Showing 1 - 20 results of 20 for search '"роботизированная платформа"', query time: 0.61s Refine Results
  1. 1
    Academic Journal

    Source: Agricultural Machinery and Technologies; Том 17, № 1 (2023); 25-34 ; Сельскохозяйственные машины и технологии; Том 17, № 1 (2023); 25-34 ; 2073-7599

    File Description: application/pdf

    Relation: https://www.vimsmit.com/jour/article/view/503/456; Shafi, U., Mumtaz R., García-Nieto J., Hassan S.A., Zaidi S.A.R., Iqbal N. Precision agriculture techniques and practices: Fromconsiderations to applications. Sensors. 2019. N9. 3796.; Moysiadis V., Sarigiannidis P., Vitsas V., Khelifi A. Smart farming in Europe. Computer Science Review. 2021. N39. 100345.; Blok P., Boheemen K., van Evert F.K., IJsselmuiden J., Kim G.-H. Robot navigation in orchards with localization based on Particle filter and Kalman filter. Computers and Electronics in Agriculture. 2019. N157. 261-269.; Himesh S. Digital revolution and Big Data: A new revolution in agriculture. CAB Reviews. 2018. N13. 1-7.; Zhang Y. The Role of Precision Agriculture. Resource. 2019. N19. 9.; Khort D.O., Kutyrev A.I., Smirnov I.G. Research into the Parameters of a Robotic Platform for Harvesting Apples. Lecture Notes in Networks and Systems. 2022. N463. 149-159.; Bochtis D., Griepentrog H.W., Vougioukas S., Busato P., Berruto R., Zhou K. Route planning for orchard operations. Computers and Electronics in Agriculture. 2015. N113. 51-60.; Khort D., Kutyrev A., Filippov R., Semichev S. Development control system robotic platform for horticulture. E3S Web of Conferences. 2021. N262. 01024.; Andersen J.C., Ravn O., Andersen N.A. Autonomous rule-based robot navigation in orchards. Proceedings of the 7th IFAC Symposium on Intelligent Autonomous Vehicles, Lecce, Italy. 2010. Vol. 43(16). 43-48.; Radcliffe J., Cox J., Bulanon D.M. Machine vision for orchard navigation. Computers in Industry. 2018. N98. 165-171.; Harper N., McKerrow P. Recognising plants with ultrasonic sensing for mobile robot navigation. Robotics and Autonomous Systems. 2001. N34(2-3). 71-82.; Jones M.H., Bell J., Dredge D., Seabright M., Scarfe A., Duke M., MacDonald B. Design and testing of a heavy-duty platform for autonomous navigation in kiwifruit orchards. Biosystems Engineering. 2019. N187. 129-146.; Park H., Kwon J., Hwang T., Kim D.A. Development of Effective Object Detection System Using Multi-Device LiDAR Sensor in Vehicle Driving Environment. Journal of the KoreaInstitute of Electronic Communication Sciences. 2018. Vol. 13(2). 313-320.; Kim M., Bae S., Kim H. Real-Time 3D-LiDAR Object Detection in Autonomous Vehicle Systems Using Cluster-Based Candidates and DeepLearning. Journal of the institute of control robotics andsystems. 2019. Vol. 25(9). 795-801.; Zong C.G., Ji Z.J., Yu Y., Shi H. Research on obstacle avoidance method for mobile robot based on multisensor information fusion. Sensors and Materials. 2020. N32. 1159-1170.; Teixid M., Pallej T., Font D., Tresanchez M., Moreno J., Palacn J. Two-Dimensional RadialLaser Scanning for Circular Marker Detection and External Mobile Robot Tracking. Sensors. 2012. N12. 16482-16497.; Garrido M. Active optical sensors for tree stem detection and classification in nurseries. Sensors. 2014. N14(6). 10783-10803.; Luan P.G., Thinh N.T. Real-Time Hybrid Navigation System-Based Path Planning and Obstacle Avoidance for Mobile Robots. Applied Sciences. 2020. N10. 3355.; Ненайденко А.С., Поддубный В.И., Валекжанин А.И. Моделирование управления движением колесной сельскохозяйственной машины в режиме реального времени // Тракторы и сельхозмашины. 2018. N3. С. 32-38.; Измайлов А.Ю., Лобачевский Я.П., Ценч Ю.С. и др. О синтезе роботизированного сельскохозяйственного мабильного агрегата // Вестник российской сельскохозяйственной науки. 2019. N4. С. 63-68.; Бейлис В.М., Ценч Ю.С., Коротченя В.М., Старовойтов С.И., Кынев Н.Г. Тенденции развития прогрессивных машинных технологий и техники в сельскохозяйственном производстве // Вестник ВИЭСХ. 2018. N4 (33). С. 150-156.; Годжаев З.Д., Шевцов В.Г., Лавров А.В., Ценч Ю.С., Зубина В.А. Стратегия машинно-технологической модернизации сельского хозяйства России до 2030 года (Прогноз) // Технический сервис машин. 2019. N4(137). C. 220-229.; https://www.vimsmit.com/jour/article/view/503

