Showing 1 - 20 results of 619 for search '"самораспространяющийся высокотемпературный синтез"', query time: 0.81s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Contributors: Исследование выполнено за счет гранта Российского научного фонда № 24-23-00085, https://rscf. ru/project/24-23-00085/

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 9 (2024); 44-47 ; Новые огнеупоры; № 9 (2024); 44-47 ; 1683-4518 ; 10.17073/1683-4518-2024-9

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2196/1786; Мержанов, А. Г. Процессы горения и синтез материалов / А. Г. Мержанов. ― Черноголовка : изд. ИСМАН, 1998. ― 512 с.; Borovinskaya, I. P. Combustion synthesis of nitrides for development of ceramic materials of new generation (рages: 1‒48) / I. P. Borovinskaya, V. E. Loryan, V. V. Zakorzhevsky; in book: Nitride сeramics: сombustion of synthesis, properties and applications by A. A. Gromov and L. N. Chukhlomina. ― Weinheim : Wiley‒VCH Verlag GmbH & Co. KGaA, 2015.; Чевыкалова, Л. A. Керамический материал на основе отечественных композиционных порошков нитрида кремния, полученных методом СВС / Л. A. Чевыкалова, И. Ю. Келина, И. Л. Михальчик [и др.] // Новые огнеупоры. ― 2014. ― № 10. ― С. 31‒36. DOI:10.17073/1683-4518-2014-10-31-36.; Hyoungjoon, P. Microstructural evolution and mechanical properties of Si3N4 with Yb2O3 as a sintering additive / P. Hyoungjoon, K. Hyoun-Ee, N. Koichi // J. Am. Ceram. Soc. ― 1997. ― Vol. 80, № 3. ― Р. 750‒756. DOI:10.1111/j.1151-2916.1997.tb02892.x.; Toshiyuki, N. High temperature strength of silicon nitride ceramics with ytterbium silicon oxynitride / N. Toshiyuki, M. Mamoru, S. Hisayuki // J. Mater. Res. ― 1997. ― Vol. 12, № 1. ― Р. 203‒209.; Mamoru, M. Microstructural development during gas-pressure sintering of α-silicon nitride / M. Mamoru, U. Satoshi // J. Am. Ceram. Soc. ― 1992. ― Vol. 75, № 1. ― Р. 103‒108. DOI:10.1111/j.1151-2916.1992.tb05449.; Андриевский, Р. А. Нитрид кремния и материалы на его основе / Р. А. Андриевский, И. И. Спивак. ― М. : Металлургия, 1984. ― 137 с.; https://newogneup.elpub.ru/jour/article/view/2196

  12. 12
    Academic Journal

    Contributors: Исследование выполнено при поддержке Российского научного фонда, грант № 22-79-00158, https://rscf.ru/project/22-79-00158/.

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 6 (2024); 21-27 ; Новые огнеупоры; № 6 (2024); 21-27 ; 1683-4518 ; 10.17073/1683-4518-2024-6

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2178/1768; Маслов, А. А. Исследование покрытий на основе системы Ti‒Al‒C при помощи синхротронного излучения и рентгеновской дифракции / А. А. Маслов, А. Ю. Назаров, А. А. Николаев [и др.] // Перспективные материалы. ― 2023. ― № 6. ― C. 60‒66. https://doi.org/10.30791/1028-978X-2023-6-60-66.; Zou, Q. Effects of Ti3SiC2 on microstructure and properties of TiC0.4 enhanced TiAl matrix composites / Q. Zou, L. Bu, Y. Li [et al.] // Mater. Chem. Phys. ― 2023. ― Vol. 297. ― Article 127330. https://doi.org/10.1016/j.matchemphys.2023.127330.; Kwon, H. Fabrication of SiCf/Ti3SiC2 by the electrophoresis of highly dispersed Ti3SiC2 powder / H. Kwon, X. Zhou, D. Yoon // Ceram. Int. ― 2020. ― Vol. 46, № 11. ― P. 18168‒18174. https://doi.org/10.1016/j.ceramint.2020.04.138.; Маслов, А. А. Исследование перспективных жаростойких покрытий систем Y‒Al‒O и Ti‒Al‒C / А. А. Маслов, А. Ю. Назаров, К. Н. Рамазанов [и др.] // Изв. вузов. Физика. ― 2022. ― № 11. https://doi.org/10.17223/00213411/65/11/99.; Liu, Z. Molten salt dynamic sealing synthesis of MAX phases (Ti3AlC2, Ti3SiC2 et al.) powder in air / Z. Liu, J. Xu, X. Xi // Ceram. Int. ― 2023. ― Vol. 49, № 1. ― P. 168‒178. https://doi.org/10.1016/j.ceramint.2022.08.325.; Назаров, А. Ю. Исследование фазовых превращений в двухслойном жаростойком покрытии Ti‒Al‒C + Y‒ Al‒O на жаропрочном никелевом сплаве / А. Ю. Назаров [и др.] // Front. Mat. Tech. ― 2023. ― № 4. ― С. 63‒71.; Chen, H. Effects of microfluidic morphologies on the interfacial microstructure and mechanical properties of Ti3SiC2 ceramic and pure copper brazed joints / H. Chen, S. Zhao, X. Nai // Ceram. Int. ― 2023. ― Vol. 49, № 10. ― P. 16370‒16378. https://doi.org/10.1016/j.ceramint.2023.01.239.; Yang, Z. Electrical conductivities and mechanical properties of Ti3SiC2 reinforced Cu-based composites prepared by cold spray / Z. Yang, J. Xu, Y. Qian // J. Alloys Compd. ― 2023. ― Vol. 946. ― Article 169473. https://doi.org/10.1016/j.jallcom.2023.169473.; Zhu, W. Low