-
1Academic Journal
Συγγραφείς: M. V. Silibin, D. A. Kiselev, S. I. Latushko, D. V. Zheludkevich, P. A. Sklyar, D. V. Karpinsky, М. В. Силибин, Д. А. Киселев, С. И. Латушко, Д. В. Желудкевич, П. А. Скляр, Д. В. Карпинский
Συνεισφορές: The study was carried out with support of the Russian Science Foundation (No. 21-19-00386)., Исследования выполнены при поддержке Российского научного фонда (№ 21-19-00386).
Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 2 (2023); 157-165 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 2 (2023); 157-165 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-2
Θεματικοί όροι: гистерезис, phase transition, magnetic structure, orbital ordering, ferroelectric domain structure, hysteresis, фазовый переход, магнитная структура, орбитальное упорядочение, сегнетоэлектрическая доменная структура
Περιγραφή αρχείου: application/pdf
Relation: https://met.misis.ru/jour/article/view/523/426; Khomskii D. Classifying multiferroics: Mechanisms and effects. Physics. 2009; 2: 20. https://doi.org/10.1103/Physics.2.20; Scott J.F. Multiferroic memories. Nature Materials. 2007; 6(4): 256—257. https://doi.org/10.1038/nmat1868; Vaz C.A.F., Hoffman J., Ahn Ch.H., Ramesh R. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Advanced Materials. 2010; 22(26–27): 2900—2918. https://doi.org/10.1002/adma.200904326; Yoneda Y., Kitanaka Y., Noguchi Y., Miyayama M. Electronic and local structures of Mn-doped BiFeO3 crystals. Physical Review B. Condensed Matter. 2012; 86(18): 184112. https://doi.org/10.1103/PhysRevB.86.184112; Kimura T., Goto T., Shintani H., Ishizaka K., Arima T., Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003; 426(6962): 55—58. https://doi.org/10.1038/nature02018; Bernardo M.S. Synthesis, microstructure and properties of BiFeO3-based multiferroic materials: A review. Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2014; 1(53): 1—14. https://doi.org/10.3989/cyv.12014; Neaton J.B., Ederer C., Waghmare U.V., Spaldin N.A., Rabe K.M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Physical Review B. Condensed Matter. 2005; 71(1): 14113. https://doi.org/10.1103/PhysRevB.71.014113; Catalan G., Scott J.F. Physics and applications of bismuth ferrite. Advanced Materials. 2009; 21(24): 2463—2485. https://doi.org/10.1002/adma.200802849; Efremov D.V., Van den Brink J., Khomskii D.I. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nature Materials. 2004; 3(12): 853—856. https://doi.org/10.1038/nmat1236; Selbach S.M., Tybell T., Einarsrud M.A., Grande T. Structure and properties of multiferroic oxygen hyperstoichiometric BiFe1-xMnxO3+δ. Chemistry of Materials. 2009; 21(21): 5176—5186. https://doi.org/10.1021/cm9021084; Stokes H.T., Kisi E.H., Hatch D.M., Howard Ch.J. Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallographica Section B: Structural Science. 2002; 58(Pt 6): 934—938. https://doi.org/10.1107/S0108768102015756; Palai R., Katiyar R.S., Schmid H., Tissot P., Clark S.J., Robertson Jv., Redfern S., Catalan G., Scott J.F. Beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3. Physical Review B. Condensed Matter. 2008; 77(1): 014110. https://doi.org/10.1103/PhysRevB.77.014110; Belik A.A. Origin of magnetization reversal and exchange bias phenomena in solid solutions of BiFeO3–BiMnO3: intrinsic or extrinsic? Inorganic Chemistry. 