Εμφανίζονται 1 - 20 Αποτελέσματα από 101 για την αναζήτηση '"секвенирование нового поколения"', χρόνος αναζήτησης: 0,87δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: The research was supported by a grant from the Russian Science Foundation (grant No. 22-75-10154)., Исследование выполнено при поддержке гранта Российского научного фонда (грант № 22-75-10154).

    Πηγή: Advances in Molecular Oncology; Vol 12, No 1 (2025); 41-52 ; Успехи молекулярной онкологии; Vol 12, No 1 (2025); 41-52 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  5. 5
  6. 6
    Academic Journal

    Πηγή: Medical Genetics; Том 24, № 1 (2025); 13-22 ; Медицинская генетика; Том 24, № 1 (2025); 13-22 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2600/1843; Sieira J., Dendramis G., Brugada P. Pathogenesis and management of Brugada syndrome. Nat Rev Cardiol. 2016;13(12):744-756. https://doi.org/10.1038/nrcardio.2016.143.; Дульченко В.С., Василенко А.А., Магомедова А.Х., Хидирова Л.Д. Основные аспекты синдрома Бругада. Евразийский Кардиологический Журнал. 2020;1:130-135. https://doi.org/10.38109/2225-1685-2020-1-130-135.; Watanabe H., Minamino T. Genetics of Brugada syndrome. J Hum Genet. 2016;61(1):57-60. https://doi.org/10.1038/jhg.2015.97.; Sarquella-Brugada G., Campuzano O., Arbelo E., et al. Brugada syndrome: clinical and genetic findings. Genet Med. 2016;18(1):3-12. https://doi.org/10.1038/gim.2015.35.; Савилова В.В., Кондратьев А.И., Стоцкий А.О., и др. Внезапная смерть при синдроме Бругада: успешная реанимация, ЭКГ-диагностика и третичная профилактика. Вестник анестезиологии и реаниматологии. 2016;13(1):59-63. https://doi.org/10.21292/2078-5658-2016-13-1-59-63.; Juang J.J., Horie M. Genetics of Brugada syndrome. J Arrhythm. 2016;32(5):418-425. https://doi.org/10.1016/j.joa.2016.07.012.; Мирошникова В.В., Пчелина С.Н., Донников М.Ю., и др. Генетическое тестирование в кардиологии с помощью NGS панели: от оценки риска заболевания до фармакогенетики. Фармакогенетика и фармакогеномика. 2023;(1):7-19. https://doi.org/10.37489/2588-0527-2023-1-7-19.; Cerrone M., Costa S., Delmar M. The Genetics of Brugada Syndrome. Annu Rev Genomics Hum Genet. 2022;23:255-274. https://doi.org/10.1146/annurev-genom-112921-011200.; Полянская А. В. Синдром Бругада в клинической практике. Военная медицина. 2023;1(66):112-119. https://doi.org/10.51922/2074-5044.2023.1.112.; Juang J.J., Binda A., Lee S.J., et al. GSTM3 variant is a novel genetic modifier in Brugada syndrome, a disease with risk of sudden cardiac death. EBioMedicine. 2020;57:102843. https://doi.org/10.1016/j.ebiom.2020.102843.; Полякова Е.Б., Якшина А.Ю., Березницкая В.В., Щербакова Н.В. Генетически детерминированное прогрессирующее заболевание проводящей системы сердца у ребенка с вариантами гена SCN5A. Педиатрия. Журнал им. Г.Н. Сперанского. 2023;102(6):202-208. https://doi.org/10.24110/0031-403X-2023-102-6-202-208.; Комиссарова С.М., Чакова Н.Н., Ринейская Н.М., и др. Синдром Бругада: вариабельность клинических и генетических характеристик. Cardiac Arrhythmias. 2023;3(4):5-19. https://doi.org/10.17816/cardar626595.; Campuzano O, Sarquella-Brugada G, Cesar S, et al. Update on Genetic Basis of Brugada Syndrome: Monogenic, Polygenic or Oligogenic? Int J Mol Sci. 2020;21(19):7155. https://doi.org/10.3390/ijms21197155.; Зайцева А.К., Карпушев А.В., Михайлов Е.Н., и др. Молекулярные механизмы синдрома Бругада подтипа 1. Трансляционная медицина. 2017;4(4):23-35. https://doi.org/10.18705/2311-4495-2017-4-4-23-35.; Sanchez O., Campuzano O., Fernandez-Falgueras A., et al. Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome. Frontiers in Genetics. 2020; 11:590261. https://doi.org/10.3389/fgene.2020.590261.; Бородулин В.П., Бородулин Р.П. Влияние гена SCN5A на синдром врожденного синусового узла и синдром Бругада. В кн.: Наука молодых – будущее России: сборник научных статей 8-й Международной научной конференции перспективных разработок молодых ученых, Курск, 12–13 декабря 2023 года. Курск: ЗАО ≪Университетская книга≫. 