-
1Academic Journal
Συγγραφείς: S. N. Fedenev, E. V. Kudryavtseva, V. V. Kovalev, N. V. Mostova, K. V. Styukova, С. Н. Феденев, Е. В. Кудрявцева, В. В. Ковалев, Н. В. Мостова, К. В. Стрюкова
Πηγή: Medical Genetics; Том 23, № 2 (2024); 14-26 ; Медицинская генетика; Том 23, № 2 (2024); 14-26 ; 2073-7998
Θεματικοί όροι: секвенирование экзома, isomerism, CHD, karyotype, CMA, chromosomal microarray analysis, sequencing, изомерия, врожденный порок сердца, кариотип, ХМА, хромосомный микроматричный анализ
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2418/1770; Seidl-Mlczoch E., Kasprian G., Ba-Ssalamah A., et al. Characterization of phenotypic spectrum of fetal heterotaxy syndrome by combining ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol. 2021;58(6):837-845. doi:10.1002/uog.23705; Yi T., Sun H., Fu Y., et al. Genetic and Clinical Features of Heterotaxy in a Prenatal Cohort. Front Genet. 2022;13. doi:10.3389/fgene.2022.818241; Pierpont M.E., Brueckner M., Chung W.K., et al. Genetic Basis for Congenital Heart Disease: Revisited. Circulation. 2018;138(21):e653-e711. doi:10.1161/CIR.0000000000000606; Saba T.G., Geddes G.C., Ware S.M., et al. A multi-disciplinary, comprehensive approach to management of children with heterotaxy. Orphanet J Rare Dis. 2022;17. doi:10.1186/s13023-022-02515-2; Bartram U., Wirbelauer J., Speer C.P. Heterotaxy syndrome -- asplenia and polysplenia as indicators of visceral malposition and complex congenital heart disease. Biol Neonate. 2005;88(4):278-290. doi:10.1159/000087625; Лазаревич А.А. Синдром гетеротаксии у плодов в первом триместре беременности. FORCIPE. 2022;5(S2):294-295.; Грамматикова О.А., Лютая Е.Д., Гончаров Г.В. Пренатальная диагностика гетеротаксических синдромов. Пренатальная Диагностика. 2014;13(2):136-141.; Sun H., Yi T., Hao X., et al. Contribution of single-gene defects to congenital cardiac left-sided lesions in the prenatal setting. Ultrasound Obstet Gynecol. 2020;56(2):225-232. doi:10.1002/uog.21883; Qin X.J., Xu M.M., Ye J.J., et al. De novo disruptive heterozygous MMP21 variants are potential predisposing genetic risk factors in Chinese Han heterotaxy children. Hum Genomics. 2022;16. doi:10.1186/s40246-022-00409-9; Слепухина А.А., Лебедев И.Н., Лифшиц Г.И. Вариации числа копий ДНК в этиологии врожденных пороков сердца. Российский Кардиологический Журнал. 2018;(10):119-126.; Koenig Z.A., Verhoeven A., Rosen D., Petrone A.B. Lateral Heterotaxy Syndrome in a Newborn Caucasian Male. Cureus. 12(10):e11205. doi:10.7759/cureus.11205; Lee M.Y., Won H.S., Shim J.Y., et al. Prenatal diagnosis of atrial isomerism in the Korean population. Obstet Gynecol Sci. 2014;57(3):193-200. doi:10.5468/ogs.2014.57.3.193; Ganapathi M., Buchovecky C.M., Cristo F., et al. A novel biallelic loss-of-function variant in DAND5 causes heterotaxy syndrome. Cold Spring Harb Mol Case Stud. 2022;8(7):a006248. doi:10.1101/mcs.a006248; Jia Y., Gao J. Bilateral inferior venae cava combined with the persistent left superior vena cava and hemiazygos continuation of left inferior vena cava with drainage into right atrium: A case report. Echocardiogr Mt Kisco N. 2023;40(7):739-742. doi:10.1111/echo.15582; Mastromoro G., Guadagnolo D., Novelli A., et al. Prenatal CFAP53-related laterality defect: case report and review of the literature. J Matern Fetal Neonatal Med. 2023;36(1):2201653. doi:10.1080/14767058.2023.2201653; Le Fevre A., Baptista J., Ellard S., et al. Compound heterozygous Pkd1l1 variants in a family with two fetuses affected by heterotaxy and complex Chd. Eur J Med Genet. 2020;63(2):103657. doi:10.1016/j.ejmg.2019.04.014; Buca D.I.P., Khalil A., Rizzo G., et al. Outcome of prenatally diagnosed fetal heterotaxy: systematic review and meta-analysis. Ultra-sound Obstet Gynecol. 2018;51(3):323-330. doi:10.1002/uog.17546; Кудрявцева Е.В., Ковалев В.В., Канивец И.В., Киевская Ю.К., Коростелев С.А. Использование хромосомного микроматричного анализа в пренатальной диагностике в России. Уральский Медицинский Журнал. 2017;(11 (155)):12-15.; Киевская Ю.К., Шилова Н.В., Канивец И.В., и др. Применение хромосомного микроматричного анализа для диагностики хромосомной патологии у плодов с врожденными пороками сердца. Уральский Медицинский Журнал. 2019;(15 (183)):18-22. doi:10.25694/URMJ.2019.15.06; Liang S., Shi X., Yu C., et al. Identification of novel candidate genes in heterotaxy syndrome patients with congenital heart diseases by whole exome sequencing. Biochim Biophys Acta BBA - Mol Basis Dis. 2020;1866(12):165906. doi:10.1016/j.bbadis.2020.165906; Liu S., Wei W., Wang P., et al. LOF variants identifying candidate genes of laterality defects patients with congenital heart disease. PLOS Genet. 2022;18(12):e1010530. doi:10.1371/journal.pgen.1010530; Ma A.C.H., Mak C.C.Y., Yeung K.S., et al. Monoallelic Mutations in CC2D1A Suggest a Novel Role in Human Heterotaxy and Ciliary Dysfunction. Circ Genomic Precis Med. 2020;13(6):e003000. doi:10.1161/CIRCGEN.120.003000; Deniz E., Pasha M., Guerra M.E., et al. CFAP45, a heterotaxy and congenital heart disease gene, affects cilia stability. Dev Biol. 2023;499:75-88. doi:10.1016/j.ydbio.2023.04.006; Li A.H., Hanchard N.A., Azamian M., et al. Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet. 2019;27(4):563-573. doi:10.1038/s41431-018-0307-z; Tate G. Whole-exome sequencing reveals a combination of extremely rare single-nucleotide polymorphism of DNAH9 and RSPH1 genes in a Japanese fetus with situs viscerum inversus. Med Mol Morphol. 2021;54(3):275-280. doi:10.1007/s00795-021-00287-5; Li Y., Yagi H., Onuoha E.O., et al. DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia. PLoS Genet. 2016;12(2):e1005821. doi:10.1371/journal.pgen.1005821; Xia H., Huang X., Deng S., et al. DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease. PLoS ONE. 2021;16(6):e0252786. doi:10.1371/journal.pone.0252786; Chen W., Wang F., Zeng W., et al. Biallelic mutations of TTC12 and TTC21B were identified in Chinese patients with multisystem ciliopathy syndromes. Hum Genomics. 2022;16:48. doi:10.1186/s40246-022-00421-z; Chen W., Zhang Y., Shen L., et al. Biallelic DNAH9 mutations are identified in Chinese patients with defective left–right patterning and ciliarelated complex congenital heart disease. Hum Genet. 2022;141(8):1339-1353. doi:10.1007/s00439-021-02426-5; Yue Y., Huang Q., Zhu P., et al. Identification of Pathogenic Mutations and Investigation of the NOTCH Pathway Activation in Kartagener Syndrome. Front Genet. 2019;10:749. doi:10.3389/fgene.2019.00749; Yuan Z.Z., Fan L.L., Jiang Z.C., Yang Y.F., Tan Z.P. A Novel Nonsense MMP21 Variant Causes Dextrocardia and Congenital Heart Disease in a Han Chinese Patient. Front Cardiovasc Med. 2020;7:582350. doi:10.3389/fcvm.2020.582350; Hartill V.L., van de Hoek G., Patel M.P., et al. DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport. Hum Mol Genet. 2018;27(3):529-545. doi:10.1093/hmg/ddx422; Zhang Y., Chen W., Zeng W., Lu Z., Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to ciliarelated abnormal cardiac left–right patterning. Cell Death Dis. 2020;11(11):1005. doi:10.1038/s41419-020-03214-1; Casey J.P., Goggin P., McDaid J., et al. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder. BMC Med Genet. 2015;16:45. doi:10.1186/s12881-015-0192-z; Bolkier Y., Barel O., Marek-Yagel D., et al. Whole-exome sequencing reveals a monogenic cause in 56% of individuals with laterality disorders and associated congenital heart defects. J Med Genet. 2022;59(7):691-696. doi:10.1136/jmedgenet-2021-107775; Burkhalter M.D., Sridhar A., Sampaio P., et al. Imbalanced mitochondrial function provokes heterotaxy via aberrant ciliogenesis. J Clin Invest. 129(7):2841-2855. doi:10.1172/JCI98890; Breuer K., Riedhammer K.M., Müller N., et al. Exome sequencing in individuals with cardiovascular laterality defects identifies potential candidate genes. Eur J Hum Genet. 2022;30(8):946-954. doi:10.1038/s41431-022-01100-2; Izumi K., Noon S., Wilkens A., Krantz I.D. NKX2.5 mutation identification on exome sequencing in a patient with heterotaxy. Eur J Med Genet. 2014;57(10):558-561. doi:10.1016/j.ejmg.2014.08.003; Li L., Shi G., Zhang X., et al. Novel dominant-negative FOXJ1 mutation in a family with heterotaxy plus mouse model. Transl Pediatr. 