. 2018;49(1):1–20. DOI: https://doi.org/10.6041/j.issn.1000-1298.2018.01.001; Lee C. C., Yan J., Wang F. Impact of population aging on food security in the context of artificial intelligence: Evidence from China. Technological Forecasting and Social Change. 2024;199:123062. DOI: https://doi.org/10.1016/j.techfore.2023.123062; Wan G. Accounting for income inequality in rural China: a regression-based approach. In China's Rural Economy after WTO. Routledge, 2019. pp. 115–133.; Hau L., Zhu H., Huang R., Ma X. Heterogeneous dependence between crude oil price volatility and China’s agriculture commodity futures: Evidence from quantile-on-quantile regression. Energy. 2020;213:118781. DOI:10.1016/j.energy.2020.118781; Kotte B., Naveen A., Sai Akhil V., Lingireddy H., Gowtham K. V., Mudhale A., Sri B. G., Abhishek E. Artificial intelligence (AI) and its applications in agriculture: A Review. Environment Conservation Journal. 2024;25(1):274–288. DOI: https://doi.org/10.36953/ECJ.24052645; Shi L., Shi G., Qiu H. General review of intelligent agriculture development in China. China Agricultural Economic Review. 2019;11(1):39–51. DOI https://doi.org/10.1108/CAER-05-2017-0093; Sood A., Sharma R. K., Bhardwaj A. K. Artificial intelligence research in agriculture: A review. Online Information Review. 2022;46(6):1054–1075. DOI: https://doi.org/10.1108/OIR-10-2020-0448; Raj E. F. I., Appadurai M., Athiappan K. Precision farming in modern agriculture. In Smart Agriculture Automation Using Advanced Technologies: Data Analytics and Machine Learning, Cloud Architecture, Automation and IoT. Singapore: Springer Singapore, 2022. pp. 61–87.; Gawande V., Saikanth D. R. K., Sumithra B. S., Aravind S. A., Swamy G. N., Chowdhury M., Singh B. V. Potential of Precision Farming Technologies for Eco-Friendly Agriculture. International Journal of Plant & Soil Science. 2023;35(19):101–112. DOI: https://doi.org/10.9734/ijpss/2023/v35i193528; Henrietta H. M. Artificial intelligence in agriculture: a review of current applications and future trends. In Futuristic Trends in Agriculture Engineering & Food Sciences Vol. 3 Book 11. IIP Series. 2024;3:1–6. DOI: https://doi.org/10.58532/V3BCAG11P1CH1; Ouhami M., Hafiane A., Es-Saady Y., El Hajji M., Canals R. Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research. Remote Sensing. 2021;13(13):2486. DOI: https://doi.org/10.3390/rs13132486; Eli-Chukwu N. C. Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research. 2019;9(4):4377–4383. DOI: https://doi.org/10.48084/etasr.2756; Fountas S., Mylonas N., Malounas I., Rodias E., Hellmann Santos C., Pekkeriet E. Agricultural robotics for field operations. Sensors. 2020;20(9):2672. DOI: https://doi.org/10.3390/s20092672; Neethirajan S. Artificial intelligence and sensor technologies in dairy livestock export: charting a digital transformation. Sensors. 2023;23(16):7045. DOI: https://doi.org/10.3390/s23167045; Sharma K., Sharma C., Sharma S., Asenso E. Broadening the research pathways in smart agriculture: predictive analysis using semiautomatic information modeling. Journal of Sensors. 2022;1:5442865. DOI: https://doi.org/10.1155/2022/5442865; Bačiulienė V., Bilan Y., Navickas V., Civín L. The Aspects of artificial intelligence in different phases of the food value and supply chain. Foods. 2023;12(8):1654. DOI: https://doi.org/10.3390/foods12081654; Niranjan P. Y., Rajpurohit V. S., Malgi R. A survey on chat-bot system for agriculture domain. In 2019 1st International Conference on Advances in Information Technology (ICAIT). IEEE, Chikmagalur, India, 2019. pp. 99–103. DOI: https://doi.org/10.1109/ICAIT47043.2019.8987429; Mostaco G. M., De Souza I. R. C., Campos L. B., Cugnasca C. E. AgronomoBot: a smart answering Chatbot applied to agricultural sensor networks. In 14th international conference on precision agriculture. 