2023:179-182.; Бокерия Л.А., Проничева И.В., Сергуладзе С.Ю., и др. Синдром Бругада и перекрестные синдромы сердечной натриевой каналопатии: различные маски мутаций гена SCN5A. Анналы аритмологии. 2018;15(1):40-54. https://doi.org/10.15275/annaritmol.2018.1.5.; Kinoshita K., Takahashi H., Hata Y., et al. SCN5A(K817E), a novel Brugada syndrome-associated mutation that alters the activation gating of NaV1.5 channel. Heart Rhythm. 2016;13(5):1113-1120. https://doi.org/10.1016/j.hrthm.2016.01.008.; Akai J., Makita N., Sakurada H., et al. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett. 2000;479(1-2):29-34. https://doi.org/10.1016/s0014-5793(00)01875-5.; Yamagata K., Horie M., Aiba T., et al. Genotype-Phenotype Correlation of SCN5A Mutation for the Clinical and Electrocardiographic Characteristics of Probands With Brugada Syndrome: A Japanese Multicenter Registry. Circulation. 2017;135(23):2255-2270. https://doi.org/10.1161/CIRCULATIONAHA.117.027983.; Monasky M.M., Rutigliani C., Micaglio E., Pappone C. Commentary: Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function Phenotype of Two Novel Mutations of the CACNA1 Gene Associated With Brugada Syndrome. Front Physiol. 2021;12:682567. https://doi.org/10.3389/fphys.2021.682567.; Novelli V., Memmi M., Malovini A., et al. Role of CACNA1C in Brugada syndrome: Prevalence and phenotype of probands referred for genetic testing. Heart Rhythm. 2022;19(5):798-806. https://doi.org/10.1016/j.hrthm.2021.12.032.; Hu D., Barajas-Martinez H., Medeiros-Domingo A., et al. A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Na(v)1.5 and K(v)4.3 channel currents. Heart Rhythm. 2012;9(5):760-9. https://doi.org/10.1016/j.hrthm.2011.12.006.; Fukuyama M., Ohno S., Makiyama T., Horie M. Novel SCN10A variants associated with Brugada syndrome. Europace. 2016;18(6):905-11. https://doi.org/10.1093/europace/euv078.; Allegue C., Coll M., Mates .J, et al. Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome. PLoS One. 2015;10(7):e0133037. https://doi.org/10.1371/journal.pone.0133037.; Selga E., Campuzano O., Pinsach-Abuin M.L., et al. Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort. PLoS One. 2015;10(7):e0132888. https://doi.org/10.1371/journal.pone.0132888.; Kapplinger J.D., Tester D.J., Alders M., et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7(1):33-46. https://doi.org/10.1016/j.hrthm.2009.09.069.; Mademont-Soler I., Pinsach-Abuin M.L., Riuro H., et al. Large Genomic Imbalances in Brugada Syndrome. PLoS One. 2016;11(9):e0163514. https://doi.org/10.1371/journal.pone.0163514.; Tse G., Lee S., Liu T., et al. Identification of Novel SCN5A Single Nucleotide Variants in Brugada Syndrome: A Territory-Wide Study From Hong Kong. Front Physiol. 2020;11:574590. https://doi.org/10.3389/fphys.2020.574590.; Chung C., Bazoukis G., Matusik P., et al. Differences in the rate and yield of genetic testing in patients with brugada syndrome: A systematic review and analysis of cohort studies. Annals of Clinical Cardiology. 2023; 5(11):11-16. https://doi.org/10.4103/accj.accj_10_22; Andorin A., Behr E.R., Denjoy I., et al. Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm. 2016;13(6):1274-82. https://doi.org/10.1016/j.hrthm.2016.02.013.; Ishikawa T., Kimoto H., Mishima H., et al. Functionally validated SCN5A variants allow interpretation of pathogenicity and prediction of lethal events in Brugada syndrome. Eur Heart J. 2021;42(29):2854-2863. https://doi.org/10.1093/eurheartj/ehab254.; Le Scouarnec S., Karakachoff M., Gourraud J.B., et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet. 2015;24(10):2757-63. https://doi.org/10.1093/hmg/ddv036.; Antzelevitch C., Patocskai B. Brugada Syndrome: Clinical, Genetic, Molecular, Cellular, and Ionic Aspects. Curr Probl Cardiol. 2016;41(1):7-57.; Iglesias D.G., Rubin J., Perez D., et al. Insights for Stratification of Risk in Brugada Syndrome. Eur Cardiol. 2019;14(1):45-49. https://doi.org/10.15420/ecr.2018.31.2.