2023;12(8):1476-1489. doi:10.21037/tp-23-27; Alsafwani R.S., Nasser K.K., Shinawi T., et al. Novel MYO1D Missense Variant Identified Through Whole Exome Sequencing and Computational Biology Analysis Expands the Spectrum of Causal Genes of Laterality Defects. Front Med. 2021;8. doi:10.3389/fmed.2021.724826; Guimier A., Gabriel G.C., Bajolle F., et al. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. Nat Genet. 2015;47(11):1260-1263. doi:10.1038/ng.3376; Suo M.J., Chen W.C., Xu Z.Q., et al. X-linked BCOR variants identified in Chinese Han patients with congenital heart disease. J Gene Med. 2023;25(1):e3461. doi:10.1002/jgm.3461; Perles Z., Moon S., Ta-Shma A., et al. A human laterality disorder caused by a homozygous deleterious mutation in MMP21. J Med Genet. 2015;52(12):840-847. doi:10.1136/jmedgenet-2015-103336; Vetrini F., D’Alessandro L.C., Akdemir Z.C., et al. Biallelic Mutations in PKD1L1 Are Associated with Laterality Defects in Humans. Am J Hum Genet. 2016;99(4):886-893. doi:10.1016/j.ajhg.2016.07.011; Shih J.C., Ma G.C., Cheng W.C., Chen C.Y., Wu W.J., Chen M. SMAD2 as risk locus for human left atrial isomerism detected by mother–fetus-pair exome sequencing and imaging studies. Ultrasound Obstet Gynecol. 2019;53(5):702-705. doi:10.1002/uog.19097; Zahid M., Bais A., Tian X., et al. Airway ciliary dysfunction and respiratory symptoms in patients with transposition of the great arteries. PLoS ONE. 2018;13(2):e0191605. doi:10.1371/journal.pone.0191605; Wang Y., Dai X., Liu H., Peng J., Chen J. A novel ZIC3 mutation in a Chinese family with heterotaxy and multiple types of congenital heart defect. Prenat Diagn. 2023;43(3):275-279. doi:10.1002/pd.6294; Marek-Yagel D., Bolkier Y., Barel O., et al. A founder truncating variant in GDF1 causes autosomal-recessive right isomerism and associated congenital heart defects in multiplex Arab kindreds. Am J Med Genet A. 2020;182(5):987-993. doi:10.1002/ajmg.a.61509; Karaca E., Yuregir O.O., Bozdogan S.T., et al. Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome. Am J Med Genet A. 2015;167A(11):2795-2799. doi:10.1002/ajmg.a.37263; Panchal N.K., Evan Prince S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med. 2023;23(1):17-30. doi:10.1007/s10238-021-00782-0; Cao Y., Song J., Chen J., Xiao J., Ni J., Wu C. Overexpression of NEK3 is associated with poor prognosis in patients with gastric cancer. Medicine (Baltimore). 2018;97(3):e9630. doi:10.1097/MD.0000000000009630; Miller S.L., Antico G., Raghunath P.N., Tomaszewski J.E., Clevenger C.V. Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene. 2007;26(32):4668-4678. doi:10.1038/sj.onc.1210264; Suzuki K., Okuno T., Yamamoto M., et al. Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature. 2007;446(7136):680-684. doi:10.1038/nature05652; Gharibi A., La Kim S., Molnar J., et al. ITGA1 is a premalignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep. 2017;7(1):10060. doi:10.1038/s41598-017-09946-z; Yim D.H., Zhang Y.W., Eom S.Y., et al. ITGA1 polymorphisms and haplotypes are associated with gastric cancer risk in a Korean population. World J Gastroenterol. 2013;19(35):5870-5876. doi:10.3748/wjg.v19.i35.5870; Liu H., Zheng J., Zhu L., et al. Wdr47, Camsaps, and Katanin cooperate to generate ciliary central microtubules. Nat Commun. 2021;12(1):5796. doi:10.1038/s41467-021-26058-5; Chen Y., Zheng J., Li X., et al. Wdr47 Controls Neuronal Polarization through the Camsap Family Microtubule Minus-End-Binding Proteins. Cell Rep. 2020;31(3):107526. doi:10.1016/j.celrep.2020.107526; Ren J., Li D., Liu J., et al. Intertwined Wdr47-NTD dimer recognizes a basic-helical motif in Camsap proteins for proper central-pair microtubule formation. Cell Rep. 2022;41(6):111589. doi:10.1016/j.celrep.2022.111589; Gong X., Zou L., Wang M., et al. Gramicidin inhibits cholangiocarcinoma cell growth by suppressing EGR4. Artif Cells Nanomed Biotechnol. 2020;48(1):53-59. doi:10.1080/21691401.2019.1699808; Hogarth C.A., Mitchell D., Small C., Griswold M. EGR4 displays both a cell- and intracellular-specific localization pattern in the developing murine testis. Dev Dyn. 2010;239(11):3106-3114. doi:10.1002/dvdy.22442.; Mookerjee-Basu J., Hooper R., Gross S., et al. Suppression of Ca2+ signals by EGR4 controls Th1 differentiation and anticancer immunity in vivo. EMBO Rep. 2020;21(5):e48904. doi:10.15252/embr.201948904; Fujikawa-Adachi K., Nishimori I., Taguchi T., Onishi S. Human mitochondrial carbonic anhydrase VB. cDNA cloning, mRNA expression, subcellular localization, and mapping to chromosome x. J Biol Chem. 1999;274(30):21228-21233. doi:10.1074/jbc.274.30.21228; Shah G.N., Hewett-Emmett D., Grubb J.H., et al. Mitochondrial carbonic anhydrase CA VB: differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles. Proc Natl Acad Sci U S A. 2000;97(4):1677-1682. doi:10.1073/pnas.97.4.1677; Brenner V., Nyakatura G., Rosenthal A., Platzer M. Genomic organization of two novel genes on human Xq28: compact head to head arrangement of IDH gamma and TRAP delta is conserved in rat and mouse. Genomics. 1997;44(1):8-14. doi:10.1006/geno.1997.4822; Fink J.M., Dobyns W.B., Guerrini R., Hirsch B.A. Identification of a duplication of Xq28 associated with bilateral periventricular nodular heterotopia. Am J Hum Genet. 1997;61(2):379-387. doi:10.1086/514863; Zhu S., Wang W., Zhang J., Ji S., Jing Z., Chen Y.Q. Slc25a5 regulates adipogenesis by modulating ERK signaling in OP9 cells. Cell Mol Biol Lett. 2022;27(1):11. doi:10.1186/s11658-022-00314-y; Chen Y.J., Hong W.F., Liu M.L., et al. An integrated bioinformatic investigation of mitochondrial solute carrier family 25 (SLC25) in colon cancer followed by preliminary validation of member 5 (SLC25A5) in tumorigenesis. Cell Death Dis. 2022;13(3):237. doi:10.1038/s41419-022-04692-1; Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med. 2013;34(2-3):465-484. doi:10.1016/j.mam.2012.05.005; Bauer M.F., Gempel K., Reichert A.S., et al. Genetic and structural characterization of the human mitochondrial inner membrane translocase. J Mol Biol. 1999;289(1):69-82. doi:10.1006/jmbi.1999.2751; Mingting Duan, Yun Ren, Jiwen Zhang, Tingting Zhang, Yanhong Wang, Hongyan Jia. High Expression of TIMM17B Is a Potential Diagnostic and Prognostic Marker of Breast Cancer. Cell Mol Biol (Noisyle-grand). 2023;69(3):169-176. doi:10.14715/cmb/2023.69.3.25; Serra K.M., Vyzas C., Shehreen S., et al. Vertebral pattern and morphology is determined during embryonic segmentation [published online ahead of print, 2023 Sep 9]. Dev Dyn. 2023;10.1002/dvdy.649. doi:10.1002/dvdy.649; Yabe T., Uriu K., Takada S. Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation. Nat Commun. 2023;14(1):2115. doi:10.1038/s41467-023-37745-w; Kinoshita H., Ohgane N., Fujino Y., et al. Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mech Dev. 2018; 152: 21-31. doi:10.1016/j.mod.2018.06.001; Walpole S.M., Hiriyana K.T., Nicolaou A., et al. Identification and characterization of the human homologue (RAI2) of a mouse retinoic acid-induced gene in Xp22. Genomics. 1999;55(3):275-283. doi:10.1006/geno.1998.5667; Nishikawa S., Uemoto Y., Kim T.S., et al. Low RAI2 expression is a marker of poor prognosis in breast cancer. Breast Cancer Res Treat. 2021;187(1):81-93. doi:10.1007/s10549-021-06176-w; Zhang W., Kong L., Zhu H., et al. Retinoic Acid-Induced 2 (RAI2) Is a Novel Antagonist of Wnt/β-Catenin Signaling Pathway and Potential Biomarker of Chemosensitivity in Colorectal Cancer. Front Oncol. 2022;12:805290. doi:10.3389/fonc.2022.805290; Galang G., Mandla R., Ruan H., et al. ATAC-Seq Reveals an Isl1 Enhancer That Regulates Sinoatrial Node Development and Function. Circ Res. 2020;127(12):1502-1518. doi:10.1161/CIRCRESAHA.120.317145; Bu L., Jiang X., Martin-Puig S., et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009;460(7251):113-117. doi:10.1038/nature08191; Ren J., Miao D., Li Y., Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol. 2021;9:793605. doi:10.3389/fcell.2021.793605; Wang K., Zhao S., Liu B., et al. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet. 2018;55(10):675-684. doi:10.1136/jmedgenet-2017-105224; Zhao X., Li D., Qiu Q., et al. Zfyve16 regulates the proliferation of B-lymphoid cells. Front Med. 2018;12(5):559-565. doi:10.1007/s11684-017-0562-3; Cheong A., Lingutla R., Mager J. Expression analysis of mammalian mitochondrial ribosomal protein genes. Gene Expr Patterns. 2020;38:119147. doi:10.1016/j.gep.2020.119147; Sultana N., Rahman M., Myti S., Islam J., Mustafa M.G., Nag K. A novel knowledge-derived data potentizing method revealed unique liver cancer-associated genetic variants. Hum Genomics. 2019;13(1):30. doi:10.1186/s40246-019-0213-7; Fakhro K.A., Choi M., Ware S.M., et al. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A. 2011;108(7):2915-2920. doi:10.1073/pnas.1019645108; Spéder P., Adám G., Noselli S. Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature. 2006;440(7085):803-807. doi:10.1038/nature04623; Hozumi S., Maeda R., Taniguchi K., et al. An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature. 2006;440(7085):798-802. doi:10.1038/nature04625