2018;24:1–13.; Cheong S. M., Sankaran K., Bastani H. Artificial intelligence for climate change adaptation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2022;12(5):e1459. DOI: https://doi.org/10.1002/widm.1459; Sachithra V., Subhashini L. D. C. S. How artificial intelligence uses to achieve the agriculture sustainability: Systematic review. Artificial Intelligence in Agriculture. 2023;8:46–59. DOI: https://doi.org/10.1016/j.aiia.2023.04.002; Bhagat P. R., Naz F., Magda R. Artificial intelligence solutions enabling sustainable agriculture: A bibliometric analysis. PloS one. 2022;17(6):e0268989. DOI: https://doi.org/10.1371/journal.pone.0268989; Oliveira R. C. d., Silva R. D. d. S. e. Artificial Intelligence in Agriculture: Benefits, Challenges, and Trends. Applied Sciences. 2023;13(13):7405. DOI: https://doi.org/10.3390/app13137405; Mishra H., Mishra D. Artificial intelligence and machine learning in agriculture: Transforming farming systems. Research Trends in Agriculture Science. 2023;1:1–16.; Singh G., Kalra N., Yadav N., Sharma A., Saini M. Smart agriculture: a review. Siberian Journal of Life Sciences and Agriculture. 2022;14(6):423–454. DOI: https://doi.org/10.12731/2658-6649-2022-14-6-423-454; Application of artificial intelligence in agriculture: How to make AI the cornerstone of precision agriculture? Lingzi AI Technology. 2023. URL: https://baijiahao.baidu.com/s?id=1769836601583870425&wfr=spider&for=pc; Slotta D. Artificial intelligence in China – statistics & facts. Statista. 2024. URL: https://www.statista.com/topics/8383/artificial-intelligence-in-china/#topicOverview; Zhou O. XAG smart agriculture system: reshaping the future of an AI-powered smart farm. In: Elbehri A. and Chestnov R. (eds). Digital agriculture in action – Artificial intelligence for agriculture. Bangkok: FAO and ITU, 2021. pp. 49–60. DOI: https://doi.org/10.4060/cb7142en; XAG Corporate Social Responsibility Report. 2020. 34 p. URL: https://www.xa.com/en/about/csr; Zhenyu Z. Using Alibaba Cloud’s AI and Alibaba’s ecosystem resource to support the digitalization of agriculture in Yanliang. In: Elbehri A. and Chestnov R. (eds). Digital agriculture in action – Artificial intelligence for agriculture. Bangkok: FAO and ITU, 2021. pp. 61–70. DOI: https://doi.org/10.4060/cb7142en; Wang J., Si F., Yang S., Wang L. Business Model Innovation of Chinese Logistics Enterprises from the Perspective of Ecosystems: The Case of Cainiao Network. Preprint. 2023. DOI: https://doi.org/10.21203/rs.3.rs-3584501/v1; Cainiao smart warehouse helps increase fruit prices. 2022. URL: https://mp.weixin.qq.com/s/Rhm2uffvQdrvYGEKqEEJDA; Roser M., Ritchie H. How has world population growth changed over time? Our World in Data. 2023. URL: https://ourworldindata.org/population-growth-over-time; China AI in Agriculture Market by Technology (Machine Learning, Predictive Analytics and Computer Vision), by Offering (Hardware, Software and AI-as-A-Service), by Application (Precision Farming, Livestock Monitoring, Agriculture Robots, Drone and Others), by Region, Competition, Forecast and Opportunities, 2019–2029F. TechsciResearch Report. URL: https://www.techsciresearch.com/report/china-ai-in-agriculture-market/1887.html#collapsefour; Hopkins M. Report: AI to Boost China’s Growth, Agriculture to Benefit. 2024. URL: https://www.agribusinessglobal.com/markets/asia/report-ai-to-boost-chinas-growth-agriculture-to-benefit/; Zhou G., Chu G., Li L., Meng L. The effect of artificial intelligence on China’s labor market. China Economic Journal. 