Εμφανίζονται 1 - 20 Αποτελέσματα από 31 για την αναζήτηση '"рнк-секвенирование"', χρόνος αναζήτησης: 0,82δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The work was carried out with the financial support of the Russian Science Foundation (grant No. 22-25-00435), Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-25-00435)

    Πηγή: Advances in Molecular Oncology; Том 11, № 1 (2024); 79-89 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 79-89 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/650/339; Злокачeственые новообразования в Росии в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. 252 с.; Kim G., Pastoriza J.M., Qin J. et al. Racial disparity in distant recurrence-free survival in patients with localized breast cancer: a pooled analysis of National Surgical Adjuvant Breast and Bowel Project trials. Cancer 2022;128(14):2728–35. DOI:10.1002/cncr.34241; Qiu S.Q., Waaijer S.J.H., Zwager M.C. et al. Tumor-associated macrophages in breast cancer: innocent bystander or important player? Cancer Treat Rev 2018;70:178–89. DOI:10.1016/j.ctrv.2018.08.010; Linde N., Casanova-Acebes M., Sosa M.S. et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Commun 2018;9(1):21. DOI:10.1038/s41467-017-02481-5; Larionova I., Tuguzbaeva G., Ponomaryova A. et al. Tumorassociated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol 2020;10:566511. DOI:10.3389/fonc.2020.566511; Cassetta L., Fragkogianni S., Sims A.H. et al. Human tumorassociated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 2019;35(4):588–602.e10. DOI:10.1016/j.ccell.2019.02.009; Ziegler-Heitbrock L. Blood monocytes and their subsets: established features and open questions. Front Immunol 2015;6:423. DOI:10.3389/fimmu.2015.00423; Olingy C.E., Dinh H.Q., Hedrick C.C. Monocyte heterogeneity and functions in cancer. J Leukoc Biol 2019;106(2):309–22. DOI:10.1002/JLB.4RI0818-311R; Zhang B., Cao M., He Y. et al. Increased circulating M2-like monocytes in patients with breast cancer. Tumour Biol 2017;39(6):1010428317711571. DOI:10.1177/1010428317711571; Patysheva M., Larionova I., Stakheyeva M. et al. Effect of earlystage human breast carcinoma on monocyte programming. Front Oncol 2022;11:800235. DOI:10.3389/fonc.2021.800235; Cassetta L., Pollard J.W. A timeline of tumour-associated macrophage biology. Nat Rev Cancer 2023;23(4):238–57. DOI:10.1038/s41568-022-00547-1; Galluzzi L., Buque A., Kepp O. et al. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015;28(6):690–714. DOI:10.1016/j.ccell.2015.10.012; Zitvogel L., Apetoh L., Ghiringhelli F. et al. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008;8(1):59–73. DOI:10.1038/nri2216; Hughes R., Qian B.-Z., Rowan C. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 2015;75(17):3479–91. DOI:10.1158/0008-5472.CAN-14-3587; Kroemer G., Galassi C., Zitvogel L. et al. Immunogenic cell stress and death. Nat Immunol 2022;23(4):487–500. DOI:10.1038/s41590-022-01132-2; Stakheyeva M., Eidenzon D., Slonimskaya E. et al. Integral characteristic of the immune system state predicts breast cancer outcome. Exp Oncol 2019;41(1):32–8.; Dobin A., Davis C.A., Schlesinger F. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15–21. DOI:10.1093/bioinformatics/bts635; Hartley S.W., Mullikin J.C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics 2015;16(1):224. DOI:10.1186/s12859-015-0670-5; van Helden S.F., Anthony E.C., Dee R. et al. Rho GTPase expression in human myeloid cells. PLoS One 2012;7(8):e42563. DOI:10.1371/journal.pone.0042563; Belge K.U., Dayyani F., Horelt A. et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 2002;168(7):3536–42. DOI:10.4049/jimmunol.168.7.3536; Myśliwska J., Smardzewski M., Marek-Trzonkowska N. et al. Expansion of CD14+CD16+ monocytes producing TNF-α in complication-free diabetes type 1 juvenile onset patients. Cytokine 2012;60(1):309–17. DOI:10.1016/j.cyto.2012.03.010; Mengos A.E., Gastineau D.A., Gustafson M.P. The CD14(+)HLADR(lo/neg) monocyte: an immunosuppressive phenotype that restrains responses to cancer immunotherapy. Front Immunol 2019;10:1147. DOI:10.3389/fimmu.2019.01147; Robinson A., Burgess M., Webb S. et al. Systemic influences of mammary cancer on monocytes in mice. Cancers 2022:14(3):833. DOI:10.3390/cancers14030833; Foulds G.A., Vadakekolathu J., Abdel-Fatah T.M.A. et al. Immunephenotyping and transcriptomic profiling of peripheral blood mononuclear cells from patients with breast cancer: identification of a 3 gene signature which predicts relapse of triple negative breast cancer. Front Immunol 2018;9:2028. DOI:10.3389/fimmu.2018.02028; Rahaman O., Ganguly D. Endocannabinoids in immune regulation and immunopathologies. Immunology 2021;164:242–52. DOI:10.1111/imm.13378; Xiang W., Shi R., Kang X. et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun 2018;9(1):2574. DOI:10.1038/s41467-018-04999-8; Li L., Tian Y. The role of metabolic reprogramming of tumorassociated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmac 2023;161:114504. DOI:10.1016/j.biopha.2023.114504; Navone N.D., Perga S., Martire S. et al. Monocytes and CD4+ T cells contribution to the under-expression of NR4A2 and TNFAIP3 genes in patients with multiple sclerosis. J Uroimmunol 2014;272(1–2): 99–102. DOI:10.1016/j.jneuroim.2014.04.017; Crean D., Cummins E.P., Bahar B. et al. Adenosine modulates NR4A orphan nuclear receptors to attenuate hyperinflammatory responses in monocytic cells. J Immunol 2015;195(4):1436 48. DOI:10.4049/jimmunol.1402039; Matchett E.C., Ambrose E.C., Kornbluth J. Characterization of uridinecytidine kinase like-1 nucleoside kinase activity and its role in tumor growth. Biochem J 2022;479(11):1149–64. DOI:10.1042/BCJ20210770; Han Z., Jia Q., Zhang J. et al. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis. J Exp Clin Cancer Res 2023;42(1):228. DOI:10.1186/s13046-023-02781-3; https://umo.abvpress.ru/jour/article/view/650

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 2 (2023); 71-76 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 2 (2023); 71-76 ; 2413-5496 ; 2311-1267

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/938/840; WHO Classification of Tumours Editorial Board. Central nervous system tumours. [Electronic resource]: https://tumourclassification.iarc.who.int/chapters/45. Lyon (France): International Agency for Research on Cancer; 2021. (WHO classifi cation of tumours series, 5th ed.; vol. 6).; Capper D., Jones D.T.W., Sill M., Hovestadt V., Schrimpf D., Sturm D., Koelsche C., Sahm F., Chavez L., Reuss D.E., Kratz A., Wefers A.K., Huang K., Pajtler K.W., Schweizer L., Stichel D., Olar A., Engel N.W., Lindenberg K., Harter P.N., Braczynski A.K., Plate K.H., Dohmen H., Garvalov B.K., Coras R., Hölsken A., Hewer E., Bewerunge-Hudler M., Schick M., Fischer R., Beschorner R., Schittenhelm J., Staszewski O., Wani K., Varlet P., Pages M., Temming P., Lohmann D., Selt F., Witt H., Milde T., Witt O., Aronica E., Giangaspero F., Rushing E., Scheurlen W., Geisenberger C., Rodriguez F.J., Becker A., Preusser M., Haberler C., Bjerkvig R., Cryan J., Farrell M., Deckert M., Hench J., Frank S., Serrano J., Kannan K., Tsirigos A., Brü ck W., Hofer S., Brehmer S., Seiz-Rosenhagen M., Hänggi D., Hans V., Rozsnoki S., Hansford J.R., Kohlhof P., Kristensen B.W., Lechner M., Lopes B., Mawrin C., Ketter R., Kulozik A., Khatib Z., Heppner F., Koch A., Jouvet A., Keohane C., Mü hleisen H., Mueller W., Pohl U., Prinz M., Benner A., Zapatka M., Gottardo N.G., Driever P.H., Kramm C.M., Mü ller H.L., Rutkowski S., von Hoff K., Frü hwald M.C., Gnekow A., Fleischhack G., Tippelt S., Calaminus G., Monoranu C.M., Perry A., Jones C., Jacques T.S., Radlwimmer B., Gessi M., Pietsch T., Schramm J., Schackert G., Westphal M., Reifenberger G., Wesseling P., Weller M., Collins V.P., Blü mcke I., Bendszus M., Debus J., Huang A., Jabado N., Northcott P.A., Paulus W., Gajjar A., Robinson G.W., Taylor M.D., Jaunmuktane Z., Ryzhova M., Platten M., Unterberg A., Wick W., Karajannis M.A., Mittelbronn M., Acker T., Hartmann C., Aldape K., Schü ller U., Buslei R., Lichter P., Kool M., Herold-Mende C., Ellison D.W., Hasselblatt M., Snuderl M., Brandner S., Korshunov A., von Deimling A., Pfi ster S.M. DNA methylation-based classifi cation of central nervous system tumours. Nature. 2018;555(7697):469–74. doi:10.1038/nature26000.; Capper D., Stichel D., Sahm F., Jones D.T.W., Schrimpf D., Sill M., Schmid S., Hovestadt V., Reuss D.E., Koelsche C., Reinhardt A., Wefers A.K., Huang K., Sievers P., Ebrahimi A., Schöler A., Teichmann D., Koch A., Hänggi D., Unterberg A., Platten M., Wick W., Witt O., Milde T., Korshunov A., Pfi ster S.M., von Deimling A. Practical implementation of DNA methylation and copynumber-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol. 2018;136(2):181–210. doi:10.1007/s00401-018-1879-y.; Рыжова М.В., Телышева Е.Н., Шайхаев Е.Г., Старовойтов Д.В., Котельникова А.О., Галстян С.А., Оконечников К.В. Современные диагностические возможности молекулярного исследования опухолей мозга в Центре нейрохирургии им. акад. Н.Н. Бурденко. Вопросы нейрохирургии имени Н.Н. Бурденко. 2021;85(6):98–101. doi:10.17116/neiro20218506198.; Рыжова М.В., Галстян С.А., Телышева Е.Н. Значение оценки метилирования ДНК в морфологической диагностике опухолей ЦНС. Архив патологии. 