-
2Academic Journal
Συγγραφείς: M. M. Litvinova M.M., T. V. Filippova, A. P. Gudkova, M. A. Karnaushkina, L. A. Tsapkova, T. I. Subbotina, N. V. Chebotareva, М. М. Литвинова, Т. В. Филиппова, А. П. Гудкова, М. А. Карнаушкина, Л. А. Цапкова, Т. И. Субботина, Н. В. Чеботарёва
Πηγή: Medical Genetics; Том 23, № 10 (2024); 38-49 ; Медицинская генетика; Том 23, № 10 (2024); 38-49 ; 2073-7998
Θεματικοί όροι: тромбозы, urolithiasis, cystinuria, SLC7A9, c.313G>A, p.Gly105Arg, genetic counseling, molecular genetic diagnostics, whole exome sequencing, treatment, pregnancy planning, thrombosis, цистинурия, медико-генетическое консультирование, молекулярно-генетическая диагностика, секвенирование экзома, лечение, планирование беременности
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2561/1823; Palsson R., Indridason O.S., Edvardsson V.O., Oddsson A. Genetics of common complex kidney stone disease: insights from genome-wide association studies. Urolithiasis. 2019 Feb;47(1):11-21. doi:10.1007/s00240-018-1094-2.; Aune D., Mahamat-Saleh Y., Norat T., Riboli E. Body fatness, diabetes, physical activity and risk of kidney stones: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol. 2018 Nov;33(11):1033-1047. doi:10.1007/s10654-018-0426-4.; Филиппова Т.В., Литвинова М.М., Руденко В.И. и др. Генетические факторы моногенных форм кальциевого уролитиаза. Урология. 2018;(4):154-160. DOI: https://dx.doi.org/10.18565/urology.2018.4.154-160; Filippova T.V., Khafizov К.F., Rudenko V.I., et al. Genetic factors of polygenic urolithiasis. Urologia Journal. 2020;87(2):57-64. https://doi.org/10.1177/0391560319898375; Litvinova M.M., Khafizov K., Korchagin V.I., et al. Association of CASR, CALCR, and ORAI1 Genes Polymorphisms With the Calcium Urolithiasis Development in Russian Population. Front. Genet. 2021;12:621049. doi:10.3389/fgene.2021.621049; Литвинова М.М., Филиппова Т.В., Светличная Д.В. и др. Молекулярно-генетические технологии в диагностике моногенных форм уролитиаза: клинические наблюдения. Урология. 2020;(3):81-86. DOI: https://dx.doi.org/10.18565/urology.2020.3.81-86; Lee B., Lee S.Y., Han D.H., Park H.D. Interpretation of SLC3A1 and SLC7A9 variants in cystinuria patients: The significance of the PM3 criterion and protein stability. Urolithiasis. 2023 Jul 13;51(1):94. doi:10.1007/s00240-023-01466-y.; Fakin A., Robson A.G., Fujinami K., et al. Phenotype and Progression of Retinal Degeneration Associated With Nullizigosity of ABCA4. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4668-78. doi:10.1167/iovs.16-19829.; Шеремет Н.Л., Грушкэ И.Г., Жоржоладзе Н.В. и др. Наследственные заболевания сетчатки при мутациях гена ABCA4. Вестник офтальмологии. 2018;(4):68-73. doi: 135. 10. 10.17116/oftalma201913504110.; Литвинова М.М., Хафизов К.Ф., Сперанская А.С. и др. Спектр мутаций гена CFTR у больных хроническим панкреатитом в России. Вопросы детской диетологии. 2020; 18(3):5-18. DOI:10.20953/1727-5784-2020-3-5-18.; Barbey F., Joly D., Rieu P., et al. Medical treatment of cystinuria: critical reappraisal of long-term results. J Urol. 2000 May;163(5):1419- 23. doi:10.1016/s0022-5347(05)67633-1.; Sadiq S., Cil O. Cystinuria: An Overview of Diagnosis and Medical Management. Turk Arch Pediatr. 2022 Jul;57(4):377-384. doi:10.5152/TurkArchPediatr.2022.22105.; Johansen K., Gammelgård P.A., Jørgensen F.S. Treatment of cystinuria with alpha-mercaptopropionylglycine. Scand J Urol Nephrol. 1980;14(2):189-92. doi:10.3109/00365598009179559.; Bhatt N.P., Deshpande A.V., Starkey M.R. Pharmacological interventions for the management of cystinuria: a systematic review. J Nephrol. 2024 Mar;37(2):293-308. doi:10.1007/s40620-023-01795-6.; Azer S.M., Goldfarb D.S. A Summary of Current Guidelines and Future Directions for Medical Management and Monitoring of Patients with Cystinuria. Healthcare (Basel). 2023 Feb 24;11(5):674. doi:10.3390/healthcare11050674.; Andreassen K.H., Pedersen K.V., Osther S.S., et al. How should patients with cystine stone disease be evaluated and treated in the twenty-first century? Urolithiasis. 2016 Feb;44(1):65-76. doi:10.1007/s00240-015-0841-x.; Dello Strologo L., Pras E., Pontesilli C., et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002 Oct;13(10):2547-53. doi:10.1097/01.asn.0000029586.17680.e5.; Sahota A., Tischfield J.A., Goldfarb D.S., et al. Cystinuria: genetic aspects, mouse models, and a new approach to therapy. Urolithiasis. 2019 Feb;47(1):57-66. doi:10.1007/s00240-018-1101-7.; Eggermann T., Venghaus A., Zerres K. Cystinuria: an inborn cause of urolithiasis. Orphanet J Rare Dis. 2012 Apr 5;7:19. doi:10.1186/1750-1172-7-19.; Pereira D.J., Schoolwerth A.C., Pais V.M. Cystinuria: current concepts and future directions. Clin Nephrol. 2015 Mar;83(3):138-46. doi:10.5414.; Kelly S. Cystinuria genotypes predicted from excretion patterns. Am J Med Genet. 1978;2(2):175-90. doi:10.1002/ajmg.1320020209.; Литвинова М.М., Филиппова Т.В., Хафизов К.Ф. и др. Сложное клиническое наблюдение кальциевого уролитиаза при носительстве мутации в гене SLC7A9, ответственном за развитие цистинурии. Урология. 2020;(6):126-131. DOI:10.18565/urology.2020.6.126-130; Giugliani R., Ferrari I., Greene L.J. Heterozygous cystinuria and urinary lithiasis. Am J Med Genet. 1985 Dec;22(4):703-15. doi:10.1002/ajmg.1320220407.; Feliubadaló L., Font M., Purroy J., et al. International Cystinuria Consortium. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet. 1999 Sep;23(1):52- 7. doi:10.1038/12652.; Font-Llitjós M., Jiménez-Vidal M., Bisceglia L., et al. New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J Med Genet. 2005 Jan;42(1):58-68. doi:10.1136/jmg.2004.022244.; Audo I., Bujakowska K., Orhan E., et al. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2012 Feb 10;90(2):321-30. doi:10.1016/j.ajhg.2011.12.007. Erratum in: Am J Hum Genet. 2012 Jul 13;91(1):209.; Thompson-Stone R., Ream M.A., Gelb M., et al. Consensus recommendations for the classification and long-term follow up of infants who screen positive for Krabbe Disease. Mol Genet Metab. 2021 Sep-Oct;134(1-2):53-59. doi:10.1016/j.ymgme.2021.03.016.; Martinelli I., Taioli E., Cetin I., et al. Mutations in coagulation factors in women with unexplained late fetal loss. N Engl J Med. 2000b; 343: 1015-8; Many A., Elad R., Yaron Y., et al. Third-trimester unexplained intrauterine fetal death is associated with inherited thrombophilia. Obstet Gynecol. 2002; 99: 684-7; Kupferminc M.J., Fait G., Many A., et al. Severe preeclampsia and high frequency of genetic thrombophilic mutations. Obstet Gynecol. 2000a; 96: 45-9; Facchinetti F., Marozio L., Grandone E., et al. Thrombophilic mutations are a main risk factor for placental abruption. Haematologica. 2003; 88: 785-8; Howley H.E., Walker M., Rodger M.A. A systematic review of the association between factor V Leiden or prothrombin gene variant and intrauterine growth restriction. Am J Obstet Gynecol. 2005; 192: 694-708; Benedetto C., Marozio L., Salton L., et al. Factor V Leiden and factor II G20210A in preeclampsia and HELLP syndrome. Acta Obstet Gynecol Scand. 2002; 81: 1095-100
-
3Academic Journal
Συγγραφείς: Kudryavtseva E.V., Kovtun O.P., Kovalev V.V.