  7. 7
    Academic Journal

    Συνεισφορές: The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation for RCMG, Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ МГНЦ.

    Πηγή: Medical Genetics; Том 23, № 11 (2024); 18-33 ; Медицинская генетика; Том 23, № 11 (2024); 18-33 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2570/1827; Дегтярева А.В., Байбарина Е.Н., Евтеева Н.В. и др. Неонатальная манифестация нарушения цикла мочевины. Акушерство и гинекология. 2013; (2): 96-100.; Stepien K.M., Geberhiwot T., Hendriksz C.J., et al. Challenges in diagnosing and managing adult patients with urea cycle disorders. J Inherit Metab Dis. 2019;42(6):1136-1146.; Lichter-Konecki U., Caldovic L., Morizono H., et al. Ornithine Transcarbamylase Deficiency. 2013 Aug 29 [Updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024.; Summar M.L., Koelker S., Freedenberg D., et al. The incidence of urea cycle disorders. Molecular genetics and metabolism. 2013;110(1-2): 179-180.; Нарушения цикла образования мочевины: методические рекомендации. Cоюз педиатров России; Ассоциация медицинских генетиков; Российское общество неонатологов; Национальная ассоциация детских реабилитологов, 2022. 72 с. Доступно по: https://www.pediatr-russia.ru/news/%D0%9C%D0%A0_%D0%BD%D0%B0%D1%80%D1%83%D1%88%D0%B5%D0%BD%D0%B8%D0%B5%20%D1%86%D0%B8%D0%BA%D0%BB%D0%B0%20%D0%B-C%D0%BE%D1%87%D0%B5%D0%B2%D0%B8%D0%BD%D1%8B_%D1%80%D0%B5%D0%B4_04.02.22.pdf; Quinonez S.C., Lee K.N. Citrullinemia Type I. 2004 Jul 7 [Updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024.; Diez-Fernandez C., Rüfenacht V., Häberle J. Mutations in the Human Argininosuccinate Synthetase (ASS1) Gene, Impact on Patients, Common Changes, and Structural Considerations. Human mutation. 2017;38(5): 471–484.; Bodamer O.A., Hoffmann G.F., Lindner M. Expanded newborn screening in Europe 2007. Journal of Inherited Metabolic Disease. 2007;30(4): 439-444.; Luo X., Sun Y., Xu F., et al. A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1,127 newborns. Annals of Translational Medicine. 2020;8(17).; Воронин С.В., Захарова Е.Ю., Байдакова Г.В. и др. Расширенный неонатальный скрининг на наследственные заболевания в России: первые итоги и перспективы. Педиатрия им. Г.Н. Сперанского. 2024;103(1): 16-29.; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS)(редакция 2018, версия 2). Медицинская генетика. 2019;18(2): 3-23.; Li J., Shen H., Abdelrahim M.F., et al. Pregnancy-related type citrullinemia type 1: A case report and literature review: Citrullinemia type 1. Placenta and Reproductive Medicine. 2023;2.; Daou M., Souaid M., Yammine T., et al. Analysis of ASS1 gene in ten unrelated middle eastern families with citrullinemia type 1 identifies rare and novel variants. Molecular genetics & genomic medicine. 2023;11(2), e2058.; Михеева И.Г., Климина Н.В., Алексеева Е.Н. и др. Клинический случай цитруллинемии I типа у новорожденного: катамнестическое наблюдение. Неонатология: новости, мнения, обучение. 2024;12(2): 82–90.; Мышкина Е.В., Герасимова Ю.А. Тяжелая неонатальная цитруллинемия I типа. Российский педиатрический журнал. 2022;3(2): 416-417.; Голосная Г.С., Белоусова Т.Н., Новиков М.Ю. и др. Цитруллинемия у новорожденного: клинический случай. Русский журнал детской неврологии. 2022;17(3): 72-78.; Martín-Hernández E., Aldámiz-Echevarría L., Castejón-Ponce E., et al. Urea cycle disorders in Spain: an observational, cross-sectional and multicentric study of 104 cases. Orphanet J Rare Dis. 2014;9:187.; Wang W., Yang J., Xue J., et al. A comprehensive multiplex PCR based exome-sequencing assay for rapid bloodspot confirmation of inborn errors of metabolism. BMC Med Genet. 2019;20(1): 3.; Zielonka M., Kölker S., Gleich F., et al. Early prediction of phenotypic severity in citrullinemia type 1. Annals of clinical and translational neurology. 2019;6(9): 1858-1871.; Faghfoury H., Baruteau J., Ogier de Baulny H., et al. Transient fulminant liver failure as an initial presentation in citrullinemia type I, Molecular Genetics and Metabolism. 2011;102(4): 413-417.