2022;84(3):65–75. doi:10.17116/patol20228403165.; Sievers P., Henneken S.C., Blume C., Sill M., Schrimpf D., Stichel D., Okonechnikov O., Reuss D.E., Benzel J., Maa K.K., Kool M., Sturm D., Zheng T., Ghasemi D.R., Kohlhof-Meinecke P., Cruz O., Suol M., Lavarino C., Ruf V., Boldt H.B., Pags M., Pouget C., Schweizer L., Kranendonk M.E.G., Akhtar N., Bunkowski S., Stadelmann C., Schü ller U., Mueller W.C., Dohmen H., Acker T., Harter P.N., Mawrin C., Beschorner R., Brandner S., Snuderl M., Abdullaev Z., Aldape K., Gilbert M.R., Armstrong T.S., Ellison D.W., Capper D., Ichimura K., Reifenberger G., Grundy R.G., Jabado N., Krskova L., Zapotocky M., Vicha A., Varlet P., Wesseling P., Rutkowski S., Korshunov A., Wick W., Pfi ster S.M., Jones D.T.W., von Deimling A., Pajtler K.W., Sahm F. Recurrent fusions in PLAGL1 defi ne a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathol. 2021;142:827–39. doi:10.1007/s00401-021-02356-6.; Alhalabi K.T., Stichel D., Sievers P., Peterzie H., Sommerkamp A.C., Sturm D., Wittmann A., Sill M., Jager N., Beck P., Pajtler K.W., Snuder M., Jour G., Delorenzo M., Martin A.M., Levy A., Dalvi N., Hansford J.R., Gottardo N.G., Uro-Coste E., Maurage C.-A., Godfraind C., Fanny Vandenbos F., Pietsch T., Kramm C., Filippidou M., Kattamis A., Jones C., Ora I., Mikkelsen T.S., Zapotocky M., Sumerauer D., Scheie D., McCabe M., Wesseling P., Tops B.B.J., Kranendonk M.E.G., Karajannis M.A., Bouvier N., Papaemmanuil E., Dohmen H., Acker T., von Hoff K., Schmid S., Miele E., Filipski K., Kitanovski L., Krskova L., Gojo J., Haberler C., Alvaro F., Ecker J., Selt F., Milde T., Witt O., Oehme I., Kool M., von Deimling A., Korshunov A., Pfi ster S.M., Sahm F., Jones D.T.W. PATZ1 fusions defi ne a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum. Acta Neuropathol. 2021;142:841–57. doi:10.1007/s00401-021-02354-8.; Roosen M., Odé Z., Bunt J., Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol. 2022;143(4):427–51. doi:10.1007/s00401-022-02405-8.; Оконечников К.В., Рыжова М.В., Галстян С.А., Телышева Е.Н. Применение технологий секвенирования в педиатрической нейроонкологии. Архив патологии. 2022;84(2):58–63. doi:10.17116/patol20228402158.; Capper D., Reifenberger G., French P.J., Schweizer L., Weller M., Touat M., Niclou S.P., Euskirchen P., Haberler C., Hegi M.E., Brandner S., Le Rhun E., Rudà R., Sanson M., Tabatabai G., Sahm F., Wen P.Y., Wesseling P., Preusser M., van den Bent M.J. EANO guideline on rational molecular testing of gliomas, glioneuronal, and neuronal tumors in adults for targeted therapy selection. Neuro Oncol. 2023;25(5):813–26. doi:10.1093/neuonc/noad008.; Петрова Е.И., Галстян С.А., Телышева Е.Н., Рыжова М.В. Визуализация результатов анализа структуры метилирования ДНК как инструмент контроля качества молекулярной классификации опухолей ЦНС. Российский нейрохирургический журнал им. проф. А.Л. Поленова. 2022;14(4):64–70. doi:10.56618/20712693_2022_14_4_64.; Кобяков Г.Л., Абсалямова О.В., Поддубский А.А., Лодыгина К.С., Кобякова Е.А. Классификация ВОЗ первичных опухолей центральной нервной системы 2016 г.: взгляд клинициста. Вопросы нейрохирургии имени Н.Н. Бурденко. 2018;88(3):88–96. doi:10.17116/neiro201882388.; Диникина Ю.В., Белогурова М.Б. Особенности новой классификации опухолей центральной нервной системы ВОЗ 2021: взгляд клинициста. Российский журнал персонализированной медицины. 2022;2(4):77–90. doi:10.18705/2782-3806-2022-2-4-77-90.; https://journal.nodgo.org/jour/article/view/938

  5. 5
    Academic Journal

    Πηγή: Medical Genetics; Том 21, № 11 (2022); 16-18 ; Медицинская генетика; Том 21, № 11 (2022); 16-18 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2191/1656; Lemercier C. When our genome is targeted by pathogenic bacteria. Cell Mol Life Sci. 2015;72(14):2665-76.; Fenech M., Chang W.P., Kirsch-Volders M., Holland N., Bonassi S., Zeiger E.; HUman MicronNucleus project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res. 2003;534(1-2):65-75.; Hungerford D.A. Leukocytes cultured from small inocula of whole blood and the preparation of metaphase chromosomes by treatment with hypotonic KCl. Stain Technol. 1965; 40(6):333-8.; Sears C.L. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev. 2009;22(2):349-69.; Goodwin A.C., Destefano Shields C.E., Wu S., et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A. 2011;108(37): 15354-9.; Allen J., Rosendahl Huber A., Pleguezuelos-Manzano C., et al. Colon Tumors in Enterotoxigenic Bacteroides fragilis (ETBF)-Colonized Mice Do Not Display a Unique Mutational Signature but Instead Possess Host-Dependent Alterations in the APC Gene. Microbiol Spectr. 2022: e0105522

  6. 6
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке гранта РНФ № 21-15-00208

    Πηγή: Malignant tumours; Том 13, № 3s1 (2023); 25-31 ; Злокачественные опухоли; Том 13, № 3s1 (2023); 25-31 ; 2587-6813 ; 2224-5057