  2. 2
    Academic Journal

    Contributors: The research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the Federal Scientific Agroengineering Center VIM (theme No. FGUN-2022-0011). The authors thank the reviewers for their contribution to the peer review of this work, Работа выполнена при поддержке Минобрнауки России в рамках Государственного задания ФГБНУ «Федеральный научный агроинженерный центр ВИМ» (тема № FGUN-2022-0011)

    Source: Agricultural Science Euro-North-East; Том 24, № 4 (2023); 685-696 ; Аграрная наука Евро-Северо-Востока; Том 24, № 4 (2023); 685-696 ; 2500-1396 ; 2072-9081

    File Description: application/pdf

    Relation: https://www.agronauka-sv.ru/jour/article/view/1419/696; Dunn J. L., Able A. J. Pre-harvest calcium effects on sensory quality and calcium mobility in strawberry fruit. Acta Horticulture. 2006;708(708):307-312. doi:10.17660/ActaHortic.2006.708.52; Moore K. A., Bradley L. K. North Carolina extension gardener handbook (Ch. 5). The University of North Carolina Press, North Carolina, USA, 2018. URL: https://content.ces.ncsu.edu/extension-gardener-handbook/5-diseases-and-disorders; Kuronuma T., Watanabe Y., Ando M., Watanabe H. Tipburn severity and calcium distribution in lisianthus (Eustoma Grandiflorum (Raf.) Shinn.) cultivars under different relative air humidity conditions. Agronomy. 2018;8(10):218. doi:10.3390/agronomy8100218; Bárcena A., Graciano C., Luca T., Guiamet J. J., Costa L. Shade cloths and polyethylene covers have opposite effects on tipburn development in greenhouse grown lettuce. Scientia Horticulturae. 2019;249:93-99. doi:10.1016/j.scienta.2019.01.023; Olle M., Williams I. H. Physiological disorders in tomato and some methods to avoid them. The Journal of Horticultural Science and Biotechnology. 2017;92(3):223-230. doi:10.1080/14620316.2016.1255569; Sayğı H. Effects of Organic Fertilizer Application on Strawberry (Fragaria vesca L.) Cultivation. Agronomy. 2022;12(5):1233. doi:10.3390/agronomy12051233; Mohamed M. H. M., Petropoulos S. A., Ali M. M. E. The Application of Nitrogen Fertilization and Foliar Spraying with Calcium and Boron Affects Growth Aspects, Chemical Composition, Productivity and Fruit Quality of Strawberry Plants. Horticulturae. 2021;7(8):257. doi:10.3390/horticulturae7080257; Cvelbar Weber N., Koron D., Jakopič J., Veberič R., Hudina M., Baša Česnik H. Influence of Nitrogen, Calcium and Nano-Fertilizer on Strawberry (Fragaria × ananassa Duch.) Fruit Inner and Outer Quality. Agronomy. 2021;11(5):997. doi:10.3390/agronomy11050997; Sabatino L., D’Anna F., Prinzivalli C., Iapichino G. Soil Solarization and Calcium Cyanamide Affect Plant Vigor, Yield, Nutritional Traits, and Nutraceutical Compounds of Strawberry Grown in a Protected Cultivation System. Agronomy. 2019;9(9):513. doi:10.3390/agronomy9090513; Kim H. M., Lee H. R., Kang J. H., Hwang S. J. Prohexadione-Calcium Application during Vegetative Growth Affects Growth of Mother Plants, Runners, and Runner Plants of Maehyang Strawberry. Agronomy. 2019;9(3):155. doi:10.3390/agronomy9030155; Cruz M., Mafra S., Teixeira E., Figueiredo F. Smart Strawberry Farming Using Edge Computing and IoT. Sensors. 2022;22(15):5866. doi:10.3390/s22155866; Basak J. K., Paudel B., Kim N. E., Deb N. C., Kaushalya Madhavi B. G., Kim H. T. Non-Destructive Estimation of Fruit Weight of Strawberry Using Machine Learning Models. Agronomy. 2022; 12(10):2487. doi:10.3390/agronomy12102487; Ferentinos K. P. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture. 2018;145:311-318. doi:10.1016/j.compag.2018.01.009; Vieira G. S., Fonseca A. U., Rocha B. M., Sousa N. M., Ferreira J. C., Felix J. P., Lima J. C., Soares F. Insect Predation Estimate Using Binary Leaf Models and Image-Matching Shapes. Agronomy. 2022;12(11):2769. doi:10.3390/agronomy12112769; Zheng C., Abd-Elrahman A., Whitaker V. Remote Sensing and Machine Learning in Crop Phenotyping and Management, with an Emphasis on Applications in Strawberry Farming. Remote Sensing. 2021;13(3):531. doi:10.3390/rs13030531; Mahmud M. S., Zaman Q. U., Esau T. J., Chang Y. K., Price G. W., Prithiviraj B. Real-Time Detection of Strawberry Powdery Mildew Disease Using a Mobile Machine Vision System. Agronomy. 2020;10(7):1027. doi:10.3390/agronomy10071027; Khort D., Kutyrev A., Smirnov I., Osypenko V., Kiktev N. Computer vision system for recognizing the coordinates location and ripeness of strawberries. Communications in Computer and Information Science. 2020;1158:334-343. doi:10.1007/978-3-030-61656-4_22; Maxwell A. E., Warner T. A., Guillén L. A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies - Part 1: Literature Review. Remote Sensing. 2021;13(13):2450. doi:10.3390/rs13132450; Maxwell A. E., Warner T. A., Guillén L. A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies - Part 2: Recommendations and Best Practices. Remote Sensing. 2021;13(13):2591. doi:10.3390/rs13132591