2013; 52(4): 2015—2021. https://doi.org/10.1021/ic302384j; Denning D., Guyonnet J., Rodriguez B.J. Applications of piezoresponse force microscopy in materials research: from inorganic ferroelectrics to biopiezoelectrics and beyond. International Materials Reviews. 2016; 61(1): 46—70. https://doi.org/10.1179/1743280415Y.0000000013; Gannepalli A., Yablon D.G., Tsou A.H., Proksch R. Corrigendum: Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology. 2013; 24: 159501. https://doi.org/10.1088/0957-4484/24/15/159501; Guennou M., Bouvier P., Chen G.S., Dkhil B., Haumont R., Garbarino G., Kreisel J. Multiple high-pressure phase transitions in BiFeO3. Physical Review B. Condensed Matter. 2011; 84(17): 174107. https://doi.org/10.1103/physrevb.84.174107; Mumtaz F., Jaffari G.H., Syed S., Khan S. Model-based quantification of inter-intra-grain electrical parameters, hopping polydispersivity, and local energy barrier profile of BiFeMnO3 synthesized by different methods. Journal of Physics and Chemistry of Solids. 2022; 160: 110334. https://doi.org/10.1016/j.jpcs.2021.110334; Azuma M., Kanda H., Belik A.A., Shimakawa Y., Takano M. Magnetic and structural properties of BiFe1-xMnxO3. Journal of Magnetism and Magnetic Materials. 2007; 310(2): 1177—1179. https://doi.org/10.1016/j.jmmm.2006.10.287; Karpinsky D.V., Silibin M.V., Latushka S.I., Zhaludkevich D.V., Sikolenko V.V., Svetogorov R., Sayyed M.I., Almousa N., Trukhanov A., Trukhanov S., Belik A.А. Temperature-driven transformation of the crystal and magnetic structures of BiFe0.7Mn0.3O3. Nanomaterials. 2022; 12(16): 2813. https://doi.org/10.3390/nano12162813; Karpinsky D.V., Silibin M.V., Zhaludkevich D.V., Latushka S.I., Sikolenko V.V., Többens D.M., Sheptyakov D., Khomchenko V.A., Belik A.A. Crystal and magnetic structure transitions in BiMnO3+δ ceramics driven by cation vacancies and temperature. Materials (Basel). 2021; 14(19): 5805. https://doi.org/10.3390/ma14195805; Belik A.A. Structural, magnetic, and dielectric properties of solid solutions between BiMnO3 and YMnO3. Journal of Solid State Chemistry. 2017; 246: 8—15. https://doi.org/10.1016/j.jssc.2016.10.025; Goodenough J.B. Theory of the role of covalence in the perovskite-type manganites [La, M (II)] MnO3. Physical Review. 1955; 100(2): 564. https://doi.org/10.1103/PhysRev.100.564; Belik A. A. Local distortions in multiferroic BiMnO3 as a function of doping. Science and Technology of Advanced Materials. 2011; 12(4): 044610. http://dx.doi.org/10.1088/1468-6996/12/4/044610; Ederer C., Spaldin N.A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Physical Review B. Condensed Matter. 2005; 71: 060401(R). https://doi.org/10.1103/PhysRevB.71.060401; https://met.misis.ru/jour/article/view/523
-
2Report
Θεματικοί όροι: СКАНИРУЮЩАЯ ЗОНДОВАЯ МИКРОСКОПИЯ, БЕССВИНЦОВАЯ ПЬЕЗОКЕРАМИКА, СЕГНЕТОЭЛЕКТРИЧЕСКАЯ ДОМЕННАЯ СТРУКТУРА, СИЛОВАЯ МИКРОСКОПИЯ ПЬЕЗООТКЛИКА
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/47132
-
3Report
Συγγραφείς: Шур, В. Я., Абрамов, А. С., Аликин, Д. О., Батурин, И. С., Есин, А. А., Зеленовский, П. С., Кособоков, М. С., Линкер, Э. А., Макарова, С. А., Мингалиев, Е. А., Пелегова, Е. В., Пряхина, В. И., Слаутин, Б. Н., Турыгин, А. П., Ушаков, А. Д., Холкин, А. Л., Чезганов, Д. С.
Θεματικοί όροι: СЕГНЕТОЭЛЕКТРИЧЕСКАЯ ДОМЕННАЯ СТРУКТУРА, БЕССВИНЦОВАЯ ПЬЕЗОКЕРАМИКА, СИЛОВАЯ МИКРОСКОПИЯ ПЬЕЗООТКЛИКА, СКАНИРУЮЩАЯ ЗОНДОВАЯ МИКРОСКОПИЯ
Relation: http://elar.urfu.ru/handle/10995/47132
Διαθεσιμότητα: http://elar.urfu.ru/handle/10995/47132