temperature and pressureless synthesis of high-purity Ti3SiC2 MAX phase from TiC via κAl2O3 addition through reactive melt infiltration / W. Zhu, Y. Ren, M. Li [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44, № 7. ― P. 4398‒4409. https://doi.org/10.1016/j.jeurceramsoc.2024.01.088.; Li, Y. First principles study of stability, electronic structure and fracture toughness of Ti3SiC2/TiC interface / Y. Li, X.Z. Zhang, S. Y. Zhang [et al.] // Vac. ― 2022. ― Vol. 196. ― Article 110745.; Alves, M. F. R. P. Preparation of TiC/Ti3SiC2 composite by sintering mechanical alloyed Ti‒Si‒C powder mixtures / M. F. R. P. Alves, C. dos Santos, B. X. de Freitas [et al.] // J. nanosci. nanotech. ― 2020. ― Vol. 20, № 7. ― P. 4580‒4586.; Lou, Z. In-situ fabrication and characterization of TiC matrix composite reinforced by SiC and Ti3SiC2 / Z. Lou, Y. Li, Q. Zou [et al.] // Ceram. Int. ― 2023. ― № 12. ― P. 20849‒20859. https://doi.org/10.1016/j.ceramint.2023.03.218.; Zhang, X. Improved mechanical properties of reaction-bonded SiC through in-situ formation of Ti3SiC2 / X. Zhang, D. Chen, Q. Luo [et al.] // Ceram. Int. ― 2023. ― Vol. 49, № 15. ― P. 32750‒32757. https://doi.org/10.1016/j.ceramint.2023.07.243.; Wu, J. Reaction mechanism and mechanical properties of SiC joint brazed by in-situ formation of Ti3SiC2 / J. Wu, J.Yan, H. Peng [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44, № 6. ― P. 3777‒3783. https://doi.org/10.1016/j.jeurceramsoc.2023.12.097.; Islak, B. Y. Synthesis and properties of TiB2/Ti3SiC2 composites / B. Y. Islak, D. Candar // Ceram. Int. ― 2021. ― Vol. 47, № 1. ― P. 1439‒1446. https://doi.org/10.1016/j.ceramint.2020.09.098.; Zou, W. J. Mechanical, thermal physical properties and thermal shock resistance of in situ (TiB2 + SiC)/ Ti3SiC2 composite / W. J. Zou, H. B. Zhang, J. Yang [et al.] // J. Alloys Compd. ― 2018. ― Vol. 741. ― P. 44‒50.; Севостьянов, Н. В. Высокотемпературное окисление материалов на основе MAX-фазы Ti3SiC2, синтезированных методом искрового плазменного спекания / Н. В. Севостьянов, О. В. Басаргин, В. Г. Максимов // Неорг. Матер. ― 2019. ― Т. 55, № 1. ― С. 11‒15. https://doi.org/10.1134/S0002337X19010111.; Csáki, Š. Preparation of Ti3SiC2 MAX phase from Ti, TiC, and SiC by SPS / Š. Csáki, F. Lukáč, J. Veverka // Ceram. Int. ― 2022. ― Vol. 48, № 19. ― P. 28391‒28395. https://doi.org/10.1016/j.ceramint.2022.06.149.; Chen, D. Mechanical performance and oxidation resistance of SiC castables with lamellar Ti3SiC2 coatings on SiC aggregates prepared by SPS / D. Chen, H. Gu, A. Huang [et al.] // J. Alloys Compd. ― 2019. ― Vol. 791. ― P. 461‒468. https://doi.org/10.1016/j.jallcom.2019.03.358.; Islak, B. Y. Evaluation of properties of spark plasma sintered Ti3SiC2 and Ti3SiC2/SiC composites / B. Y. Islak, E. Ayas // Ceram. Int. ― 2019. ― Vol. 45, № 9. ― P. 12297‒12306.; Magnus, C. Microstructures and intrinsic lubricity of in situ Ti3SiC2‒TiSi2‒TiC MAX phase composite fabricated by reactive spark plasma sintering (SPS) / C. Magnus, D. Cooper, L. Ma // Wear. ― 2020. ― Vol. 448/449. ― Article 203169. https://doi.org/10.1016/j.wear.2019.203169.; Galvin, T. Laser sintering of electrophoretically deposited (EPD) Ti3SiC2 MAX phase coatings on titanium / T. Galvin, N. C. Hyatt, W. M. Rainforth // Surf. Coat. Technol. ― 2019. ― Vol. 366. ― P. 199‒203. https://doi.org/10.1016/j.surfcoat.2019.03.031.; Magnus, C. Synthesis and microstructural evolution in ternary metalloceramic Ti3SiC2 consolidated via the Maxthal 312 powder route / C. Magnus, T. Galvin, L. Ma // Ceram. Int. ― 2020. ― Vol. 46, № 10. ― P. 15342‒15356. https://doi.org/10.1016/j.ceramint.2020.03.078.; Chahhou, B. Synthesis of Ti3SiC2 coatings onto SiC monoliths from molten salts / B. Chahhou, C. LabrugèreSarroste, F. Ibalot // J. Eur. Ceram. Soc. ― 2022. ― Vol. 42, № 13. ― P. 5484‒5492. https://doi.org/10.1016/j.jeurceramsoc.2022.05.054.; Xu, H. Microstructure and properties of plasma sprayed copper-matrix composite coatings with Ti3SiC2 addition / H. Xu, T. Fu, P. Wang // Surf. Coat. Technol. ― 2023. ― Vol. 460. ― Article 129434. https://doi.org/10.1016/j.surfcoat.2023.129434.; Xiong, Y. Fabrication of TiC coated short carbon fiber reinforced Ti3SiC2 composites: Process, microstructure and mechanical properties / Y. Xiong, H. Li, J. Huang // J. Eur. Ceram. Soc. ― 2022. ― Vol. 42, № 9. ― P. 3770‒3779. https://doi.org/10.1016/j.jeurceramsoc.2022.03.024.; Li, M. Novel WC‒Co‒Ti3SiC2 cemented