  3. 3
    Academic Journal

    Source: Agricultural Machinery and Technologies; Том 15, № 4 (2021); 35-41 ; Сельскохозяйственные машины и технологии; Том 15, № 4 (2021); 35-41 ; 2073-7599

    File Description: application/pdf

    Relation: https://www.vimsmit.com/jour/article/view/448/402; Хорт Д.О., Кутырев А.И., Смирнов И.Г., Воронков И.В. Разработка системы автоматизированного управления агротехнологиями в садоводстве // Сельскохозяйственные машины и технологии. 2021. Т. 15. N2. С. 61-68.; Ampatzidis Y., Tan L., Haley R., Whiting M.D. Cloud-basedharvest managementinformation system for hand-harvested specialtycrops. Computers and electronics in agriculture. 2016. 122. 161-167.; Fountas S., Sorensen C.G., Tsiropoulos Z., Cavalaris C., Lia­kos V., Gemtos T. Farm machinery management information system. Computers and electronics in agriculture. 2015. 110. 131-138.; Khort D., Kutyrev A., Filippov R., Semichev S. Development control system robotic platform for horticulture. E3S Web of Conferences. 2021. 262. 01024.; Khort D., Kutyrev A., Filippov R., Kiktev N., Komar­chuk D. Robotized platform for picking of strawberry berries. IEEE International Scientific-Practical Conference: Problems of Infocommunications Science and Technology. 2019. 869-872.; Khort D.O., Kutyrev A.I., Filippov R.A., Vershinin R.V. Device for robotic picking of strawberries. E3S Web of Conferences. 2020. 193. 01045.; Wu A., Zhu J., Ren T. Detection of apple defect using laser-induced light backscattering imaging and convolutional neural network. Computers and Electrical Engineering. 2020. 81. 106454.; Sofu M.M., Er O., Kayacan M.C., Cetisli B. Design of an automatic apple sorting system using machine vision. Computers and Electronics in Agriculture. 2016. 127. 395-405.; Baranowski P., Mazurek W. and Pastuszka-Wozniak J. Supervised classification of bruised apples with respect to the timeafter bruising on the basis of hyperspectral imaging data. Postharvest Biology and Technology. 2013. 86. 249-258.; Bhatt A.K., Pant D. Automatic apple grading model deve­lopment based on back propagation neural network and machine vision, and its performance evaluation. AI and Society. 2015. 30(1). 45-56.; Smirnov I.G., Kutyrev A.I., Kiktev N.A. Neural network for identifying apple fruits on the crown of a tree. E3S Web of Conferences. 2021. 270. 01021.; Kavdır I., Guyer D.E. Evaluation of different pattern re­cognition techniques for apple sorting. Biosystems engineering. 2008. 99. 211-219.; Zhang B., Huang W., Gong L., Li J., Zhao C., Liu C., Huang D. Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier. Journal of Food Engineering. 2015. 146. 143-151.; Kleynen O., Leemans V., Destain M.-F. Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering. 2005. 69. 41-49.; Unay D., Gosselin B., Kleynen O., Leemans V., Destain M.-F., Debeir O. Automatic grading of Bi-colored apples by multispectral machine vision. Computers and Electronics in Agriculture. 2011. 75. 204-212.; Blasco J., Aleixos N., Moltó E. Machine vision system for automatic quality grading of fruit. Biosystems Engineering. 2003. 85(4). 415-423.; Kavdir I., Guyer D.E. Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features. Biosystems Engineering. 2004. 89. 331-344.; Gene-Mola J., Gregorio E., Guevara J., Auat F., Sanz-Cortiella R., Escola A., Lorens J., Morros J.-R., Ruiz-Hidalgo J., Vilaplana V., Rosell-Polo J.R. Fruit detection in an apple orchard using a mobile terrestrial laser scanner. Biosystems engineering. 2019. 187. 171-184.; Gongal A., Amatya S., Karkee M., Zhang Q., Lewis K. Sensors and systems for fruit detection and localization: a review. Computers and Electronics in Agriculture. 2015. 116. 8-19.; Steinbrener J., Posch K., Leitner R. Hyperspectral fruit and vegetable classification using convolutional neural networks. Computers and Electronics in Agriculture. 2019. 162. 364-372.; Lv J., Wang J., Xu L., Ma Z., Yang B. A segmentation method of bagged green apple image. Scientia Horticulturae. 2019. 246. 411-417.; https://www.vimsmit.com/jour/article/view/448