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1180/817; Arbyn M, Weiderpass E, Bruni L, de SanjoséS, Saraiya M, Ferlay J, et al. Estimates of incidence and mortality of cervical cancer in 2018 : a worldwide analysis. Lancet Glob Health (2020) 8 (2) : e191–203. doi:10.1016/S2214-109X(19)30482-6.; Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al.; Cancer Genome Atlas Research Network; et al. The Immune Landscape of Cancer. Immunity (2018) 48 (4) : 812–830. e14. doi:10.1016/j.immuni.2018.03.023.; Bedognetti D, Cesano A, Marincola FM, Wang E. The Biology of Immune-Active Cancers and Their Regulatory Mechanisms. Cancer Treat Res (2020) 180 : 149–172. doi:10.1007/978-3-030-38862-1_5.; Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov (2019) 18 (3) : 197–218. doi:10.1038/s41573-018-0007-y.; Zhao Z, Li J, Li H, Yuan Wu NY, Ou-Yang P, Liu S, et al. Integrative Bioinformatics Approaches to Screen Potential Prognostic Immune-Related Genes and Drugs in the Cervical Cancer Microenvironment. Front Genet (2020) 11 : 727. doi:10.3389/fgene.2020.00727.; Xu F, Shen J, Xu S. Multi-Omics Data Analyses Construct a Six Immune-Related Genes Prognostic Model for Cervical Cancer in Tumor Microenvironment. Front Genet (2021) 12 : 663617. doi:10.3389/fgene.2021.663617.; Jou J, Kato S, Miyashita H, Thangathurai K, Pabla S, DePietro P, et al. Cancer immunity marker RNA expression levels across gynecologic cancers : Implications for immunotherapy. Mol Cancer Ther (2023) Aug 25 : MCT-23–0270. doi:10.1158/1535-7163.MCT-23-0270.; Zhou C, Tuong ZK, Frazer IH. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Front Oncol (2019)9:682. doi:10.3389/fonc.2019.00682.; Jayshree RS. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol (2021) 11 : 649815. doi:10.3389/fcimb.2021.649815.; Budhwani M, Turrell G, Yu M, Frazer IH, Mehdi AM, Chandra J. Immune-Inhibitory Gene Expression is Positively Correlated with Overall Immune Activity and Predicts Increased Survival Probability of Cervical and Head and Neck Cancer Patients. Front Mol Biosci (2021) 8 : 622643. doi:10.3389/fmolb.2021.622643.; Frenel JS, Le Tourneau C, O’Neil B, Ott PA, Piha-Paul SA, Gomez-Roca C, et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer : Results From the Phase Ib KEYNOTE-028 Trial. J Clin Oncol (2017) 35 (36) : 4035–4041. doi:10.1200/JCO.2017.74.5471.; Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer : Results From the Phase II KEYNOTE-158 Study. J Clin Oncol (2019) 37 (17) : 1470–1478. doi:10.1200/JCO.18.01265.; Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol (2021) 18 (5) : 261–279. doi:10.1038/s41571-020-00459-9.; Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, et al. Tumor accomplice : T cell exhaustion induced by chronic inflammation. Front Immunol (2022)13:979116. doi:10.3389/fimmu.2022.979116.; Bacolod MD, Barany F, Pilones K, Fisher PB, de Castro RJ. Pathways- and epigenetic-based assessment of relative immune infiltration in various types of solid tumors. Adv Cancer Re. (2019) 142 : 107–143. doi:10.1016/bs.acr.2019.01.003.; Rafael TS, Rotman J, Brouwer OR, van der Poel HG, Mom CH, Kenter GG, et al. Immunotherapeutic Approaches for the Treatment of HPV-Associated (Pre-) Cancer of the Cervix, Vulva and Penis. J Clin Med (2022) 11 (4) : 1101. doi:10.3390/jcm11041101.; Livesey M, Rossouw SC, Blignaut R, Christoffels A, Bendou H. Transforming RNA-Seq gene expression to track cancer progression in the multi-stage early to advanced-stage cancer development. PLoS One (2023) 18 (4) : e0284458. doi:10.1371/journal.pone.0284458.; Gavish A, Tyler M, Greenwald AC, Hoefflin R, Simkin D, Tschernichovsky R, et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature (2023) 618 (7965) : 598–606. doi:10.1038/s41586-023-06130-4.; Zhang T, Zhuang L, Muaibati M, Wang D, Abasi A, Tong Q, et al. Identification of cervical cancer stem cells using single-cell transcriptomes of normal cervix, cervical premalignant lesions, and cervical cancer. EBioMedicine (2023) 92 : 104612. doi:10.1016/j.ebiom.2023.104612.; Li C, Hua K. Single-cell transcriptomics provides insights into the origin and immune microenvironment of cervical precancerous lesions. Cancer Commun (Lond) (2023) 43 (9) : 1055–1058. doi:10.1002/cac2.12451.; Kang J, Xiang X, Chen X, Jiang J, Zhang Y, Li L, Tang J. Angiogenesis-related gene signatures reveal the prognosis of cervical cancer based on single cell sequencing and co-expression network analysis. Front Cell Dev Biol (2023) 10 : 1086835. doi:10.3389/fcell.2022.1086835.; Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, et al. Landscape of genomic alterations in cervical carcinomas. Nature (2014) 506 (7488) : 371–5. doi:10.1038/nature12881.; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; et al. Integrated genomic and molecular characterization of cervical cancer. Nature (2017) 543 (7645) : 378–384. doi:10.1038/nature21386.; Chakravarthy A, Reddin I, Henderson S, Dong C, Kirkwood N, Jeyakumar M, et al. Integrated