carbide with ultrafine WC grains and improved mechanical properties / M. Li, M. Gong, Z. Cheng [et al.] // Ceram. Int. ― 2022. ― Vol. 48, № 15. ― P. 22335‒22342. https://doi.org/10.1016/j.ceramint.2022.04.239.; Bazhin, P. M. In-situ study of the process of selfpropagating high-temperature synthesis of titanium carbide with a nichrome binder / P. M. Bazhin, M. S. Antipov, A. S. Konstantinov // Mater. Lett. ― 2022. ― Vol. 308. ― Article 131086. https://doi.org/10.1016/j.matlet.2021.131086.; Vershinnikov, V. I. Formation of V2AlC MAX phase by SHS involving magnesium reduction of V2O5 / V. I. Vershinnikov, D. Yu. Kovalev // Ceram. Int. ― 2023. ― Vol. 49, № 4. ― P. 6063‒6067. https://doi.org/10.1016/j.ceramint.2022.10.134.; Bazhina, A. D. Materials based on the MAX phases of the Ti‒Al‒C system obtained under combustion and high-temperature shear deformation / A. D. Bazhina, A. S. Konstantinov, A. P. Chizhikov [et al.] // Mater. Lett. ― 2022. ― Vol. 318. ― Article 132196. https://doi.org/10.1016/j.matlet.2022.132196.; Прокопец, А. Д. Строение и механические характеристики слоистого композиционного материала на основе мах-фазы Ti3AlC2, полученного методом свободного СВС-сжатия / А. Д. Прокопец, П. М. Бажин, А. С. Константинов [и др.] // Неорг. матер. ― 2021. ― Т. 9. ― С. 986‒990. https://doi.org/10.31857/S0002337X2109013X.; Прокопец, А. Д. Закономерности формирования структуры градиентных композиционных материалов на основе МАХ-фазы Ti3AlC2 на титане / А. Д. Прокопец, А. С. Константинов, А. П. Чижиков // Неорг. матер. ― 2020. ― Т. 56. ― С. 1145‒1150. https://doi.org/10.31857/S0002337X20100127.; Константинов, А. С. Изучение влияния высокотемпературного отжига на структуру и свойства композиционного материала на основе TiC/TiB2/Ti3SiC2 / А. С. Константинов, А. П. Чижиков, М. С. Антипов, Н. Ю. Хоменко // Новые огнеупоры. ― 2023. ― Т. 8. ― С. 48‒54. https://doi.org/10.17073/1683-4518-2023-8-48-53.; Hanson, W. A. Ionizing vs collisional radiation damage in materials: separated, competing, and synergistic effects in Ti3SiC2 / W. A. Hanson, M. K. Patel, M. L. Crespillo [et al.] // Acta Mater. ― 2019. ― Vol. 50. ― P. 195‒205.; Bazhin, P. M. SHS extrusion of materials based on the Ti‒Al‒C MAX phase / P. M. Bazhin, A. M. Stolin // Dokl. Chem. ― 2011. ― Vol. 439. ― P. 237‒239. https://doi.org/10.1134/S0012500811080052.; Stolin, A. M. Production of large compact plates from ceramic powder materials by unconfined SHS compaction / A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, M. I. Alymov // Dokl. Chem. ― 2018. ― Vol. 480. ― P. 136‒138. https://doi.org/10.1134/S0012500818060083.; Константинов, А. С. Влияние соотношения исходных компонентов в системе Ti‒B на структуру и свойства материалов, полученных методом СВСэкструзии / А. С. Константинов, А. П. Чижиков, М. С. Антипов [и др.] // Перспективные материалы. ― 2023. ― T. 68. ― № 6. ― C. 842‒848. https://doi.org/10.31857/S0044457X22602395.; Константинов, А. С. Влияние высокотемпературного отжига на структуру и свойства композиционного материала на основе TiC/TiB2/Ti3SiC2 / А. С. Константинов, А. П. Чижиков, М. С. Антипов [и др.] // Новые огнеупоры. ― 2023. ― № 8. ― С. 48‒54. https://doi.org/10.17073/1683-4518-2023-8-48-53.; https://newogneup.elpub.ru/jour/article/view/2178

  13. 13
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 2 (2024); 30-36 ; Новые огнеупоры; № 2 (2024); 30-36 ; 1683-4518 ; 10.17073/1683-4518-2024-2

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2116/1706; Kozerozhets, I. V. Acquisition, properties, and application of nanosized magnesium oxide powders: an overview / I. V. Kozerozhets, G. P. Panasyuk, L. A. Azarova [et al.] // Theor. Found. Chem. Eng. ― 2021. ― Vol. 55. ― P. 1126‒1132. https://doi.org/10.1134/S004057952106004X.; Panasyuk, G. P. Method for synthesis of fine crystalline magnesium aluminate spinel / G. P. Panasyuk, I. V. Kozerozhets, M. N. Danchevskaya [et al.] // Dokl. Chem. ― 2019. ― Vol. 487. ― P. 218‒220. https://doi.org/10.1134/S0012500819080019.; Malinina, E. A. A new approach to the synthesis of nanocrystalline cobalt boride in the course of the thermal decomposition of cobalt complexes [Co(DMF)6]2+ with boron cluster anions / E. A. Malinina, I. I. Myshletsov, G. A. Buzanov [et al.] // Molecules. ― 2023. ― Vol. 28. ― Article 453. https://doi.org/10.3390/molecules28010453.; Malinina, E. A. Synthesis and thermal reduction of complexes [NiLn][B10H10] (L = DMF, H2O, n = 6; L = N2H4, n = 3): Formation of Solid Solutions Ni3C1 – xВx / E. A. Malinina, L. V. Goeva, G. A. Buzanov [et al.] // Russ. J. Inorg. Chem. ― 2020. ― Vol. 65. ― P. 126‒132. https://doi.org/10.1134/S0036023620010118.; Jiang, Q. Strengthening mechanism of Al2O3‒ZrO2‒C sliding plate material by existence modes of in situ generated β-SiC whiskers / Q. Jiang, Y. Peng, B. Han [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 39815‒39824. https://doi.org/10.1016/j.ceramint.2023.09.005.; Tang, B. Failure analysis of Al2O3‒C‒SiO2 slide gate plates during continuous casting based on numerical simulation / B. Tang, Z. Lu, F. Li [et al.] // J. Mater. Res. Technol. ― 2023. ― Vol. 24. ― P. 6107‒6117. https://doi.org/10.1016/j.jmrt.2023.04.174.; Liu, X. Preparation and application of unfired Al2O3‒ Al‒C slide plate materials in the presence of trace Zn / X. Liu, Z. Luo, J. Gao [et al.] // Ceram. Int. ― 2021. ― Vol. 47. ― P. 1578‒1587. https://doi.org/10.1016/j.ceramint.2020.08.271.; Labadie, M. Interaction between calcium and Al2O3‒ ZrO2‒C slide gate plates / M. Labadie, M. Lujan Dignami, S. Camelli // J. Mater. Res. Technol. ― 2012. ― Vol. 1. ― P. 103‒108. https://doi.org/10.1016/S2238-7854(12)70019-4.; Bahamirian, M. High-temperature cyclic oxidation of micro- and nano-ZrO2‒25 wt. % CeO2‒2.5 wt. % Y2O3 thermal barrier coatings at 1300 °C / M. Bahamirian, A. Keyvani, R. Irankhah [et al.] // Surf. Coat. Technol. ― 2023. ― Vol. 474. ― Article 130076. https://doi.org/10.1016/j.surfcoat.2023.130076.; Franco, D. Wear behavior at high temperatures of ZrO2‒Al2O3 plasma sprayed coatings and an electromelted AZS refractory / D. Franco, H. Ageorges, E. Lopez [et al.] // Surf. Coat. Technol. ― 2021. ― Vol. 425. ― Article 127715. https://doi.org/10.1016/j.surfcoat.2021.127715.; Wang, W. Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag / W. Wang, L. Xue, T. Zhang [et al.] // Ceram. Int. ― 2019. ― Vol. 45. ― P. 20664‒20673. https://doi.org/10.1016/j.ceramint.2019.07.049.; Liu, L. Continuous supercritical hydrothermal synthesis of stabilized ZrO2 nanocomposites: Doping mechanism of typical metals and transition elements / L. Liu, S. Wang, G. Jiang [et al.] // Mater. Today Chem. ― 2024. ― Vol. 35. ― Article 101902. https://doi.org/10.1016/j.mtchem.2024.101902.; Zhao, Y. Effects of calcination temperature on grain growth and phase transformation of nano-zirconia with different crystal forms prepared by hydrothermal method / Y. Zhao, L. Xu, M. Guo [et al.] // J. Mater. Res. Technol. ― 2022. ― Vol. 19. ― P. 4003‒4017. https://doi.org/10.1016/j.jmrt.2022.06.137.; Matsui, K. Review: microstructure-development mechanism during sintering in polycrystalline zirconia / K. Matsui, H. Yoshida, Y. Ikuhara // Int. Mater. Rev. ― 2018. ― Vol. 63. ― P. 375‒406. https://doi.org/10.1080/09506608.2017.1402424.; Fujii, S. Empirical interatomic potentials for ZrO2 and YSZ polymorphs: Application to a tetragonal ZrO2 grain boundary / S. Fujii, K. Shimazaki, A. Kuwabara // Acta Mater. ― 2024. ― Vol. 262. ― Article 119460. https://doi.org/10.1016/j.actamat.2023.119460.; Keerthana, L. MgO‒ZrO2 mixed nanocomposites: fabrication methods and applications / L. Keerthana, C. Sakthivel, I. Prabha // Mater. Today Sustain. ― 2019. ― Vol. 3/4. ― Article 100007. https://doi.org/10.1016/j.mtsust.2019.100007.; Liu, S. In situ self-assembly preparation and characterization of CaO–ZrO2 nanopowders under vacuum / S. Liu // Vacuum. ― 2023. ― Vol. 213. ― Article 112089. https://doi.org/10.1016/j.vacuum.2023.112089.; Song, X. Thermophysical and mechanical properties of cubic, tetragonal and monoclinic ZrO2 / X. Song, Y. Ding, J. Zhang [et al.] / J. Mater. Res. Technol. ― 2023. ― Vol. 23. ― P. 648‒655. https://doi.org/10.1016/j.jmrt.2023.01.040.; Zhang, W. Preparation and properties of a porous ZrO2/SiZrBOC ceramic matrix composite with high temperature resistance and low thermal conductivity / W. Zhang, F. Shi, J. Wang [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44. ― P. 2329‒2337. https://doi.org/10.1016/j.jeurceramsoc.2023.11.007.; Lee, B. T. Microstructure and material properties of double-network type fibrous (Al2O3–m-ZrO2)/t-ZrO2 composites / B. T. Lee, S. K. Sarkar, H. Y. Song // J. Eur. Ceram. Soc. ― 2008. ― Vol. 28. ― P. 229‒233. https://doi.org/10.1016/j.jeurceramsoc.2007.05.010.; Hao, Z. Hydrothermal synthesized F doped ZrO2 powders with novel photocatalytic activities / Z. Hao, G. Ling, Z. Shengnan [et al.] // Inorg. Chem. Commun. ― 