Συνεισφορές: 1
Πηγή: Annals of the Russian academy of medical sciences; Vol 79, No 2 (2024); 123-130 ; Вестник Российской академии медицинских наук; Vol 79, No 2 (2024); 123-130 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.792
Θεματικοί όροι: miscarriage, clinical sequencing of exome, chromosomal micromatrix analysis, preimplantation genetic testing, embryo genome sequencing, невынашивание беременности, клиническое секвенирование экзома, хромосомный микроматричный анализ, преимплантационное генетическое тестирование, секвенирование генома эмбриона
Περιγραφή αρχείου: application/pdf
Relation: https://vestnikramn.spr-journal.ru/jour/article/view/8378/1965; https://vestnikramn.spr-journal.ru/jour/article/view/8378/1972
-
4Academic Journal
Συγγραφείς: E. L. Dadali, T. V. Markova, V. M. Kenis, T. S. Nagornova, S. S. Nikitin, Е. Л. Дадали, Т. В. Маркова, В. М. Кенис, Т. С. Нагорнова, С. С. Никитин
Συνεισφορές: The research was performed within the state assignment of Ministry of Science and Higher Education of Russia for N.P. Bochkov Medical Genetic Research Center with usage of RCMG “Genome” NGS Core Unit., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова» с применением оборудования Центра коллективного пользования «Геном» ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова».
Πηγή: Neuromuscular Diseases; Том 13, № 2 (2023); 56-63 ; Нервно-мышечные болезни; Том 13, № 2 (2023); 56-63 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-2
Θεματικοί όροι: секвенирование экзома нового покоения, HPGD and SLCO2A1 genes, new generation exome sequencing, гены HPGD и SLCO2A1
Περιγραφή αρχείου: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/543/350; Friedrich N. Hyperostose des gesammtenskelettes. Virch Arch Pathol Anat 1868;43(1):446–513.; Touraine A., Solente G., Gole L. Un syndrome osteodermopathique: la pachydermieplicaturee avec pachyperiostose des extremites. Presse Med 1935;43:1820–4.; Lu Q., Xu Y., Li S. et al. Clinical and biochemical characteristics of 12 Chinese primary hypertrophic osteoarthropathy patients with HPGD mutations. Int J Biol Sci 2022;18(9):3908–17. DOI:10.7150/ijbs.71261; Uppal S., Diggle C.P., Carr I.M. et al. Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nat Gene 2008;40:789–93. DOI:10.1038/ng.153; Zhang Z., Xia W., He J. et al. Exome sequencing identifies SLCO2A1 mutations as a cause of primary hypertrophic osteoarthropathy. Am J Hum Genet 2012;90:125–32. DOI:10.1016/j.ajhg.2011.11.019; Xu Y., Zhang Z., Yue H. et al. Monoallelic mutations in SLCO2A1 cause autosomal dominant primary hypertrophic osteoarthropathy. J Bone Miner Res 2021;36:1459–68. DOI:10.1002/jbmr.4310; Cheng H., Huang H., Guo Z. et al. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 2021;11(18):8836–54. DOI:10.7150/thno.63396; Liu Y., Wu Y., Tang H. et al. Case report: Novel homozygous HPGD variant leads to primary hypertrophic osteoarthropathy with intussusception and acro-osteolysis in a Chinese family. Front Pediatr 2023;11:1063244. DOI:10.3389/fped.2023.1063244; Seifert W., Kuhnisch J., Tuysuz B. et al. Mutations in the prostaglandin transporter encoding gene SLCO2A1 cause primary hypertrophic оsteoarthropathy and isolated digital clubbing. Hum Mutat 2012;33(4):660–4. DOI:10.1002/humu.22042; Diggle С.P., Carr I.M., Zitt E. et al. Common and recurrent HPGD mutations in Caucasian individuals with primary hypertrophic osteoarthropathy. Rheumatology (Oxford) 2010;49(6):1056–62. DOI:10.1093/rheumatology/keq048; Bergmann C., Wobser M., Morbach H. et al. Primary hypertrophic osteoarthropathy with digital clubbing and palmoplantar hyperhidrosis caused by 15-PGHD/HPGD loss-of-function mutations. Exp Dermatol 2011;20:531–3. DOI:10.1111/j.1600-0625.2011.01248.x; Фурсенко В.А., Гребенникова Т.А., Никитин А.Г., Белая Ж.Е. Пахидермопериостоз: особенности диагностики на примере клинического случая. Остеопороз и остеопатии 2017;20(2): 52–7. DOI:10.14341/osteo2017252-57 DOI:10.14341/osteo2017252-57; Ribigan A.C., Bajenaru O.L., Antochi F.A., Bajenaru O.A. Nociceptive pain unmasking a serious pathology – paraneoplastic hypertrophic osteoarthropathy. Medicine 2019;98(23):e15900. DOI:10.1097/MD.0000000000015900; Yüksel-Konuk B., Sırmacı A., Ayten G.E. et al. Homozygous mutations in the 15-hydroxyprostaglandin dehydrogenase gene in patients with primary hypertrophic osteoarthropathy. Rheumatol Int 2009;30:39–43. DOI:10.1007/s00296-009-0895-6; https://nmb.abvpress.ru/jour/article/view/543
-
5Academic Journal
Συγγραφείς: I. V. Sharkova, S. S. Nikitin, T. V. Markova, A. E. Voskanyan, E. A. Melnik, O. A. Shchagina, E. L. Dadali, И. В. Шаркова, С. С. Никитин, Т. В. Маркова, А. Э. Восканян, Е. А. Мельник, О. А. Щагина, Е. Л. Дадали
Πηγή: Neuromuscular Diseases; Том 13, № 3 (2023); 64-70 ; Нервно-мышечные болезни; Том 13, № 3 (2023); 64-70 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-3
Θεματικοί όροι: ген MYH8, distal arthrogryposis type 7, exome sequencing, MYH8 gene, дистальный артрогрипоз 7-го типа, секвенирование экзома
Περιγραφή αρχείου: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/561/361; Bamshad M., Van Heest A.E., Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am 2009;91 Suppl 4(Suppl 4):40–6. DOI:10.2106/JBJS.I.00281; Oldfors A., Lamont P.J. Thick filament diseases. Adv Exp Med Biol 2008;642:78–91. DOI:10.1007/978-0-387-84847-1_7; Hall J.G., Kimber E., Dieterich K. Classification of arthrogryposis. Am J Med Genet C Semin Med Genet 2019;181(3):300–3. DOI:10.1002/ajmg.c.31716; Lowry R.B., Sibbald B., Bedard T., Hall J.G. Prevalence of multiple congenital contractures including arthrogryposis multiplex congenita in Alberta, Canada, and a strategy for classification and coding. Birth Defects Res A Clin Mol Teratol 2010;88(12):1057–61. DOI:10.1002/bdra.20738; Hall J.G. Arthrogryposis multiplex congenita: etiology,genetics, classification, diagnostic approach, and general aspects. J Pediatr Orthop B 1997;6:159–66.; Griffet J., Dieterich K., Bourg V., Bourgeois E. Amyoplasia and distal arthrogryposis. Orthop Traumatol Surg Res 2021;107(1S):102781. DOI:10.1016/j.otsr.2020.102781; Wahlig B., Poppino K., Jo C.H., Rathjen K. Arthrogryposis multiplex congenita: a 28-year retrospective study. Dev Med Child Neurol 2022;64(4):476–80. DOI:10.1111/dmcn.15084; Marianetti T.M., Dall'Asta L., Torroni A. et al. Trismus-pseudocamptodactyly syndrome: a 20 year follow-up. Eur J Paediatr Dent 2014;15(2 Suppl):218–20.; Haar B.G., van Hoof R.F. The trismus-pseudocampylodactyly syndrome. J Med Genet 1974;11(1):41–9. DOI:10.1136/jmg.11.1.41; Markus A.F. Limited mouth opening and shortened flexor muscletendon units: 'trismus-pseudocamptodactyly. Br J Oral Maxillofac Surg 1986;24(2):137–42. DOI:10.1016/0266-4356(86)90009-4; Hecht F., Beals R.K. Inability to open the mouth fully: an autosomal dominant phenotype with facultative camptodactyly and short stature. Birth Defects Orig Art Ser 1969;3:96–8.; Wilson R.V., Gaines D.L., Brooks A., Carter T.S., Nance W.E. Autosomal dominant inheritance of shortening of the flexor profundus muscle-tendon unit with limitation of jaw excursion. Birth Defects Orig Art Ser 1969;3:99–102.; Veugelers M., Bressan M., McDermott D.A. et al. Mutation of perinatal myosin heavy chain associated with a Carney complex variant. N Engl J Med 2004;351(5):460–9. DOI:10.1056/NEJMoa040584; Dai Z., Whitt Z., Mighion L.C. et al. Caution in interpretation of disease causality for heterozygous loss-of-function variants in the MYH8 gene associated with autosomal dominant disorder. Europ J Med Gen 2017;60(6):312–6. DOI:10.1016/j.ejmg.2017.03.012; Carlos R., Contreras E., Cabrera J. Trismus-pseudocamptodactyly syndrome (Hecht–Beals' syndrome): case report and literature review. Oral Dis 2005;11(3):186–9. DOI:10.1111/j.1601-0825.2005.01005.x; Tsukahara M., Shinozaki F., Kajii T. Trismus-pseudocamptodactyly syndrome in a Japanese family. Clin Genet 1985 Sep;28(3):247–50. DOI:10.1111/j.1399-0004.1985.tb00394.x; Toydemir R.M., Chen H., Proud V.K. et al. Trismus-pseudocamptodactyly syndrome is caused by recurrent mutation of MYH8. Am J Med Genet A 2006,140:2387–93. DOI:10.1002/ajmg.a.31495; Teng R.J., Ho M.M., Wang P.J., Hwang K.C. Trismus-pseudocamptodctyly syndrome: report of one case. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1994;35(2):144–7.; Sreenivasan P., Peedikayil F.C., Raj S.V., Meundi M.A. Trismus pseudocamptodactyly syndrome: a sporadic cause of trismus. Case Rep Den 2013;2013:1–3. DOI:10.1155/2013/187571; O'Brien P.J., Gropper P.T., Tredwell S.J., Hall J.G. Orthopaedic aspects of the trismus pseudocamptodactyly syndrome. J Pediatr Orthop 1984;4(4):469–71. DOI:10.1097/01241398-198408000-00016; Vaghadia H., Blackstock D. Anaesthetic implications of the trismus pseudocamptodactyly (Dutch–Kentucky or Hecht Beals) syndrome. Can J Anaesth 1988;35(1):80–5. DOI:10.1007/BF03010551; Bonapace G., Ceravolo F., Piccirillo A. et al. Germline mosaicism for the c.2021G>A(p.Arg674Gln) mutation in siblings with trismus pseudocamptodactyly. Am J Med Genet A 2010;152A(11):2898–900. DOI:10.1002/ajmg.a.33671; Balkin D.M., Chen I., Oberoi S., Pomerantz J.H. Bilateral coronoidectomy by craniofacial approach for Hecht syndromerelated trismus. J Craniofac Surg 2015;26(6):1954–6. DOI:10.1097/SCS.0000000000002014; Schiaffino S., Rossi A.C., Smerdu V. et al. Developmental myosins: expression patterns and functional significance. Skelet Muscle 2015;5:22. DOI:10.1186/s13395-015-0046-6; https://nmb.abvpress.ru/jour/article/view/561
-
6Academic Journal
Πηγή: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :3-15
Θεματικοί όροι: AZF, chromosome abnormalities, мужское бесплодие, хромосомные аномалии, патозооспермия, секвенирование экзома, флуоресцентная гибридизация in situ, gene variants, генные варианты, male infertility, spermatogenesis, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, 5. Gender equality, array comparative genomic hybridization, хромосомный микроматричный анализ, CFTR, fluorescence in situ hybridization, exome sequencing
-
7Academic Journal
Συγγραφείς: T. V. Markova, V. M. Kenis, E. V. Melchenko, P. V. Ochirova, T. S. Nagornova, P. N. Tsabai, D. V. Osipova, N. A. Semenova, L. A. Bessonova, N. A. Demina, E. Y. Zakharova, E. L. Dadali, Т. В. Маркова, В. М. Кенис, Е. В. Мельченко, П. В. Очирова, Т. С. Нагорнова, П. Н. Цабай, Д. В. Осипова, Н. А. Семенова, Л. А. Бессонова, Н. А. Демина, Е. Ю. Захарова, Е. Л. Дадали
Πηγή: Medical Genetics; Том 21, № 4 (2022); 25-37 ; Медицинская генетика; Том 21, № 4 (2022); 25-37 ; 2073-7998
Θεματικοί όροι: метатропная дисплазия, TRPV4 gene, exome sequencing, major mutations, spondylometaphyseal dysplasia, metatropic dysplasia, Kozlowski type, ген TRPV4, секвенирование экзома, мажорные мутации, спондилометафизарная дисплазия Козловского
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2051/1559; Liedtke W., Choe Y., Martí-Renom M.A., et al. Vanilloid Receptor-Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor. Cell. 2000;103(3):525-535. doi:10.1016/S0092-8674(00)00143-4; Rock M.J., Prenen J., Funari V.A., et al. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet. 2008;40(8):999-1003. doi:10.1038/ng.166; Bieganski T., Beighton P., Lukaszewski M., et al. SMD Kozlowski type caused by p.Arg594His substitution in TRPV4 reveals abnormal ossification and notochordal remnants in discs and vertebrae. Eur J Med Genet. 2017;60(10):509-516. doi:10.1016/j.ejmg.2017.07.004; Nonaka K., Han X., Kato H., et al. Novel gain-of-function mutation of TRPV4 associated with accelerated chondrogenic differentiation of dental pulp stem cells derived from a patient with metatropic dysplasia. Biochem Biophys Reports. 2019;19(April):100648. doi:10.1016/j.bbrep.2019.100648; Leddy H.A., McNulty A.L., Rothfusz N.E., et al. Follistatin in chondrocytes: The link between TRPV4 channelopathies and skeletal malformations. FASEB J. 2014;28(6):2525-2537. doi:10.1096/fj.13-245936; Kozlowski K., Maroteaux P., Spranger J. La dysostose spondylometaphisaire. Press méd. 1967;75:2769-2774.; Dai J., Kim O.H., Cho T.J., et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J Med Genet. 2010;47(10):704-709. doi:10.1136/jmg.2009.075358; Krakow D., Vriens J., Camacho N., et al. Mutations in the Gene Encoding the Calcium-Permeable Ion Channel TRPV4 Produce Spondylometaphyseal Dysplasia, Kozlowski Type and Metatropic Dysplasia. Am J Hum Genet. 2009;84(3):307-315. doi:10.1016/j.ajhg.2009.01.021; Maroteaux P., Spranger J., Wiedemann H.R. Metatrophic dwarfism. Arch Kinderheilkd. 1966;173(3):211-226.; Nishimura G., Lausch E., Savarirayan R., et al. TRPV4-associated skeletal dysplasias. Am J Med Genet Part C Semin Med Genet. 2012;160 C(3):190-204. doi:10.1002/ajmg.c.31335; Ürel-Demir G., Şimşek-Kiper P.Ö., Öncel İ., Utine G.E., Haliloğlu G., Boduroğlu K. Natural history of TRPV4-Related disorders: From skeletal dysplasia to neuromuscular phenotype. Eur J Paediatr Neurol. 2021;32:46-55. doi:10.1016/j.ejpn.2021.03.011; Kannu P., Aftimos S., Mayne V., Donnan L., Savarirayan R. Metatropic dysplasia: Clinical and radiographic findings in 11 patients demonstrating long-term natural history. Am J Med Genet Part A. 2007;143A(21):2512-2522. doi:10.1002/ajmg.a.31941; Geneviève D., Le Merrer M., Feingold J., Munnich A., Maroteaux P., Cormier-Daire V. Revisiting metatropic dysplasia: Presentation of a series of 19 novel patients and review of the literature. Am J Med Genet Part A. 2008;146(8):992-996. doi:10.1002/ajmg.a.32191; Nemec S.F., Cohn D.H., Krakow D., Funari V.A., Rimoin D.L., Lachman R.S. The importance of conventional radiography in the mutational analysis of skeletal dysplasias (the TRPV4 mutational family). Pediatr Radiol. 2012;42(1):15-23. doi:10.1007/s00247-011-2229-6; Cho T.J., Matsumoto K., Fano V., et al. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: A report of three patients. Am J Med Genet Part A. 2012;158 A(4):795-802. doi:10.1002/ajmg.a.35268; Faye E., Modaff P., Pauli R., Legare J.Combined Phenotypes of Spondylometaphyseal Dysplasia-Kozlowski Type and Charcot-Marie-Tooth Disease Type 2C Secondary to a TRPV4 Pathogenic Variant. Mol Syndromol. 2019;10(3):154-160. doi:10.1159/000495778; Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi:10.1038/GIM.2015.30; Andreucci E., Aftimos S., Alcausin M., et al. TRPV4 related skeletal dysplasias: a phenotypic spectrum highlighted byclinical, radiographic, and molecular studies in 21 new families. Orphanet J Rare Dis. 2011;6(1):1-8. doi:10.1186/1750-1172-6-37.; O’Conor C.J., Leddy H.A., Benefield H.C., Liedtke W.B., Guilak F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci USA. 2014;111(4):1316-1321. doi:10.1073/pnas.1319569111; Nilius B., Voets T. The puzzle of TRPV4 channelopathies. EMBO Rep. 2013;14(2):152-163. doi:10.1038/embor.2012.219; Camacho N., Krakow D., Johnykutty S., et al. Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet Part A. 2010;152A(5):1169-1177. doi:10.1002/ajmg.a.33392
-
8Academic Journal
Συγγραφείς: Markova T.V., Kenis V.M., Melchenko E.V., Sparber P.A., Petukhova M.S., Bychkov I.O., Nagornova T.S., Shatokhina O.L., Dadali E.L.