analysis of cervical squamous cell carcinoma cohorts from three continents reveals conserved subtypes of prognostic significance. Nat Commun (2022) 13 (1) : 5818. doi:10.1038/s41467-022-33544-x.; Litwin TR, Irvin SR, Chornock RL, Sahasrabuddhe VV, Stanley M, Wentzensen N. Infiltrating T-cell markers in cervical carcinogenesis : a systematic review and meta-analysis. Br J Cancer (2021) 124 (4) : 831–841. doi:10.1038/s41416-020-01184-x.; Lyu X, Li G, Qiao Q. Identification of an immune classification for cervical cancer and integrative analysis of multiomics data. J Transl Med (2021) 19 (1) : 200. doi:10.1186/s12967-021-02845-y.; He C, Ren L, Yuan M, Liu M, Liu K, Qian X, Lu J. Identification of cervical squamous cell carcinoma feature genes and construction of a prognostic model based on immune-related features. BMC Women’s Health (2022) 22 (1) : 365. doi:10.1186/s12905-022-01942-4.; Li C, Wu H, Guo L, Liu D, Yang S, Li S, Hua K. Single-cell transcriptomics reveals cellular heterogeneity and molecular stratification of cervical cancer. Commun Biol (2022) 5 (1) : 1208. doi:10.1038/s42003-022-04142-w.; Lu X, Jiang L, Zhang L, Zhu Y, Hu W, Wang J, et al. Immune Signature-Based Subtypes of Cervical Squamous Cell Carcinoma Tightly Associated with Human Papillomavirus Type 16 Expression, Molecular Features, and Clinical Outcome. Neoplasia (2019) 21 (6) : 591–601. doi:10.1016/j.neo.2019.04.003.; Li Y, Lu S, Wang S, Peng X, Lang J. Identification of immune subtypes of cervical squamous cell carcinoma predicting prognosis and immunotherapy responses. J Transl Med (2021) 19 (1) : 222. doi:10.1186/s12967-021-02894-3.; Lai W, Liao J, Li X, Liang P, He L, Huang K, Liang X, Wang Y. Characterization of the microenvironment in different immune-metabolism subtypes of cervical cancer with prognostic significance. Front Genet (2023) 14 : 1067666. doi:10.3389/fgene.2023.1067666.; Øvestad IT, Engesæter B, Halle MK, Akbari S, Bicskei B, Lapin M, et al. High-Grade Cervical Intraepithelial Neoplasia (CIN) Associates with Increased Proliferation and Attenuated Immune Signaling. Int J Mol Sci (2021) 23 (1) : 373. doi:10.3390/ijms23010373.; Halle MK, Munk AC, Engesæter B, Akbari S, Frafjord A, Hoivik EA, et al. A Gene Signature Identifying CIN3 Regression and Cervical Cancer Survival. Cancers (Basel) (2021) 13 (22) : 5737. doi:10.3390/cancers13225737.; Jeon M, Xie Z, Evangelista JE, Wojciechowicz ML, Clarke DJB, Ma’ayan A. Transforming L1000 profiles to RNA-seq-like profiles with deep learning. BMC Bioinformatics (2022) 23 (1) : 374. doi:10.1186/s12859-022-04895-5.; Wang Y, He M, Zhang G, Cao K, Yang M, Zhang H, Liu H. The immune landscape during the tumorigenesis of cervical cancer. Cancer Med (2021) 10 (7) : 2380–2395. doi:10.1002/cam4.3833.; Li C, Hua K. Dissecting the Single-Cell Transcriptome Network of Immune Environment Underlying Cervical Premalignant Lesion, Cervical Cancer and Metastatic Lymph Nodes. Front Immunol (2022) 13 : 897366. doi:10.3389/fimmu.2022.897366.; Kurmyshkina OV, Dobrynin PV, Kovchur PI, Volkova TO. Sequencing-based transcriptome analysis reveals diversification of immune response- and angiogenesis-related expression patterns of early-stage cervical carcinoma as compared with high-grade CIN. Front Immunol (2023) 14 : 1215607. doi:10.3389/fimmu.2023.1215607.; Wang X, Xu C, Sun H. DNA Damage Repair-Related Genes Signature for Immune Infiltration and Outcome in Cervical Cancer. Front Genet (2022) 13 : 733164. doi:10.3389/fgene.2022.733164.; Wen H, Guo QH, Zhou XL, Wu XH, Li J. Genomic Profiling of Chinese Cervical Cancer Patients Reveals Prevalence of DNA Damage Repair Gene Alterations and Related Hypoxia Feature. Front Oncol (2022) 11 : 792003. doi:10.3389/fonc.2021.792003.; Liu C, Zhang M, Yan X, Ni Y, Gong Y, Wang C, et al. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression. Sci Adv (2023) 9 (4) : eadd8977. doi:10.1126/sciadv.add8977.; Zhou L, Qiu Q, Zhou Q, Li J, Yu M, Li K, et al. Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer. Nat Commun (2022) 13 (1) : 2563. doi:10.1038/s41467-022-30190-1.; De Nola R, Loizzi V, Cicinelli E, Cormio G. Dynamic crosstalk within the tumor microenvironment of uterine cervical carcinoma : baseline network, iatrogenic alterations, and translational implications. Crit Rev Oncol Hematol (2021) 162 : 103343. doi:10.1016/j.critrevonc.2021.103343.; Kori M, Arga KY, Mardinoglu A, Turanli B. Repositioning of Anti-Inflammatory Drugs for the Treatment of Cervical Cancer Sub-Types. Front Pharmacol (2022) 13 : 884548. doi:10.3389/fphar.2022.884548.; https://www.malignanttumors.org/jour/article/view/1180

  7. 7
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Science Foundation grant No. 22-25-00435., Работа выполнена при поддержке гранта РНФ №22-25-00435.