2024. ― Article 112170. https://doi.org/10.1016/j.inoche.2024.112170.; Kozerozhets, I. V. New approach to prepare the highly pure ceramic precursor for the sapphire synthesis / I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 28961‒28968. https://doi.org/10.1016/j.ceramint.2020.08.067.; Husain, M. S. Structural and optical analyses of hydrothermally synthesized ZrO2 nanopowder / M. S. Husain, V. Pandey, H. Ahmed [et al.] // Mater. Today: Proc. ― 2023. https://doi.org/10.1016/j.matpr.2023.06.079.; Ban, J. Preparation and application of ZrB2‒ SiCw composite powder for corrosion resistance improvement in Al2O3‒ZrO2‒C slide plate materials / J. Ban, C. Zhou, L. Feng [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 9817‒9825. https://doi.org/10.1016/j.ceramint.2019.12.255.; Baqiah, H. Nanostructure, optical, electronic, photoluminescence and magnetic properties of Co-doped ZrO2 sol-gel films / H. Baqiah, M. M. A. Kechik, J. Pasupuleti [et al.] // Results Phys. ― 2023. ― Vol. 55. ― Article 107194. https://doi.org/10.1016/j.rinp.2023.107194.; Lusiola, T. Electrospinning of ZrO2 fibers without sol-gel methods: Effect of inorganic Zr-source on electrospinning properties and phase composition / T. Lusiola, A. Ichangi, D. Weil [et al.] // Open Ceram. ― 2023. ― Vol. 12. ― Article 100324. https://doi.org/10.1016/j.oceram.2022.100324.; Khalili, S. Successful electrospinning fabrication of ZrO2 nanofibers: A detailed physical-chemical characterization study / S. Khalili, H. M. Chenari // J. Alloys Compd. ― 2020. ― Vol. 828. ― Article 154414. https://doi.org/10.1016/j.jallcom.2020.154414.; Shcherbakov, V. A. Вarothermic treatment of TixZr1‒xC mixed carbides produced by MA-SHS consolidation / V. A. Shcherbakov, I. E. Semenchuk, A. N. Gryadunov [et al.] // Materialia. ― 2023. ― Vol. 32. ― 101924. https://doi.org/10.1016/j.mtla.2023.101924.; Miloserdov, P. A. Metallothermic SHS of Al2O3‒Cr2O3 + TiC ceramic composite material / P. A. Miloserdov, V. A. Gorshkov, D. E. Andreev [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 24071‒24076. https://doi.org/10.1016/j.ceramint.2023.04.145.; Bazhin, P. Titanium-titanium boride matrix composites prepared in situ under conditions combining combustion processes and high-temperature shear deformation / P. Bazhin, A. Chizhikov, A. Bazhina [et al.] // Mater. Sci. Eng. A. ― 2023. ― Vol. 874. ― Article 145093. https://doi.org/10.1016/j.msea.2023.145093.; Bazhina, A. Structure, phase composition and mechanical characteristics of layered composite materials based on TiB/xTi‒Al/α-Ti (x = 1, 1,5, 3) obtained by combustion and high-temperature shear deformation / A. Bazhina, A. Chizhikov, A. Konstantinov [et al.] // Mater. Sci. Eng. A. ― 2022. ― Vol. 858. ― Article 144161. https://doi.org/10.1016/j.msea.2022.144161.; Lapshin, O. V. Role of mixing and milling in mechanochemical synthesis (review) / O. V. Lapshin, E. V. Boldyreva, V. V. Boldyrev // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66. ― P. 433‒453. https://doi.org/10.1134/S0036023621030116.; Tomilin, O. B. Preparation of luminophore CаTiO3:Pr3+ by self-propagating high-temperature synthesis / O. B. Tomilin, E. E. Muryumin, M. V. Fadin, S. Yu. Shchipakin // Russ. J. Inorg. Chem. ― 2022. ― Vol. 67. ― P. 431‒438. https://doi.org/10.1134/S0036023622040192.; Bazhin, P. Synthesis and structure peculiarities of composite material based on Al2O3‒ZrO2 hardened with W and WB particles / P. Bazhin, E. Kostitsyna, A. Chizhikov [et al.] // J. Alloys Compd. ― 2021. ― Vol. 856. ― Article 157576. https://doi.org/10.1016/j.jallcom.2020.157576.; Stolin, A. Synthesis and characterization of Al2O3‒ ZrO2-based eutectic ceramic powder material dispersionhardened with ZrB2 and WB particles prepared by SHS / A. Stolin, P. Bazhin, A. Konstantinov // Ceram. Int. ― 2018. ― Vol. 44. ― P. 13815‒13819. https://doi.org/10.1016/j.ceramint.2018.04.225.; Chizhikov, A. P. Self-propagating high-temperature synthesis of ceramic material based on aluminummagnesium spinel and titanium diboride / A. P. Chizhikov, A. S. Konstantinov, P. M. Bazhin // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66. ― P. 1115‒1120. https://doi.org/10.1134/S0036023621080039.; Bazhin, P. Ceramic Ti‒B composites synthesized by combustion followed by high-temperature deformation / P. Bazhin, A. Stolin, A. Konstantinov [et al.] // Materials. ― 2016. ― Vol. 9. ― Article 1027. https://doi.org/10.3390/ma9121027.; Bazhin, P. М. Combustion