  8. 8
    Academic Journal

    Συνεισφορές: The article was prepared without sponsorship., Статья подготовлена без спонсорской поддержки.

    Πηγή: Malignant tumours; Том 15, № 1 (2025); 68-75 ; Злокачественные опухоли; Том 15, № 1 (2025); 68-75 ; 2587-6813 ; 2224-5057

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1439/1031; Imyanitov E., Sokolenko A. Integrative genomic tests in clinical oncology. Int J Mol Sci 2022;23(21):13129. https://doi.org/10.3390/ijms232113129; Louis D.N., Perry A., Wesseling P., et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106; Berek J.S., Matias-Guiu X., Creutzberg C., et al. FIGO staging of endometrial cancer: 2023. Intl J Gynaecol Obstet 2023;162(2):383–394. https://doi.org/10.1002/ijgo.14923; National Comprehensive Cancer Network. Occult Primary (Cancer of Unknown Primary CUP) (Version 2.2025). https://www.nccn.org/professionals/physician_gls/pdf/occult.pdf; Новик А.В., Гладков О.А., Имянитов Е.Н. и соавт. Практические рекомендации по лекарственному лечению опухолей невыявленной первичной локализации. Злокачественные опухоли 2022;12(3s2):353–365. https://doi.org/10.18027/2224-5057-2022-12-3s2-353-365.; Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007;7(3):169–181. https://doi.org/10.1038/nrc2088; Tate J.G., Bamford S., Jubb H.C., et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 2018;47(D1):D941-D947. https://doi.org/10.1093/nar/gky1015; Krawczyk P., Jassem J., Wojas-Krawczyk K., et al. New genetic technologies in diagnosis and treatment of cancer of unknown primary. Cancers (Basel) 2022;14(14):3429. https://doi.org/10.3390/cancers14143429; Pugh T.J., Bell J.L., Bruce J.P., et al. AACR project GENIE: 100,000 cases and beyond. Cancer Discov 2022;12(9):2044–2057. https://doi.org/10.1158/2159-8290.cd-21-1547; Lee J.C., Vivanco I., Beroukhim R., et al. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med 2006;3(12):e485. https://doi.org/10.1371/journal.pmed.0030485; Zhao W., Song A., Xu Y., et al. Rare mutation-dominant compound EGFR-positive NSCLC is associated with enriched kinase domain-resided variants of uncertain significance and poor clinical outcomes. BMC Med 2023;21(1):73. https://doi.org/10.1186/s12916-023-02768-z; Montagut C., Dalmases A., Bellosillo B., et al. Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer. Nat Med 2012;18(2):221–223. https://doi.org/10.1038/nm.2609; Wu S.G., Gow C.H., Yu C.J., et al. Frequent epidermal growth factor receptor gene mutations in malignant pleural effusion of lung adenocarcinoma. Eur Respir J 2008;32(4):924–930. https://doi.org/10.1183/09031936.00167407; Taniguchi K., Okami J., Kodama K., et al. Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci 2008;99(5):929–935. https://doi.org/10.1111/j.1349-7006.2008.00782.x; Chou T.Y., Chiu C.H., Li L.H., et al. Mutation in the tyrosine kinase domain of epidermal growth factor receptor is a predictive and prognostic factor for gefitinib treatment in patients with non–small cell lung cancer. Clin Cancer Res 2005;11(10):3750–3757. https://doi.org/10.1158/1078-0432.ccr-04-1981; Grant M.J., Aredo J.V., Starrett J.H., et al. Efficacy of osimertinib in patients with lung cancer positive for uncommon EGFR exon 19 deletion mutations. Clini Cancer Res 2023;29(11):2123–2130. https://doi.org/10.1158/1078-0432.ccr-22-3497; Carlson R.W., Jonasch E. NCCN evidence blocks. J Natl Compr Canc Netw 