Συνεισφορές: 0
Πηγή: Traumatology and Orthopedics of Russia; Vol 27, No 3 (2021); 71-83 ; Травматология и ортопедия России; Vol 27, No 3 (2021); 71-83 ; 2542-0933 ; 2311-2905 ; 10.21823/2311-2905-2021-27-3
Θεματικοί όροι: Desbuquois dysplasia, CANT1 gene, XYLT1 gene, exome sequencing, expansion of the GGC repeat, дисплазия Дебукуа, ген CANT1, ген XYLT1, секвенирование экзома, экспансия GGC повтора
Περιγραφή αρχείου: application/pdf
Relation: https://journal.rniito.org/jour/article/view/1655/pdf; https://journal.rniito.org/jour/article/downloadSuppFile/1655/2679; https://journal.rniito.org/jour/article/downloadSuppFile/1655/2680; https://journal.rniito.org/jour/article/downloadSuppFile/1655/2840; https://journal.rniito.org/jour/article/downloadSuppFile/1655/2842; https://journal.rniito.org/jour/article/downloadSuppFile/1655/2843; https://journal.rniito.org/jour/article/downloadSuppFile/1655/2844; https://journal.rniito.org/jour/article/downloadSuppFile/1655/2845; https://journal.rniito.org/jour/article/downloadSuppFile/1655/2846; https://journal.rniito.org/jour/article/view/1655
-
9Academic Journal
Συγγραφείς: E. L. Dadali, T. V. Markova, O. P. Ryzhkova, Е. Л. Дадали, Т. В. Маркова, О. П. Рыжкова
Συνεισφορές: Financing. The work was performed within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation in 2021 (No. 17-01-12345), Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации в 2021 г. (№ 17-01-12345)
Πηγή: Neuromuscular Diseases; Том 11, № 3 (2021); 64-68 ; Нервно-мышечные болезни; Том 11, № 3 (2021); 64-68 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2021-11-3
Θεματικοί όροι: ген MAF, exome sequencing, MAF gene, секвенирование экзома
Περιγραφή αρχείου: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/463/305; Aymé S., Philip N. Fine-Lubinsky syndrome: a fourth patient with brachycephaly, deafness, cataract, microstomia and mental retardation. Clin Dysmorphol 1996;5:55–60. DOI:10.1097/00019605-199601000-00008.; Gripp K.W., Nicholson L., Scott Jr. C.I. Apparently new syndrome of congenital cataracts, sensorineural deafness, Down syndrome-like facial appearance, short stature, and mental retardation. Am J Med Genet 1996;61:382–6. DOI:10.1002/(SICI)1096-8628(19960202)61:43.0.CO;2-O.; Fine B.A., Lubinsky M. Craniofacial and CNS anomalies with body asymmetry, severe retardation, and other malformations. J Clin Dysmorphol 1983;1:6–9.; Niceta M., Stellacci E., Gripp K.W. et al. Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies. Am J Hum Genet 2015;96:816–25. DOI:10.1016/j.ajhg.2015.03.001.; Niceta M., Barbuti D., Gupta N. et al. Skeletal abnormalities are common features in Aymé–Gripp syndrome. Clin Genet 2020;97:362–9. DOI:10.1111/cge.13651.; Amudhavalli S.M., Hanson R., Angle B. et al. Further delineation of Aymé–Gripp syndrome and use of automated facial analysis tool. Am J Med Genet 2018;176A:1648–56. DOI:10.1002/ajmg.a.38832.; Javadiyan, S., Craig, J. E., Sharma, S. et al. Novel missense mutation in the bZIP transcription factor, MAF, associated with congenital cataract, developmental delay, seizures and hearing loss (Aymé– Gripp syndrome). BMC Med Gen 2017;18(1);52–7. DOI:10.1186/s12881-017-0414-7.; Keppler-Noreuil K., Welch, J., BakerLange K. Syndrome of congenital cataracts, sensorineural deafness, down syndrome-like facial appearance, short stature, and mental retardation: Two additional cases. Am J Med Gen 2007;143(21):2581–7. DOI:10.1002/ajmg.a.31990.; Yang Y., Cvekl A. Large MAF transcription factors: cousins of AP-1 proteins and important regulators of cellular differentiation. Einstein J Biol Med 2007;23:2–11.; Kataoka K. Multiple mechanisms and functions of maf transcription factors in the regulation of tissue-specific genes. J Biochem 2007;141:775–81. DOI:10.1093/jb/mvm105.; https://nmb.abvpress.ru/jour/article/view/463
-
10Academic Journal
Συγγραφείς: T. I. Yanova, I. V. Kanivets, S. A. Korostelev, D. V. Pyankov, V. J. Udalova, K. V. Gorgisheli, J. K. Kievskaya, Т. И. Янова, И. В. Канивец, С. А. Коростелев, Д. В. Пьянков, В. Ю. Удалова, К. В. Горгишели, Ю. К. Киевская
Πηγή: Medical Genetics; Том 19, № 11 (2020); 65-66 ; Медицинская генетика; Том 19, № 11 (2020); 65-66 ; 2073-7998
Θεματικοί όροι: NGS, prenatal diagnosis, exome sequencing, пренатальная диагностика, секвенирование экзома
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1800/1433; Monaghan K.G., Leach N.T., Pekarek D., Prasad P., Rose N.C.; ACMG Professional Practice and Guidelines Committee. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(4):675-680. doi:10.1038/s41436-019-0731-7.; Киевская Ю.К., Коростелев С.А., Канивец И.В. Хромосомный микроматричный анализ в пренатальной диагностике. Ультразвуковая и функциональная диагностика. 2015; 4: 130-131. Режим доступа: https://rucont.ru/efd/502965
-
11Academic Journal
Συγγραφείς: Markova T.V., Kenis V.M., Mironovich O.L., Shchagina O.A., Nagornova T.S., Melchenko E.V., Dadali E.L.