  4. 4
    Academic Journal

    Contributors: ELAKPI

    Source: Vìsnik Nacìonalʹnogo Tehnìčnogo Unìversitetu Ukraïni Kììvsʹkij Polìtehnìčnij Ìnstitut: Serìâ Radìotehnìka, Radìoaparatobuduvannâ, Iss 68 (2017)
    Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia; 68; 43-47
    Вестник НТУУ" КПИ ". Серия радиотехника Радиоаппаратостроение; 68; 43-47
    Вісник НТУУ "КПІ". Серія Радіотехніка, Радіоапаратобудування; 68; 43-47

    File Description: application/pdf

  5. 5
  6. 6
    Report

    Contributors: Проскоков, Андрей Владимирович

    File Description: application/pdf

    Relation: Натальченко А. С. Разработка конструкции самоходной роботизированной платформы сельскохозяйственного назначения для междурядной обработки : выпускная квалификационная работа / А. С. Натальченко; Национальный исследовательский Томский политехнический университет (ТПУ), Юргинский технологический институт (филиал) ТПУ (ЮТИ ТПУ), Отделение промышленных технологий (ОПТ); науч. рук. А. В. Проскоков. — Томск, 2019.; http://earchive.tpu.ru/handle/11683/54644

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Source: Міжнародна науково-технічна конференція «Радіотехнічні поля, сигнали, апарати та системи» : матеріали конференції, 20-26 березня 2017 р., м. Київ, Україна

    File Description: С. 26–28; application/pdf

    Relation: Могильний, С. Б. Огинання перешкод при використанні ультразвукового радара / Могильний С. Б., Цимбал В. О. // Міжнародна науково-технічна конференція «Радіотехнічні поля, сигнали, апарати та системи» : матеріали конференції, 20-26 березня 2017 р., м. Київ, Україна / КПІ ім. Ігоря Сікорського, РТФ. – Київ : КПІ ім. Ігоря Сікорського, 2017. – С. 26–28. – Бібліогр.: 5 назв.; https://ela.kpi.ua/handle/123456789/38027

  19. 19
    Academic Journal

    Source: Вісник НТУУ «КПІ». Радіотехніка, радіоапаратобудування : збірник наукових праць, Вип. 68

    File Description: С. 43-47; application/pdf

    Relation: Могильний, С. Б. Розроблення системи керування роботизованою платформою з ультразвуковим радаром HC-SR04 / С. Б. Могильний, В. О. Цимбал // Вісник НТУУ «КПІ». Радіотехніка, радіоапаратобудування : збірник наукових праць. – 2017. – Вип. 68. – С. 43–47. – Бібліогр.: 9 назв.; https://ela.kpi.ua/handle/123456789/22842

  20. 20