of Ti‒Al‒C compacts in air and helium: a TRXRD study / P. M. Bazhin, D. Yu. Kovalev, M. A. Luginina [et al.] // Int. J. Self-Propagating HighTemp. Synth. ― 2016. ― Vol. 25. ― P. 30‒34. https://doi.org/10.3103/S1061386216010027.; Liu, T. A review of zirconia-based solid electrolytes / T. Liu, X. Zhang, X. Wang [et al.] // Ionics. ― 2016. ― Vol. 22. ― P. 2249‒2262. https://doi.org/10.1007/s11581-016-1880-1.; Liu, L. The ZrO2 Formation in ZrB2/SiC Composite Irradiated by Laser / L. Liu, Z. Ma, Z. Yan [et al.] // Materials. ― 2015. ― Vol. 8. ― P. 8745‒8750. https://doi.org/10.3390/ma8125475.; Wang, J. Comparison of corrosion behaviors and wettability of CMAS on Ta2O5‒Y2O3 costabilized ZrO2 and YSZ thermal barrier coatings / J. Wang, Y. Wang, X. Lu // J. Eur. Ceram. Soc. 2023. ― Vol. 43. ― P. 5636‒5651. https://doi.org/10.1016/j.jeurceramsoc.2023.05.020.; https://newogneup.elpub.ru/jour/article/view/2116

  14. 14
    Academic Journal

    Contributors: Исследование выполнено при поддержке Российского научного фонда, грант № 22-79-10182, https://rscf.ru/project/22-79-10182/.

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 4 (2024); 22-28 ; Новые огнеупоры; № 4 (2024); 22-28 ; 1683-4518 ; 10.17073/1683-4518-2024-4

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2169/1759; Nazari, K. Advanced manufacturing methods for ceramic and bioinspired ceramic composites: а review / K. Nazari, P. Tran, P. Tan [et al.] // Open Ceram. ― 2023. ― Vol. 15. ― Article 100399. https://doi.org/10.1016/j.oceram.2023.100399.; Panasyuk, G. P. A new method for synthesis of fine crystalline magnesium aluminate spinel / G. P. Panasyuk, I. V. Kozerozhets, M. N. Danchevskaya [et al.] // Dokl. Chem. ― 2019. ― Vol. 487, № 2. ― P. 218‒220. https://doi.org/10.1134/S0012500819080019.; Malinina, E. A. A new approach to the synthesis of nanocrystalline cobalt boride in the course of the thermal decomposition of cobalt complexes [Co(DMF)6]2+ with boron cluster anions / E. A. Malinina, I. I. Myshletsov, G. A. Buzanov [et al.] // Molecules. ― 2023. ― Vol. 28. ― Article 453. https://doi.org/10.3390/molecules28010453.; Selvarajan, L. Surface morphology and drilled hole accuracy of conductive ceramic composites Si3N4‒TiN and MoSi2‒SiC on EDMed surfaces / L. Selvarajan, K. Venkataramanan // Wear. ― 2023. ― Vol. 530/531. ― Article 204973. https://doi.org/10.1016/j.wear.2023.204973.; Zhong, Y. Insight into tuning of ZrO2 distribution and mechanical properties of directionally solidified Al2O3/(5Re0.2)AG/ZrO2 eutectic ceramic composites / Y. Zhong, Z. Li, X. Wang // Compos. B: Eng. ― 2023. ― Vol. 266. ― Article 111016. https://doi.org/10.1016/j.compositesb.2023.111016.; Liu, B. Fabrication and mechanical properties of TiN whisker toughening TiB2 based ceramic cutting tool composite / B. Liu, G. Cui, J. Sun [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 1874‒1878. https://doi.org/10.1016/j.ceramint.2023.10.288.; Wang, X. Cutting performance and wear mechanisms of the graphene-reinforced Al2O3‒WC‒TiC composite ceramic tool in turning hardened 40Cr steel / X. Wang, J. Zhao, Y. Gan [et al.] // Ceram. Int. ― 2022. ― Vol. 48. ― P. 13695‒13705. https://doi.org/10.1016/j.ceramint.2022.01.251.; Wang, H. Strengthening of Al2O3‒C slide gate plate refractories with microcrystalline graphite / H. Wang, Y. Li, T. Zhu // Ceram. Int. ― 2017. ― Vol. 43. ― P. 9912‒9918. https://doi.org/10.1016/j.ceramint.2017.04.178.; Ban, J. Preparation and application of ZrB2‒ SiCw composite powder for corrosion resistance improvement in Al2O3-ZrO2‒C slide plate materials / J. Ban, C. Zhou, L. Feng [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 9817‒9825. https://doi.org/10.1016/j.ceramint.2019.12.255.; Varghese, P. Plasma sprayed alumina-yttria composite ceramic coating for electrical insulation applications / P. Varghese, E. Vetrivendan, R. Krishnan [et al.] // Surf. Coat. Technol. ― 2021. ― Vol. 405. ― Article 126566. https://doi.org/10.1016/j.surfcoat.2020.126566.; Du, B. Ablation behavior of advanced TaSi2-based coating on carbon-bonded carbon fiber composite/ ceramic insulation tile in plasma wind tunnel / B. Du, C. Hong, X. Zhang [et al.] // Ceram. Int. ― 2018. ― Vol. 44. ― P. 3505‒3510. https://doi.org/10.1016/j.ceramint.2017.11.122.; Zhang, W. Preparation and properties of a porous ZrO2/SiZrBOC ceramic matrix composite with high temperature resistance and low thermal conductivity / W. Zhang, F. Shi, J. Wang [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44. ― P. 2329‒2337. https://doi.org/10.1016/j.jeurceramsoc.2023.11.007.; Wang, Y. Microstructure and properties of SrTiO3/ ZrO2 ceramic composites prepared through pressureless sintering / Y. Wang, J. Ye, J. Li [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 1908‒1917. https://doi.org/10.1016/j.ceramint.2023.10.293.; Cao, W. Research on the drying kinetics for the microwave drying of Y2O3‒ZrO2 ceramic powder / W. Cao, J. Zhou, C. Ren [et al.] // JMR&T. ― 2023. ― Vol. 26. ― P. 4563‒4580. https://doi.org/10.1016/j.jmrt.2023.08.183.; Avdeeva, V. V. [Co(solv)6][B10H10] (solv = DMF and DMSO) for low-temperature synthesis of borides / V. V. Avdeeva, I. N. Polyakova, A. V. Vologzhanina [et al.] // Russ. J. Inorg. Chem. ― 2016. ― Vol. 61. ― P. 1125‒1134. https://doi.org/10.1134/S0036023616090023.; Zhang, K. Broadening the microstructure regime of Al2O3‒ZrO2 hypereutectic ceramic fabricated via laser powder bed fusion / K. Zhang, S. Li, T. Liu [et al.] // Smart Mater. Manuf. ― 2024. ― Vol. 2. ― Article 100048. https://doi.org/10.1016/j.smmf.2024.100048.; Fujii, S. Empirical interatomic potentials for ZrO2 and YSZ polymorphs: Application to a tetragonal ZrO2 grain boundary / S. Fujii, K. Shimazaki, A. Kuwabara // Acta Materialia. ― 2024. ― Vol. 262. ― Article 119460. https://doi.org/10.1016/j.actamat.2023.119460.; Liang, Z. Structural, mechanical and thermodynamic properties of ZrO2 polymorphs by first-principles calculation / Z. Liang, W. Wang, M. Zhang [et al.] // Phys. B: Condens. Matter. ― 2017. ― Vol. 511. ― P. 10‒19. https://doi.org/10.1016/j.physb.2017.01.025.; Mosavari, M. Nano-ZrO2: а review on synthesis methodologies / M. Mosavari, A. Khajehhaghverdi, R. M. Aghdam // Inorg. Chem. Commun. ― 2023. ― Vol. 157. ― Article 111293. https://doi.org/10.1016/j.inoche.2023.111293.; Liu, L. Continuous supercritical hydrothermal synthesis of stabilized ZrO2 nanocomposites: Doping mechanism of typical metals and transition elements / L. Liu, S. Wang, G. Jiang [et al.] // Mater. Today Chem. ― 2024. ― Vol. 35. ― Article 101902. https://doi.org/10.1016/j.mtchem.2024.101902.; Kozerozhets, I. V. Acquisition, properties, and application of nanosized magnesium oxide powders: an overview / I. V. Kozerozhets, G. P. Panasyuk, L. A. Azarova [et al.] // Theor. Found. Chem. Eng. ― 2021. ― Vol. 55. ― P. 1126‒1132. https://doi.org/10.1134/S004057952106004X.; Chen, G. Stability properties and structural characteristics of CaO-partially stabilized zirconia ceramics synthesized from fused ZrO2 by microwave sintering / G. Chen, Y. Ling, Q. Li [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 16842‒16848. https://doi.org/10.1016/j.ceramint.2020.03.261.; Lv, M. Fabrication and mechanical properties of TiB2/ZrO2 functionally graded ceramics / M. Lv, W. Chen, C. Liu // IJRMHM. ― 2014. ― Vol. 46. ― P. 1‒5. https://doi.org/10.1016/j.ijrmhm.2014.04.019.; Basu, B. Processing and mechanical properties of ZrO2‒TiB2 composites / B. Basu, J. Vleugels, O. V. Biest // J. Eur. Ceram. Soc. ― 2005. ― Vol. 25. ― P. 3629‒3637. https://doi.org/10.1016/j.jeurceramsoc.2004.09.017.; Fattahi, M. On the simulation of spark plasma sintered TiB2 ultra high temperature ceramics: а numerical approach / M. Fattahi, M. N. Ershadi, M. Vajdi [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 14787‒14795. https://doi.org/10.1016/j.ceramint.2020.03.003.; Baqiah, H. Nanostructure, optical, electronic, photoluminescence and magnetic properties of Co-doped ZrO2 sol–gel films / H. Baqiah, M. M. A. Kechik, J. Pasupuleti [et al.] // Results Phys. ― 2023. ― Vol. 55. ― Article 107194. https://doi.org/10.1016/j.rinp.2023.107194.; Díaz-Parralejo, A. Optical and mechanical characterization of sol-gel thin films of ZrO2 stabilized with different Y2O3-doping mol % / A. Díaz-Parralejo, D. Maya-Retamar, M. Calderón-Godoy [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 19552‒19555. https://doi.org/10.1016/j.ceramint.2023.03.029.; Mohsen, Q. Effect of pH on hydrothermal synthesis of ZrO2 nanoparticles and their electrocatalytic activity for hydrogen production / Q. Mohsen, W. S. Al-Gethami, Z. Zaki [et al.] // Int. J. Electrochem. Sci. ― 2022. ― Vol. 17. ― Article 22073. https://doi.org/10.20964/2022.07.24.; Kozerozhets, I. V. Mechanism of the conversion of γ-Аl2О3 nanopowder into boehmite under hydrothermal conditions / I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov [et al.] // Inorg. Mater. ― 2020. ― Vol. 56. ― P. 716‒722. https://doi.org/10.1134/S002016852007009.; Liu, L. Supercritical hydrothermal synthesis of nano-ZrO2: Influence of technological parameters and mechanism / L. Liu, S. Wang, B. Zhang [et al.] // J. Alloys Compd. ― 2022. ― Vol. 898. ― Article 162878. https://doi.org/10.1016/j.jallcom.2021.162878.; Shon, I. J. Mechanochemical synthesis and fast consolidation of a nanostructured CoTi‒ZrO2 composite by high-frequency induction heating / I. J. Shon // Ceram. Int. ― 2016. ― Vol. 42. ― P. 13314‒13318. https://doi.org/10.1016/j.ceramint.2016.05.060.; Lapshin, O. V. Role of mixing and milling in mechanochemical synthesis (review) / O. V. Lapshin, E. V. Boldyreva, V. V. Boldyrev // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66. ― P. 433‒453. https://doi.org/10.1134/S0036023621030116.; Chen, Y. Effect of sintering temperature on the microstructures and mechanical properties of ZrO2 ceramics fabricated by additive manufacturing / Y. Chen, J. Tan, J. Sun [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 11392‒11399. https://doi.org/10.1016/j.ceramint.2024.01.039.; Jing, Q. Preparation of near fully dense (LaO1.5)x(ErO1.5)x(YO1.5)0.03‒0.5x(ZrO2)0.97‒x ceramics with restricted grain growth and high surface residual stress by hot pressing sintering at 950 °C / Q. Jing, J. Xing, S. Cui [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 5796‒5805. https://doi.org/10.1016/j.ceramint.2023.11.385.; Lee, J. Mechanical properties of TiC reinforced MgO‒ZrO2 composites via spark plasma sintering / J. Lee, K.-B. Jang, S. Lee [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 17255‒17260. https://doi.org/10.1016/j.ceramint.2023.02.091.; Chizhikov, A. P. Self-propagating high-temperature synthesis of ceramic material based on aluminum-magnesium spinel and titanium diboride / A. P. Chizhikov, A. S. Konstantinov, P. M Bazhin // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66. ― P. 1115‒1120. https://doi.org/10.1134/S0036023621080039.; Tomilin, O. B. Preparation of luminophore CаTiO3:Pr3+ by self-propagating high-temperature synthesis / O. B. Tomilin, E. E. Muryumin, M. V. Fadin [et al.] // Russ. J. Inorg. Chem. ― 2022. ― Vol. 67. ― P. 431‒438. https://doi.org/10.1134/S0036023622040192.; Bazhin, P. M. Combustion of Ti‒Al‒C compacts in air and helium: a TRXRD study / P. M. Bazhin, D. Yu. Kovalev, M. A. Luginina [et al.] // Int. J. Self Propag. High Temp. Synth. ― 2016. ― Vol. 25. ― P. 30‒34. https://doi.org/10.3103/S1061386216010027.; Bazhin, P. Long-sized rods of Al2O3‒SiC‒TiB2 ceramic composite material obtained by SHS-extrusion: microstructure, X-ray analysis and properties / P. Bazhin, A. Chizhikov, A. Stolin [et al.] // Ceram. Int. ― 2021. ― Vol. 47. ― P. 28444‒28448. https://doi.org/10.1016/j.ceramint.2021.06.262.; Bazhin, P. M. Ceramic Ti‒B composites synthesized by combustion followed by high-temperature deformation / P. M. Bazhin, A. M. Stolin, A. S. Konstantinov [et al.] // Materials. ― 2016. ― Vol. 9. ― Article 1027. https://doi.org/10.3390/ma9121027.; Stolin, A. M. Deformation of SHS products under combustion conditions / A. M. Stolin, P. M. Bazhin, M. I. Alymov // Inorg. Mater. ― 2016. ― Vol. 52. ― P. 618‒624. https://doi.org/10.1134/S0020168516060169.; Prokopets, A. D. Structural features of layered composite material TiB2/TiAl/Ti6Al4V obtained by unrestricted SHS-compression / A. D. Prokopets, P. M. Bazhin, A. S. Konstantinov [et al.] // Mater. Lett. ― 2021. ― Vol. 300. ― Article 130165. https://doi.org/10.1016/j.matlet.2021.130165.; Bazhin, P. M. Structure, physical and mechanical properties of TiB‒40 wt. % Ti composite materials obtainedby unrestricted SHS compression / P. M. Bazhin, A. S. Konstantinov, A. P. Chizhikov [et al.] // Mater. Today Commun. ― 2020. ― Vol. 25. ― Article 101484. https://doi.org/10.1016/j.mtcomm.2020.101484.; Liu, T. A review of zirconia-based solid electrolytes / T. Liu, X. Zhang, X. Wang [et al.] // Ionics. ― 2016. ― Vol. 22. ― P. 2249‒2262. https://doi.org/10.1007/s11581-016-1880-1.; Wang, J. Comparison of corrosion behaviors and wettability of CMAS on Ta2O5‒Y2O3 co-stabilized ZrO2 and YSZ thermal barrier coatings / J. Wang, Y. Wang, X. Lu [et al.] // J. Eur. Ceram. Soc. ― 2023. ― Vol. 43. ― P. 5636‒5651. https://doi.org/10.1016/j.jeurceramsoc.2023.05.020.; https://newogneup.elpub.ru/jour/article/view/2169

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20