Πηγή: Traumatology and Orthopedics of Russia; Vol 26, No 3 (2020); 141-149 ; Травматология и ортопедия России; Vol 26, No 3 (2020); 141-149 ; 2542-0933 ; 2311-2905 ; 10.21823/2311-2905-2020-26-3
Θεματικοί όροι: acromezomelic dysplasia, NPR2 gene, exome sequencing, акромезомелическая дисплазия, ген NPR2, секвенирование экзома
Περιγραφή αρχείου: application/pdf
Relation: https://journal.rniito.org/jour/article/view/1446/997; https://journal.rniito.org/jour/article/view/1446/1043; https://journal.rniito.org/jour/article/view/1446
-
12Academic Journal
Συγγραφείς: T. V. Markova, A. O. Borovikov, E. R. Lozier, A. A. Isaev, V. S. Kaimonov, E. A. Pomerantseva, F. A. Konovalov, O. A. Schagina, E. L. Dadali, Т. В. Маркова, А. О. Боровиков, E. Р. Лозиер, А. А. Исаев, В. С. Каймонов, Е. А. Померанцева, Ф. А. Коновалов, О. А. Щагина, Е. Л. Дадали
Πηγή: Neuromuscular Diseases; Том 10, № 1 (2020); 88-92 ; Нервно-мышечные болезни; Том 10, № 1 (2020); 88-92 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2020-10-1
Θεματικοί όροι: секвенирование экзома, PACS2 gene, exome sequencing, ген PACS2
Περιγραφή αρχείου: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/377/263; Trump N., McTague A., Brittain H. et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet 2016;53(5):310–7. DOI:10.1136/jmedgenet-2015-103263. PMID: 26993267.; Thevenon J., Duffourd Y., Masurel-Paulet A. et al. Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole-exome sequencing as a first-line diagnostic test. Clin Genet 2016;89(6): 700–7. DOI:10.1111/cge.12732. PMID: 26757139.; Olson H.E., Jean-Marcais N., Yang E. et al. A recurrent de novo PACS2 heterozygous missense variant causes neonatal-onset developmental epileptic encephalopathy, facial dysmorphism, and cerebellar dysgenesis. Am J Hum Genet 2018;103(4):631. DOI:10.1016/j.ajhg.2018.09.002. PMID: 30290155.; Simmen T., Aslan J.E., Blagoveshchenskaya A.D. et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 2005;24(4):717–29. DOI:10.1038/sj.emboj.7600559. PMID: 15692567.; Youker R.T., Shinde U., Day R. et al. At the crossroads of homoeostasis and disease: roles of the PACS proteins in membrane traffic and apoptosis. Biochem J 2009;421:1–15. DOI:10.1042/Bj20081016. PMID: 19505291.; Perucca P., Perucca E. Identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res 2019;152:18–30. DOI:10.1016/j.eplepsyres.2019.03.001. PMID: 30870728.; Dentici M.L., Barresi S., Niceta M. et al. Expanding the clinical spectrum associated with PACS2 mutations. Clin Genet 2019;95(4):525–31. DOI:10.1111/cge.13516. PMID: 30684285.; Zollino M., Seminara L., Orteschi D. et al. The ring 14 syndrome: clinical and molecular definition. Am J Med Genet A 2009;149A(6):1116–24. DOI:10.1002/ajmg.a.32831. PMID: 19441122.; Holder J.L.Jr., Lotze T.E., Bacino C., Cheung S.W. A child with an inherited 0.31 Mb microdeletion of chromosome 14q32.33: further delineation of a critical region for the 14q32 deletion syndrome. Am J Med Genet A 2012;158A(8):1962–6. DOI:10.1002/ajmg.a.35289. PMID: 22488736.; Helbig I., Lopez-Hernandez T., Shor O. et al. A recurrent missense variant in AP2M1 impairs clathrin-mediated endocytosis and causes developmental and epileptic encephalopathy. Am J Hum Genet 2019;104(6):1060–72. DOI:10.1016/j.ajhg.2019.04.001. PMID: 31104773.; https://nmb.abvpress.ru/jour/article/view/377
-
13Academic Journal
Συγγραφείς: E. L. Dadali, A. O. Borovikov, O. A. Shchagina, O. L. Mironovich, Е. Л. Дадали, А. О. Боровиков, О. А. Щагина, О. Л. Миронович
Συνεισφορές: The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation for RCMG, supported in part by RFBR (project No. 17-01-12345)., Работа выполнена в рамках государственного задания Министерства науки и высшего образования России в 2020 году (№ 17-01-12345).
Πηγή: Neuromuscular Diseases; Том 10, № 4 (2020); 38-42 ; Нервно-мышечные болезни; Том 10, № 4 (2020); 38-42 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2020-10-4
Θεματικοί όροι: NR2F1, whole-exome sequencing, секвенирование экзома
Περιγραφή αρχείου: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/406/281; Brown K.K., Alkuraya F.S., Matos M. et al. NR2F1 deletion in a patient with a de novo paracentric inversion, inv(5)(q15q33.2), and syndromic deafness. Am J Med Genet A 2009;149A(5):931–8. DOI:10.1002/ajmg.a.32764. PMID: 2777524.; Bosch D.G., Boonstra F.N., GonzagaJauregui C. et al. NR2F1 mutations cause optic atrophy with intellectual disability. Am J Hum Genet 2014;94(2):303–9. DOI:10.1016/j.ajhg.2014.01.002. PMID: 3928641.; Yamaguchi H., Zhou C., Lin S.C. et al. The nuclear orphan receptor COUP-TFI is important for differentiation of oligodendrocytes. Dev Biol 2004;266(2):238–51. DOI:10.1016/j.ydbio.2003.10.038. PMID: 14738874.; Al-Kateb H., Shimony J.S., Vineyard M. et al. NR2F1 haploinsufficiency is associated with optic atrophy, dysmorphism and global developmental delay. Am J Med Genet A 2013;161A(2):377–81. DOI:10.1002/ajmg.a.35650. PMID: 23300014.; Dimassi S., Labalme A., Ville D. et al. Whole-exome sequencing improves the diagnosis yield in sporadic infantile spasm syndrome. Clin Genet 2016;89(2): 198–204. DOI:10.1111/cge.12636. PMID: 26138355.; Kaiwar C., Zimmermann M.T., Ferber M.J. et al. Novel NR2F1 variants likely disrupt DNA binding: molecular modeling in two cases, review of published cases, genotypephenotype correlation, and phenotypic expansion of the Bosch-Boonstra-Schaaf optic atrophy syndrome. Cold Spring Harb Mol Case Stud 2017;3(6):a002162. DOI:10.1101/mcs.a002162. PMID: 5701304.; Park S.E., Lee J.S., Lee S.T. et al. Targeted panel sequencing identifies a novel NR2F1 mutations in a patient with BoschBoonstra-Schaaf optic atrophy syndrome. Ophthalmic Genet 2019;40(4):359–61. DOI:10.1080/13816810.2019.1650074. PMID: 31393201.; Chen C.A., Wang W., Pedersen S.E. et al. Nr2f1 heterozygous knockout mice recapitulate neurological phenotypes of Bosch-Boonstra-Schaaf optic atrophy syndrome and show impaired hippocampal synaptic plasticity. Hum Mol Genet 2020;29(5):705–15. DOI:10.1093/hmg/ddz233. PMID: 31600777.; Fazzi E., Signorini S.G., Bova S.M. et al. Spectrum of visual disorders in children with cerebral visual impairment. J Child Neurol 2007;22(3):294–301. DOI:10.1177/08830738070220030801. PMID: 17621499.; Bojanek E.K., Mosconi M.W., Guter S. et al. Clinical and neurocognitive issues associated with Bosch-Boonstra-Schaaf optic atrophy syndrome: A case study. Am J Med Genet A 2020;182(1):213–8. DOI:10.1002/ajmg.a.61409. PMID: 31729143.; Layat I., Challe G., LeHoanget et al. Neuro-ophthalmological conditions: study of the clinical care pathway. J Fr Ophtalmol 2017;40(6):e169–75. DOI:10.1016/j.jfo.2017.05.004. PMID: 28599960.; Hozjan I. Optic Nerve Hypoplasia: More Than Meets the Eye. J Pediatr Nurs 2017;34:98–100. DOI:10.1016/j.pedn.2017.03.011. PMID: 28410859.; Birkebaek N.H., Patel L., Wright N.B. et al. Endocrine status in patients with optic nerve hypoplasia: relationship to midline central nervous system abnormalities and appearance of the hypothalamic-pituitary axis on magnetic resonance imaging. J Clin Endocrinol Metab 2003;88(11): 5281–6. DOI:10.1210/jc.2003-030527. PMID: 14602762.; Sweney M.T., Newcomb T.M., Swoboda K.J. The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism, CAPOS and beyond. Pediatr Neurol 2015;52(1):56–64. DOI:10.1016/j.pediatrneurol.2014.09.015. PMID: 4352574.; Sferra, A., Baillat G., Rizza T. et al. TBCE mutations cause early-onset progressive encephalopathy with distal spinal muscular atrophy. Am J Hum Genet 2016;99(4):974–83. DOI:10.1016/j.ajhg.2016.08.006. PMID: 5065657.; https://nmb.abvpress.ru/jour/article/view/406
-
14Academic Journal
Συγγραφείς: T. M. Sorokina, L. F. Kurilo, V. B. Chernykh, Т. М. Сорокина, Л. Ф. Курило, В. Б. Черных
Πηγή: Medical Genetics; Том 19, № 3 (2020); 85-86 ; Медицинская генетика; Том 19, № 3 (2020); 85-86 ; 2073-7998
Θεματικοί όροι: exome sequencing, мужское бесплодие, хромосомные аномалии, хромосомный микроматричный анализ, секвенирование экзома, azoospermia, male infertility, chromosome abnormalities, array comparative genomic hybridization
Περιγραφή αρχείου: application/pdf
-
15Academic Journal
Συγγραφείς: Sharkova I.V., Akimova I.A., Khlebnikova O.V., Dadali E.L.