2016;14(5S):616–619. https://doi.org/10.6004/jnccn.2016.0177; National Comprehensive Cancer Network. Soft Tissue Sarcoma (Version 2.2024). https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf; Krämer A., Bochtler T., Pauli C., et al. Cancer of unknown primary: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023;34(3):228–246. https://doi.org/10.1016/j.annonc.2022.11.013; Ba Y., Li H., Zhu J., et al. Case report: targeted sequencing improves the diagnosis of multiple synchronous lung cancers. Transl Lung Cancer Res 2023;12(4):933–939. https://doi.org/10.21037/tlcr-23-155; Cainap C., Balacescu O., Cainap S.S., Pop L.A. Next generation sequencing technology in lung cancer diagnosis. Biology (Basel) 2021;10(9):864. https://doi.org/10.3390/biology10090864; Yang X., Yao Y., Zhu Q. A L833V/H835L EGFR variant lung adenocarcinoma with skin metastasis: A case report and literature review. Heliyon 2022;8(12):e12080. https://doi.org/10.1016/j.heliyon.2022.e12080; Clery E., Pisapia P., Migliatico I., et al. Cytology meets next generation sequencing and liquid biopsy: A case of lung adenocarcinoma presenting as metastasis to the phalanx. Diagn Cytopathol 2020;48(8):759–764. https://doi.org/10.1002/dc.24438; Mao N., Liao Z., Wu J., et al. Diagnosis of NUT carcinoma of lung origin by next-generation sequencing: case report and review of the literature. Cancer Biol Ther 2019;20(2):150–156. https://doi.org/10.1080/15384047.2018.1523852; Xu L., Li K., Chen X., et al. Next-generation sequencing assisted diagnosis of cervical metastasis in EGFR-mutated lung adenocarcinoma: A case report. Thoracic Cancer 2021;12(19):2622–2627. https://doi.org/10.1111/1759-7714.14143; Qian C., Dai N., Xu M., et al. ctDNA facilitated the diagnosis of a patient with synchronous urothelial carcinoma and non-small cell lung cancer: case report. Ann Transl Med 2020;8(20):1323–1323. https://doi.org/10.21037/atm-20-6552; Wu D., Yu J., Guo L., et al. Analysis of primary synchronous breast invasive ductal carcinoma and lung adenocarcinoma with next-generation sequencing: A case report. Oncol Lett 2022;25(1):18. https://doi.org/10.3892/ol.2022.13604; Mitani Y., Kanai M., Kou T., et al. Cancer of unknown primary with EGFR mutation successfully treated with targeted therapy directed by clinical next-generation sequencing: a case report. BMC Cancer 2020;20(1). https://doi.org/10.1186/s12885-020-07640-4; Yang D.S., Huang K., Su M., et al. Next-generation sequencing revealed synchronous double primary lung squamous carcinoma: a case report. J Int Med Res 2021;49(5):3000605211018575. https://doi.org/10.1177/03000605211018575; Tan B., Jiang X., Wang R., et al. Genomic profiling reveals synchronous bilateral lung adenocarcinomas with distinct driver alterations of EML4-ALK or TPM3-ROS1 fusion: a case report. Front Oncol 2019;9:1319. https://doi.org/10.3389/fonc.2019.01319; Liu S., Wang J., Luo X., et al. Coexistence of low-grade fetal adenocarcinoma and adenocarcinoma in situ of the lung harboring different genetic mutations: a case report and review of literature. Onco Targets Ther 2020;13:6675–6680. https://doi.org/10.2147/OTT.S260993; Liu C., Liu C., Zou X., et al. Next-generation sequencing facilitates differentiating between multiple primary lung cancer and intrapulmonary metastasis: a case series. Diagn Pathol 2021;16(1):21. https://doi.org/10.1186/s13000-021-01083-6; Hu Y., Ren S., Chen C., et