    Πηγή: Siberian journal of oncology; Том 21, № 6 (2022); 68-80 ; Сибирский онкологический журнал; Том 21, № 6 (2022); 68-80 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2376/1055; Goldszmid R.S., Dzutsev A., Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe. 2014; 15(3): 295–305. doi:10.1016/j.chom.2014.02.003.; Olingy C.E., Dinh H.Q., Hedrick C.C. Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 2019; 106(2): 309–22. doi:10.1002/JLB.4RI0818-311R.; Saqib U., Sarkar S., Suk K., Mohammad O., Baig M.S., Savai R. Phytochemicals as modulators of M1-M2 macrophages in infammation. Oncotarget. 2018; 9(25): 17937–50. doi:10.18632/oncotarget.24788.; Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.566511.; Ma W.T., Gao F., Gu K., Chen D.K. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol. 2019; 10: 1140. doi:10.3389/fmmu.2019.01140.; Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116(16): 74–80. doi:10.1182/blood-2010-02-258558.; Kiss M., Caro A.A., Raes G., Laoui D. Systemic Reprogramming of Monocytes in Cancer. Front Oncol. 2020; 10: 1399. doi:10.3389/fonc.2020.01399.; Poschke I., Mougiakakos D., Hansson J., Masucci G.V., Kiessling R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010; 70(11): 4335–45. doi:10.1158/0008-5472.CAN-09-3767.; Hamm A., Prenen H., Van Delm W., Di Matteo M., Wenes M., Delamarre E., Schmidt T., Weitz J., Sarmiento R., Dezi A., Gasparini G., Rothé F., Schmitz R., D’Hoore A., Iserentant H., Hendlisz A., Mazzone M. Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut. 2016; 65(6): 990–1000. doi:10.1136/gutjnl-2014-308988.; Cormican S., Griffn M.D. Human Monocyte Subset Distinctions and Function: Insights From Gene Expression Analysis. Front Immunol. 2020; 11: 1070. doi:10.3389/fmmu.2020.01070.; Reuter J.A., Spacek D.V., Snyder M.P. High-throughput sequencing technologies. Mol Cell. 2015; 58(4): 586–97. doi:10.1016/j.molcel.2015.05.004.; Chen S., Chai X., Wu X. Bioinformatical analysis of the key differentially expressed genes and associations with immune cell infltration in development of endometriosis. BMC Genom Data. 2022; 23(1): 20. doi:10.1186/s12863-022-01036-y.; Kzhyshkowska J., Gudima A., Moganti K., Gratchev A., Orekhov A. Perspectives for Monocyte/Macrophage-Based Diagnostics of Chronic Inflammation. Transfus Med Hemother. 2016; 43(2): 66–77. doi:10.1159/000444943.; Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29(1): 15–21. doi:10.1093/bioinformatics/bts635.; Hartley S.W., Mullikin J.C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics. 2015; 16(1): 224. doi:10.1186/s12859-015-0670-5.; Xie Z., Bailey A., Kuleshov M.V., Clarke D.J.B., Evangelista J.E., Jenkins S.L., Lachmann A., Wojciechowicz M.L., Kropiwnicki E., Jagodnik K.M., Jeon M., Ma’ayan A. Gene Set Knowledge Discovery with Enrichr Curr Protoc. 2021; 1(3): 90. doi:10.1002/cpz1.90.; Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measure ment sets. Nucleic Acids Res. 2021; 49(D1): 605-12. doi:10.1093/nar/gkaa1074. Erratum in: Nucleic Acids Res. 2021; 49(18): 10800.; Zenkova D. K.V., Sablina R., Artyomov M., Sergushichev A. Phantasus: visual and interactive gene expression analysis. 2018. doi:10.18129/B9.bioc.phantasus.; Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41(1): 49–61. doi:10.1016/j.immuni.2014.06.010. Erratum in: Immunity. 2014; 41(5): 866.; Cassetta L., Fragkogianni S., Sims A.H., Swierczak A., Forrester L.M., Zhang H., Soong D.Y.H., Cotechini T., Anur P., Lin E.Y., Fidanza A., LopezYrigoyen M., Millar M.R., Urman A., Ai Z., Spellman P.T., Hwang E.S., Dixon J.M., Wiechmann L., Coussens L.M., Smith H.O., Pollard J.W. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specifc Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019; 35(4): 588–602. doi:10.1016/j.ccell.2019.02.009.; Ramos R.N., Rodriguez C., Hubert M., Ardin M., Treilleux I., Ries C.H., Lavergne E., Chabaud S., Colombe A., Trédan O., Guedes H.G., Laginha F., Richer W., Piaggio E., Barbuto J.A.M., Caux C., MénétrierCaux C., Bendriss-Vermare N. CD163+ tumor-associated macrophage accumulation in breast cancer patients refects both local diferentiation signals and systemic skewing of monocytes. Clin Transl Immunology. 