Πηγή: Russian Journal of Child Neurology; Vol 14, No 1 (2019); 49-53 ; Русский журнал детской неврологии; Vol 14, No 1 (2019); 49-53 ; 2412-9178 ; 2073-8803
Θεματικοί όροι: Gillespie syndrome, sequencing of new generation exome, ITPR1 gene, monogenic syndromes, severe retardation of motor and speech development, intellectual deficiency, iris hypoplasia, aniridia, mental retardation, cerebellar ataxia, синдром Гиллеспи, секвенирование экзома нового поколения, ген ITPR1, инозитол-1, 5-трифосфатный рецептор кальциевых каналов, моногенные синдромы, тяжелая задержка психомоторного и речевого развития, гипоплазия радужки, аниридия, умственная отсталость, мозжечковая атаксия
Time: 4
Περιγραφή αρχείου: application/pdf
Relation: https://rjdn.abvpress.ru/jour/article/view/286/200; https://rjdn.abvpress.ru/jour/article/view/286
-
16Academic Journal
Συγγραφείς: N. N. Savelieva, A. V. Yakunina, I. E. Poverennova, Н. Н. Савельева, А. В. Якунина, И. Е. Повереннова
Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 10, No 1S (2018): СПЕЦВЫПУСК: ЭПИЛЕПСИЯ; 62-65 ; Неврология, нейропсихиатрия, психосоматика; Vol 10, No 1S (2018): СПЕЦВЫПУСК: ЭПИЛЕПСИЯ; 62-65 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2018-1S
Θεματικοί όροι: секвенирование экзома, SYNGAP1 mutations, exome sequencing, мутации гена SYNGAP1
Περιγραφή αρχείου: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/911/761; Hamdan FF, Gauthier J, Spiegelman D, et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med. 2009;360(6):599-605. doi:10.1056/NEJMoa0805392; Berryer MH, Hamdan FF, Klitten LL, et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum Mutat. 2013 Feb;34(2):385-94. doi:10.1002/humu.22248; Parker MJ, Fryer AE, Shears DJ, et al. De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability. Am J Med Genet A. 2015 Oct;167A(10):2231-7. doi:10.1002/ajmg.a.37189; Von Stü lpnagel C, Funke C, Haberl C, et al. SYNGAP1 Mutation in Focal and Generalized Epilepsy: A Literature Overview and A Case Report with Special Aspects of the EEG. Neuropediatrics. 2015 Aug;46(4):287-91. doi:10.1055/s-0035-1554098; Mignot C, von Stü lpnagel C, Nava C, et al. Genetic and neurodevelopmental spectrum of SYNGAP1-assotiated intellectual disability and epilepsy. J Med Genet. 2016 Aug;53(8):511- 22. doi:10.1136/jmedgenet-2015-103451; Prchalova D, Havlovicova M, Sterbova K. Analysis of 31-year-old patient with SYNGAP1 gene defect points to importance of variants in broader splice regions and reveals developmental trajectory of SYNGAP1-associated phenotype: case report. BMC Med Genet. 2017 Jun 2;18(1):62. doi:10.1186/s12881-017-0425-4; Hamdan FF, Daoud H, Piton A, et al. De novo SYNGAP1 mutations in nonsyndromic intellectual disability and autism. Biol Psychiatry. 2011;69(9):898-901. doi:10.1016/j.biopsych.2010.11.015; Carvill GL, Heavin SB, Yendle SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45(7):825-30. doi:10.1038/ng.2646; Clement JP, Aceti M, Creson TK, et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell. 2012;151(4):709-23. doi:10.1016/j.cell.2012.08.045; Weldon M, Kilinc M, Holder JL. The first international conference on SYNGAP1-related brain disorders: a stakeholder meeting of families, researchers, clinicians, and regulators. J Neurodev Disord. 2018 Feb 5;10(1):6. doi:10.1186/s11689-018-9225-1; Бобылова МЮ, Миронов МБ, Куликов АВ и др. Клинический случай мутации гена SYNGAP1, с2214_2217delTGAG de novo у девочки с эпилепсией, умственной отсталостью, аутизмом и двигательными нарушениями. Неврология, нейропсихиатрия, психосоматика. 2014;(2):34-40 [Bobylova MYu, Mironov MB, Kulikov AV, et al. A clinical case of SYNGAP1, с2214_2217delTGAG de novo gene mutations in a girl with epilepsy, mental retardation, autism, and movement disorders. Nevrologiya, Neiropsihiatriya, Psyhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2014;6(2):34-40 (In Russ.)]. doi:10.14412/2074-2711-2014-2-34-40; Whiteley P, Shattock P, Knivsberg AM, et al. Gluten- and casein-free dietary intervention for autism spectrum conditions. Front Hum Neurosci. 2013 Jan 4;6:344. doi:10.3389/fnhum.2012.00344
-
17Academic Journal
Συγγραφείς: I. V. Sharkova, E. L. Dadali, И. В. Шаркова, Е. Л. Дадали
Πηγή: Neuromuscular Diseases; Том 8, № 1 (2018); 34-37 ; Нервно-мышечные болезни; Том 8, № 1 (2018); 34-37 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2018-8-1
Θεματικοί όροι: интеллектуальный дефицит, exome sequencing, SOX5 gene, monogenic syndromes, retardation of motor and speech development, intellectual deficiency, секвенирование экзома нового поколения, ген SOX5, моногенные синдромы, задержка моторного и речевого развития
Περιγραφή αρχείου: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/261/195; Ikeda T., Zhang J., Chano T. et al. Identification and characterization of the human long form of SOX5 (L-SOX5) gene. Gene 2002;298(1):59–68. DOI:10.1016/S0378- 1119(02)00927-7. PMID: 12406576.; Kwan K.Y., Lam M.M., Krsnik Ž. et al. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci USA 2008;105(41):16021–6. DOI:10.1073/ pnas.0806791105. PMID: 18840685.; Kamachi Y., Kondoh H. SОХ proteins: regulators of cell fate specification and differentiation. Development 2013;140(20):4129–44. DOI:10.1242/ dev.091793. PMID: 24086078.; Lee R.W., Bodurtha J., Cohen J. et al. Deletion 12p12 involving SOX5 in two children with developmental delay and dysmorphic features. Pediatr Neurol 2013;48(4):317–20. DOI:10.1016/j.pediatrneurol.2012.12.013. PMID: 23498568.; Lamb A.N., Rosenfeld J.A., Neill N.J. et al. Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features. Hum Mutat 2012;33(4):728–40. DOI:10.1002/humu.22037. PMID: 22290657.; Nesbitt A., Bhoj E.J., McDonald Gibson K. et al. Exome sequencing expands the mechanism of SOX5-associated intellectual disability: a case presentation with review of SOX-related disorders. Am J Med Genet 2015;167A(11):2548–54. DOI:10.1002/ ajmg.a.37221. PMID: 26111154.; Schanze I., Schanze D., Bacino C.A. et al. Haploinsufficiency of SOX5, a member of the SOX (SRY-related HMG-box) family of transcription factors is a cause of intellectual disability. Eur J Med Genet 2013;56(2):108–13. DOI:10.1016/j. ejmg.2012.11.001. PMID: 23220431.; Lelieveld S.H., Reijnders M.R., Pfundt R. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci 2016;19(9): 1194–6. DOI:10.1038/nn.4352. PMID: 27479843.; Zech M., Poustka K., Boesch S. et al. SOX5-null heterozygous mutation in a family with adult-onset hyperkinesia and behavioral abnormalities. Case Rep Genet 2017;2017:2721615. DOI:10.1155/2017/ 2721615. PMID: 29214085.; https://nmb.abvpress.ru/jour/article/view/261
-
18Academic Journal
Συγγραφείς: G. N. Matyushchenko, I. V. Anisimova, Г. Н. Матющенко, И. В. Анисимова
Πηγή: Medical Genetics; Том 16, № 8 (2017); 46-48 ; Медицинская генетика; Том 16, № 8 (2017); 46-48 ; 2073-7998
Θεματικοί όροι: gene DDX3X, клиническое секвенирование экзома, ген DDX3X, mental retardation 102, clinical exome sequencing
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/321/237; Snijders Blok L., Madsen E., Juusola J., Gilissen C., Baralle D., Reijnders M. R. F., Venselaar H., Helsmoortel C., Cho M. T., Hoischen A., Vissers L. E. L. M., Koemans T. S. and 74 others. Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wnt signaling // Am. J. Hum. Genet. - 2015. - Vol. 97(2). - P. 343-352.; Dikow N., Granzow M, Graul-Neumann L. M., Karch S., Hinderhofer K., Paramasivam N., Behl L. J., Kaufmann L., Fischer C., Evers C., Schlesner M., Eils R., Borck G., Zweier C., Bartram C.R., Carey J.C., Moog U. DDX3X mutations in two girls with a phenotype overlapping Toriello-Carey syndrome // Am. J. Med. Genet. A. - 2017. - Vol. 173(5). - P. 1369-1373.; Roeleveld N., Zielhuis G.A., and Gabreels F. The prevalence of mental retardation: a critical review of recent literature // Dev. Med. Child Neurol. - 1997. - Vol. 39. - P. 125-132.; Maulik P. K., Mascarenhas M. N., Mathers C. D., Dua T., and Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies // Res. Dev. Disabil. - 2011. - Vol. 32. - P. 419-436.; Hu H., Haas S. A., Chelly J., Van Esch H., Raynaud M., de Brouwer A. P., Kalscheuer V. M. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes // Mol. Psychiatry. - 2016. - Vol. 21. - P. 133-148.; Kochinke K., Zweier C., Nijhof B., Fenckova M., Cizek P., Honti F., Schenck A. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules // Am. J. Hum. Genet. - 2016. - Vol. 98. - P. 149-164.; Piton A., Redin C., Mandel J. L. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing // Am. J. Hum. Genet. - 2013. - Vol. 93. - P. 368-383.
Διαθεσιμότητα: https://www.medgen-journal.ru/jour/article/view/321