al. Metachronous primary lung adenocarcinomas harboring distinct KRAS mutations. Thoracic Cancer 2020;11(7):2018–2022. https://doi.org/10.1111/1759-7714.13458; Ravella L., Barritault M., Bringuier P.P., et al. Multiple lung carcinoma: Primary or intrapulmonary metastasis? Ann Pathol 2018;38(3):202–205. https://doi.org/10.1016/j.annpat.2018.02.001; Zhang X., Feng J., Su X., et al. Next generation sequencing reveals a synchronous trilateral lung adenocarcinoma case with distinct driver alterations of EGFR 19 deletion or EGFR 20 insertion or EZR-ROS1 fusion; Onco Targets Ther 2020;13:12667–12671. https://doi.org/10.2147/OTT.S283617; Peng L., Zeng Z., Teng X., et al. Genomic profiling of synchronous triple primary tumors of the lung, thyroid and kidney in a young female patient: A case report. Oncol Lett 2018;16(5):6089–6094. https://doi.org/10.3892/ol.2018.9334; Ouyang W.W., Li Q.Y., Yang W.G., et al. Genetic characteristics of a patient with multiple primary cancers: A case report. World J Clin Cases 2021;9(28):8563–8570. https://doi.org/10.12998/wjcc.v9.i28.8563; Qiu Y., Wang X., Fan Y., et al. A case of bilateral synchronous double primary lung cancer secondary to bladder cancer: from the next-generation sequencing prospect. Thorac Cancer 2023;14(14):1316–1319. https://doi.org/10.1111/1759-7714.14864; Song I.H., Hong S.H., Lee K.Y., et al. Next generation sequencing can be helpful in histologic diagnosis: A case report of metastatic breast cancer mimicking atypical carcinoid tumor of lung. Pathol Res Pract 2020;216(5):152835. https://doi.org/10.1016/j.prp.2020.152835; Kovács K.A., Hegedus B., Kenessey I., Tímár J. Tumor type-specific and skin region-selective metastasis of human cancers: another example of the “seed and soil” hypothesis. Cancer Metastasis Rev 2013;32(3–4):493–499. https://doi.org/10.1007/s10555-013-9418-8; Nguyen B., Fong C., Luthra A., et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 2022;185(3):563–575.e11. https://doi.org/10.1016/j.cell.2022.01.003; Lookingbill D.P., Spangler N., Helm K.F. Cutaneous metastases in patients with metastatic carcinoma: A retrospective study of 4020 patients. J Am Acad Dermatol 1993;29(2Pt1):228–236. https://doi.org/10.1016/0190-9622(93)70173-q; Pajaziti L., Hapçiu S.R., Dobruna S., et al. Skin metastases from lung cancer: a case report. BMC Res Notes 2015;8(1). https://doi.org/10.1186/s13104-015-1105-0; Sugiura H., Yamada K., Sugiura T., et al. Predictors of survival in patients with bone metastasis of lung cancer. Clin Orthop Relat Res 2008;466(3):729–736. https://doi.org/10.1007/s11999-007-0051-0; Mengoli M.C., Rossi G., Tiseo M., et al. ‘Turban-like’ skull metastasis from pulmonary adenocarcinoma. Thorax 2016;72(8):767–768. https://doi.org/10.1136/thoraxjnl-2016-209409; Turner R.C., Lucke-Wold B.P., Hwang R., Underwood B.D. Lung cancer metastasis presenting as a solitary skull mass. J Surg Case Rep 2016;2016(6):rjw116. https://doi.org/10.1093/jscr/rjw116; Todisco A., Internò V., Stucci L.S., et al. Cutaneous metastasis as a primary presentation of a pulmonary enteric adenocarcinoma. Int J Biol Markers 2019;34(4):421–426. https://doi.org/10.1177/1724600819877190; Zhou Z., Lin T., Chen S., et al. Omics-based molecular classifications empowering in precision oncology. Cell Oncol 2024;47(3):759–777. https://doi.org/10.1007/s13402-023-00912-8.; https://www.malignanttumors.org/jour/article/view/1439