2020; 9(2): 1108. doi:10.1002/cti2.1108.; Patysheva M., Larionova I., Stakheyeva M., Grigoryeva E., Iamshchikov P., Tarabanovskaya N., Weiss C., Kardashova J., Frolova A., Rakina M., Prostakishina E., Zhuikova L., Cherdyntseva N., Kzhyshkowska J. Efect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Front Oncol. 2022; 11. doi:10.3389/fonc.2021.800235.; Sanford D.E., Belt B.A., Panni R.Z., Mayer A., Deshpande A.D., Carpenter D., Mitchem J.B., Plambeck-Suess S.M., Worley L.A., Goetz B.D., Wang-Gillam A., Eberlein T.J., Denardo D.G., Goedegebuure S.P., Linehan D.C. Infammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res. 2013; 19(13): 3404–15. doi:10.1158/1078-0432.CCR-13-0525.; Pan Y.C., Jia Z.F., Cao D.H., Wu Y.H., Jiang J., Wen S.M., Zhao D., Zhang S.L., Cao X.Y. Preoperative lymphocyte-to-monocyte ratio (LMR) could independently predict overall survival of resectable gastric cancer patients. Medicine (Baltimore). 2018; 97(52). doi:10.1097/MD.0000000000013896.; Lu C., Zhou L., Ouyang J., Yang H. Prognostic value of lymphocyte-to-monocyte ratio in ovarian cancer: A meta-analysis. Medicine (Baltimore). 2019; 98(24). doi:10.1097/MD.0000000000015876.; Hayashi T., Fujita K., Tanigawa G., Kawashima A., Nagahara A., Ujike T., Uemura M., Takao T., Yamaguchi S., Nonomura N. Serum monocyte fraction of white blood cells is increased in patients with high Gleason score prostate cancer. Oncotarget. 2017; 8(21): 35255–61. doi:10.18632/oncotarget.13052.; Rakina M.A. Kazakova E.O., Sudarskikh T.S., Bezgodova N.V., Villert A.B., Kolomiets L.A., Larionova I.V. Giant foam-like macrophages in advanced ovarian cancer. Siberian Journal of Oncology. 2022; 21(2): 45–54. doi:10.21294/1814-4861-2022-21-2-45-54.; Fedorov A.A., Ermak N.A., Gerashchenko T.S., Topolnitskii E.B., Shefer N.A., Rodionov E.O., Stakheyeva M.N. Polarization of macrophages: mechanisms, markers and factors of induction. Siberian Journal of Oncology. 2022; 21(4): 124–36. doi:10.21294/1814-4861-2022-21-4-124-136.; Jeong H., Hwang I., Kang S.H., Shin H.C., Kwon S.Y. TumorAssociated Macrophages as Potential Prognostic Biomarkers of Invasive Breast Cancer. J Breast Cancer. 2019; 22(1): 38–51. doi:10.4048/jbc.2019.22.e5.; Tiainen S., Tumelius R., Rilla K., Hämäläinen K., Tammi M., Tammi R., Kosma V.M., Oikari S., Auvinen P. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology. 2015; 66(6): 873–83. doi:10.1111/his.12607.; Miyasato Y., Shiota T., Ohnishi K., Pan C., Yano H., Horlad H., Yamamoto Y., Yamamoto-Ibusuki M., Iwase H., Takeya M., Komohara Y. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci. 2017; 108(8): 1693–700. doi:10.1111/cas.13287.; Ge Z., Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.590941.; Chen Y., Song Y., Du W., Gong L., Chang H., Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019; 26(1): 78. doi:10.1186/s12929-019-0568-z.; Norton K.A., Jin K., Popel A.S. Modeling triple-negative breast cancer heterogeneity: Efects of stromal macrophages, fbroblasts and tumor vasculature. J Theor Biol. 2018; 452: 56–68. doi:10.1016/j.jtbi.2018.05.003.; Eue I., Pietz B., Storck J., Klempt M., Sorg C. Transendothelial migration of 27E10+ human monocytes. Int Immunol. 2000; 12(11): 1593–604. doi:10.1093/intimm/12.11.1593.; Viemann D., Strey A., Janning A., Jurk K., Klimmek K., Vogl T., Hirono K., Ichida F., Foell D., Kehrel B., Gerke V., Sorg C., Roth J. Myeloid-related proteins 8 and 14 induce a specifc infammatory response in human microvascular endothelial cells. Blood. 2005; 105(7): 2955–62. doi:10.1182/blood-2004-07-2520.; Simkhes Yu.V., Karpov S.M., Baturin V.A., Vyshlova A. Role of s100 protein in the pathogenesis of pain syndromes. Neurology, Neuropsychiatry, Psychosomatics. 2016; 8(4): 62–4. doi: doi.org/10.14412/2074-2711-2016-4-62-64.; Kim J.H., Oh S.H., Kim E.J., Park S.J., Hong S.P., Cheon J.H., Kim T.I., Kim W.H. The role of myofbroblasts in upregulation of S100A8 and S100A9 and the diferentiation of myeloid cells in the colorectal cancer microenvironment. Biochem Biophys Res Commun. 2012; 423(1): 60–6. doi:10.1016/j.bbrc.2012.05.081.; Fox J.M., Kausar F., Day A., Osborne M., Hussain K., Mueller A., Lin J., Tsuchiya T., Kanegasaki S., Pease J.E. CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Scientifc reports. 