2019;13(1):24–41. DOI: https://doi.org/10.1080/17538963.2019.1681201; Vadlamudi S. How Artificial Intelligence Improves Agricultural Productivity and Sustainability: A Global Thematic Analysis. Asia Pacific Journal of Energy and Environment. 2019;6(2):91–100. DOI: https://doi.org/10.18034/apjee.v6i2.542; Munnisunker S., Nel L., Diederichs D. The Impact of Artificial Intelligence on Agricultural Labour in Europe. Journal of Agricultural Informatics. 2022;13(1):638. DOI: https://doi.org/10.17700/jai.2022.13.1.638; Sahota N. AI in Agriculture: Boosting Productivity and Sustainability. 2023. URL: https://www.neilsahota.com/ai-in-agriculture-boosting-productivity-and-sustainability/; Lai Z., Yunus N. M. A preliminary study on artificial intelligence and labour productivity in China. International Business Education Journal. 2024;17(2):12–25. DOI: https://doi.org/10.37134/ibej.Vol17.2.2.2024; Tian T., Li L., Wang J. The Effect and Mechanism of Agricultural Informatization on Economic Development: Based on a Spatial Heterogeneity Perspective. Sustainability. 2022;14(6):3165. DOI: https://doi.org/10.3390/su14063165
-
4Academic Journal
Θεματικοί όροι: дроны, квадрокоптеры, сельскохозяйственные дроны, беспилотные технологии
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/61585
-
5Academic Journal
Θεματικοί όροι: flight weight, fertilization, spraying, дроны XAG P100, agricultural drone, полетная масса, внесение удобрений, сельскохозяйственные дроны
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.bsatu.by/handle/doc/21241
-
6Academic Journal
Συγγραφείς: Misiuk, Svetlana Vatslavovna
Θεματικοί όροι: GPS в сельском хозяйстве, precision agriculture, беспилотные летательные аппараты, remote sensing technology, технологии дистанционного зондирования, harvesting and picking robots, spraying drone, agriculture robot, milking robot, дроны-опрыскиватели, точное земледелие, сельскохозяйственные роботы, unmanned aerial vehicle, agriculture drone, дроны для картирования сельского хозяйства, сельскохозяйственные дроны, agriculture mapping drones, weeding robots
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.bsatu.by/handle/doc/20405
-
7Academic Journal
Θεματικοί όροι: precision agriculture, сельское хозяйство, точное земледелие, unmanned aerial vehicle, беспилотные летательные аппараты, опрыскиватели, farming, сельскохозяйственные дроны
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.bsatu.by/handle/doc/20536
-
8Academic Journal
Συγγραφείς: Поляков, А. Ю., Скрыпник, О. Н.
Θεματικοί όροι: беспилотные летательные аппараты, сельскохозяйственные дроны, беспилотный летательный аппарат-опрыскиватель, сельскохозяйственные работы, обработка сельскохозяйственных угодий
Περιγραφή αρχείου: application/pdf
Relation: https://elib.belstu.by/handle/123456789/66347; 369.07
Διαθεσιμότητα: https://elib.belstu.by/handle/123456789/66347
-
9Academic Journal
Συγγραφείς: Лукша, Д. В., Калитеня, Е. О.
Θεματικοί όροι: дроны, сельскохозяйственные дроны, квадрокоптеры, беспилотные технологии
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: https://elib.belstu.by/handle/123456789/61585
-
10Academic Journal
Θεματικοί όροι: дроны, цифровые технологии, точное земледелие, беспилотные летательные аппараты, сельскохозяйственная техника, сельскохозяйственные дроны
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.bsatu.by/handle/doc/16096
-
11Academic Journal
Συγγραφείς: Клещик, Александр Викторович, Рыло, Татьяна Валентиновна
Θεματικοί όροι: сельскохозяйственная техника, точное земледелие, дроны, сельскохозяйственные дроны, цифровые технологии, беспилотные летательные аппараты
Περιγραφή αρχείου: application/pdf
Relation: Техсервис-18: материалы научно-практической конференции студентов и магистрантов, Минск, 24-25 мая 2018 г.; https://rep.bsatu.by/handle/doc/16096; 631.1:629.7
Διαθεσιμότητα: https://rep.bsatu.by/handle/doc/16096