  9. 9
    Academic Journal

    Συνεισφορές: The study was carried out with the financial support of the Russian Science Foundation (grant No. 22-15-00304)., Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 22-15-00304).

    Πηγή: Advances in Molecular Oncology; Vol 11, No 3 (2024); 68-78 ; Успехи молекулярной онкологии; Vol 11, No 3 (2024); 68-78 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  10. 10
    Academic Journal

    Συνεισφορές: The study was performed with the support of AstraZeneca Pharmaceuticals., Исследование проведено при поддержке ООО «АстраЗенека Фармасьютикалз».

    Πηγή: Cancer Urology; Том 20, № 2 (2024); 87-100 ; Онкоурология; Том 20, № 2 (2024); 87-100 ; 1996-1812 ; 1726-9776

    Περιγραφή αρχείου: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1836/1532; Злокачественные новообразования в России в 2022 году (забо­ леваемость и смертность). Под. ред. А.Д. Каприна, В.В. Ста­ ринского, О.В. Шахзадовой, И.В. Лисичниковой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Мин­ здрава России, 2023. 275 с.; Achard V., Putora P.M., Omlin A. et al. Metastatic prostate cancer: treatment options. Oncology 2022;100(1):48–59. DOI:10.1159/000519861; Petrylak D.P., Tangen C.M., Hussain M.H. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351(15):1513–20. DOI:10.1056/NEJMoa041318; Tannock I.F., Osoba D., Stockler M.R. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone­resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 1996;14(6):1756–64. DOI:10.1200/JCO.1996.14.6.1756; Tannock I.F., de Wit R., Berry W.R. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351(15):1502–12. DOI:10.1056/NEJMoa040720; De Bono J.S., Oudard S., Ozguroglu M. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration­resistant prostate cancer progressing after docetaxel treatment: a randomized open­label trial. Lancet 2010;376(9747):1147–54. DOI:10.1016/S0140-6736(10)61389­X; FDA approved enzalutamide. Reference ID 4291091. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203415s014lbl.pdf; Ryan C.J., Smith M.R., de Bono J.S. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013;368(2):138–48. DOI:10.1056/NEJMoa1209096; FDA approved abiraterone acetate. Reference ID 2939553 Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202379lbl.pdf; Parker C., Nilsson S., Heinrich D. et al. Alpha emitter radium­223 and survival in metastatic prostate cancer. N Engl J Med 2013;369(3):213–23. DOI:10.1056/NEJMoa1213755; Sartor O., de Bono J., Chi K.N. et al. Lutetium­177­PSMA­617 for metastatic castration­resistant prostate cancer. N Engl J Med 2021;385(12):1091–103. DOI:10.1056/NEJMoa2107322; Hussain M., Mateo J., Fizazi K. et al. Survival with olaparib in metastatic castration­resistant prostate cancer. N Engl J Med 2020;383(24):2345–57. DOI:10.1056/NEJMoa2022485; De Bono J., Mateo J., Fizazi K. et al. Olaparib for metastatic castration resistant prostate cancer. N Engl J Med 2020;382(22):2091–102. DOI:10.1056/NEJMoa1911440; Abida W., Campbell D., Patnaik A. et al. Rucaparib for the treatment of metastatic castration­resistant prostate cancer associated with a DNA damage repair gene alteration: final results from the phase 2 TRITON2 study. Eur Urol 2023;84(3):321–30. DOI:10.1016/j.eururo.2023.05.021; Chi K.N., Rathkopf D., Smith M.R. et al. Niraparib and abiraterone acetate for metastatic castration­resistant prostate cancer. J Clin Oncol 2023;41(18):3339–51. DOI:10.1200/JCO.22.01649; De Bono J.S., Mehra N., Scagliotti G.V. et al. Talazoparib monotherapy in metastatic castration­resistant prostate cancer with DNA repair alterations (TALAPRO­1): an open­label, phase 2 trial [published correction appears in Lancet Oncol 2022;23(5):e207] [published correction appears in Lancet Oncol 2022;23(6):e249]. Lancet Oncol 2021;22(9):1250–64. DOI:10.1016/S1470­2045(21)00376­4; Agarwal N., Azad A.A., Carles J. et al. Talazoparib plus enzalutamide in men with first­line metastatic castration­resistant prostate cancer (TALAPRO­2): a randomised, placebo­controlled, phase 3 trial [published correction appears in Lancet 2023;402(10398):290]. Lancet 2023;402(10398):291–303. DOI:10.1016/S0140­6736(23)01055­3; Castro E., Mateo J., Olmos D., de Bono J.S. Targeting DNA repair: the role of PARP inhibition in the treatment of castration­resistant prostate cancer. Cancer J 2016;22(5):353–6. DOI:10.1097/PPO.0000000000000219; Chung J.H., Dewal N., Sokol E. et al. Prospective comprehensive genomic profiling of primary and metastatic prostate tumors. JCO Precis Oncol 2019;3: PO.18.00283. DOI:10.1200/PO.18.00283; Cui M., Gao X.S., Gu X. et al. BRCA2 mutations should be screened early and routinely as markers of poor prognosis: evidence from 8,988 patients with prostate cancer. Oncotarget 2017;8(25):40222–32. DOI:10.18632/oncotarget.16712; Maughan B.L., Munlde S., Nematian­Samani M. et al. Survival outcomes of APA as a starting treatment: impact in real­world patients with mCSPC (OASIS). J Clin Oncol 2024;42(4_suppl):65. DOI:10.1200/JCO.2024.42.4_suppl.6; https://oncourology.abvpress.ru/oncur/article/view/1836

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Συνεισφορές: The work was performed with support from the Russian Science Foundation grant No. 21-75-00041 (https://rscf.ru/project/21-75-00041/)., Работа выполнена при поддержке гранта Российского научного фонда № 21-75-00041 (https://rscf.ru/project/21-75-00041/).

    Πηγή: Cancer Urology; Том 19, № 3 (2023); 94-99 ; Онкоурология; Том 19, № 3 (2023); 94-99 ; 1996-1812 ; 1726-9776

    Περιγραφή αρχείου: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1565/1482; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1565/1122; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1565/1123; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1565/1124; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1565/1125; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1565/1126; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1565/1127; Yoshida K., Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 2004;95(11):866–71. DOI:10.1111/j.1349-7006.2004.tb02195.x; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443–53. DOI:10.1056/NEJMoa1603144; Lozano R., Castro E., Aragón I.M. et al. Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer. Br J Cancer 2021;124:552–63. DOI:10.1038/s41416-020-01114-x; Giri V.N., Knudsen K.E., Kelly W.K. et al. Implementation of germline testing for prostate cancer: Philadelphia Prostate Cancer Consensus Conference 2019. J Clin Oncol 2020;38(24):2798–811. DOI:10.1200/JCO.20.00046; Teyssonneau D., Margot H., Cabart M. et al. Prostate cancer and PARP inhibitors: progress and challenges. J Hematol Oncol 2021;14(1):51. DOI:10.1186/s13045-021-01061-x; Castro E., Romero-Laorden N., Del Pozo A. et al. PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2019;37(6):490–503. DOI:10.1200/JCO.18.00358. PMID: 30625039; De Bono J., Mateo J., Fizazi K. et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020;382(22):2091–102. DOI:10.1056/NEJMoa1911440; Scott R.J., Mehta A., Macedo G.S. et al. Genetic testing for homologous recombination repair (HRR) in metastatic castration-resistant prostate cancer (mCRPC): challenges and solutions. Oncotarget 2021;12(16):1600–14. DOI:10.18632/oncotarget.28015; Shore N., Ionescu-Ittu R., Yang L. et al. Real-world genetic testing patterns in metastatic castration-resistant prostate cancer. Future Oncol 2021;17(22):2907–21. DOI:10.2217/fon-2021-0153; Brovkina O.I., Shigapova L., Chudakova D.A. et al. The ethnic-specific spectrum of germline nucleotide variants in DNA damage response and repair genes in hereditary breast and ovarian cancer patients of Tatar descent. Front Oncol 2018;8:421. DOI:10.3389/fonc.2018.00421; Nikitin A.G., Chudakova D.A., Enikeev R.F. et al. Lynch syndrome germline mutations in breast cancer: next generation sequencing case-control study of 1,263 participants. Front Oncol 2020;10:666. DOI:10.3389/fonc.2020.00666; Jian X., Boerwinkle E., Liu X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res 2014;42(22):13534–44. DOI:10.1093/nar/gku1206; Annala M., Struss W.J., Warner E.W. et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol 2017;72(1):34–42. DOI:10.1016/j.eururo.2017.02.023; Yadav S., Ladkany R., Yadav D. et al. Impact of BRCA mutation status on survival of women with triple-negative breast cancer. Clin Breast Cancer 2018;18(5):e1229–35. DOI:10.1016/j.clbc.2017.12.014; Levy-Lahad E., Friedman E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer 2007;96(1):11–5. DOI:10.1038/sj.bjc.6603535; Ferla R., Calò V., Cascio S. et al. Founder mutations in BRCA1 and BRCA2 genes. Ann Oncol 2007;18(Suppl 6):vi93–8. DOI:10.1093/annonc/mdm234; https://oncourology.abvpress.ru/oncur/article/view/1565

  17. 17
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20