2018; 8(1): 9466. doi:10.1038/s41598-018-27710-9.; Schioppa T., Sozio F., Barbazza I., Scutera S., Bosisio D., Sozzani S., Del Prete A. Molecular Basis for CCRL2 Regulation of Leukocyte Migration. Front Cell Dev Biol. 2020; 8. doi:10.3389/fcell.2020.615031.; Jayasingam S.D., Citartan M., Thang T.H., Mat Zin A.A., Ang K.C., Ch’ng E.S. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front Oncol. 2020; 9: 1512. doi:10.3389/fonc.2019.01512.; Fontana M.F., Baccarella A., Pancholi N., Pufall M.A., Herbert D.R., Kim C.C. JUNB is a key transcriptional modulator of macrophage activation. J Immunol. 2015; 194(1): 177–86. doi:10.4049/jimmunol.1401595.; Hamada M., Tsunakawa Y., Jeon H., Yadav M.K., Takahashi S. Role of MafB in macrophages. Exp Anim. 2020; 69(1): 1–10. doi:10.1538/expanim.19-0076.; Rigo A., Gottardi M., Zamò A., Mauri P., Bonifacio M., Krampera M., Damiani E., Pizzolo G., Vinante F. Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol Cancer. 2010; 9: 273. doi:10.1186/1476-4598-9-273.; Vlaicu P., Mertins P., Mayr T., Widschwendter P., Ataseven B., Högel B., Eiermann W., Knyazev P., Ullrich A. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specifc EGFR ligands and a STAT3 activator. BMC Cancer. 2013; 13: 197. doi:10.1186/1471-2407-13-197.; Ongusaha P.P., Kwak J.C., Zwible A.J., Macip S., Higashiyama S., Taniguchi N., Fang L., Lee S.W. HB-EGF is a potent inducer of tumor growth and angiogenesis. Cancer Res. 2004; 64(15): 5283–90. doi:10.1158/0008-5472.CAN-04-0925.; Carroll M.J., Kapur A., Felder M., Patankar M.S., Kreeger P.K. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget. 2016; 7(52): 86608–20. doi:10.18632/oncotarget.13474.; Yonemitsu K., Miyasato Y., Shiota T., Shinchi Y., Fujiwara Y., Hosaka S., Yamamoto Y., Komohara Y. Soluble Factors Involved in Cancer Cell-Macrophage Interaction Promote Breast Cancer Growth. Anticancer Res. 2021; 41(9): 4249–58. doi:10.21873/anticanres.15229.; Yu X., Zhang Q., Zhang X., Han Q., Li H., Mao Y., Wang X., Guo H., Irwin D.M., Niu G., Tan H. Exosomes from Macrophages Exposed to Apoptotic Breast Cancer Cells Promote Breast Cancer Proliferation and Metastasis. J Cancer. 2019; 10(13): 2892–2906. doi:10.7150/jca.31241.; Wu D.M., Wen X., Han X.R., Wang S., Wang Y.J., Shen M., Fan S.H., Zhang Z.F., Shan Q., Li M.Q., Hu B., Lu J., Chen G.Q., Zheng Y.L. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-126 -3p Inhibits Pancreatic Cancer Development by Targeting ADAM9. Mol Ther Nucleic Acids. 2019; 16: 229–45. doi:10.1016/j.omtn.2019.02.022. Retraction in: Mol Ther Nucleic Acids. 2022; 29: 617.; Zhao K., Wang Z., Hackert T., Pitzer C., Zöller M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res. 2018; 37(1): 312. doi:10.1186/s13046-018-0961-6.; Xiao D., Dong Z., Zhen L., Xia G., Huang X., Wang T., Guo H., Yang B., Xu C., Wu W., Zhao X., Xu H. Combined Exosomal GPC1, CD82, and Serum CA19-9 as Multiplex Targets: A Specifc, Sensitive, and Reproducible Detection Panel for the Diagnosis of Pancreatic Cancer. Mol Cancer Res. 2020; 18(2): 300–10. doi:10.1158/1541-7786.MCR-19-0588.; Yunusova N.V., Zambalova E.A., Patysheva M.R., Kolegova E.S., Afanas’ev S.G., Cheremisina O.V., Grigor’eva A.E., Tamkovich S.N., Kondakova I.V. Exosomal Protease Cargo as Prognostic Biomarker in Colorectal Cancer. Asian Pac J Cancer Prev. 2021; 22(3): 861–9. doi:10.31557/APJCP.2021.22.3.861.; https://www.siboncoj.ru/jour/article/view/2376

  8. 8
    Academic Journal

    Πηγή: Pharmacogenetics and Pharmacogenomics; № 1 (2021); 33-37 ; Фармакогенетика и фармакогеномика; № 1 (2021); 33-37 ; 2686-8849 ; 2588-0527

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/213/213; Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359–386. DOI:10.1002/ijc.29210; Lacey JV, Chia VM, Rush BB, Carreon DJ, Richesson DA, Ioffe OB, Ronnett BM, Chatterjee N, Langholz B, Sherman ME, Glass AG. Incidence rates of endometrial hyperplasia, endometrial cancer and hysterectomy from 1980 to 2003 within a large prepaid health plan. Int J Cancer. 2012 Oct 15;131(8):1921–1929. DOI:10.1002/ijc.27457; Key TJ, Pike MC. The dose-effect relationship between ‘unopposed’ostrogens and endometrial mitotic rate: its central role in explaining and predicting endometrial cancer risk. Br J Cancer. 1988 Feb;57(2):205–212. DOI:10.1038/bjc.1988.44.; Pike MC, Peters RK, Cozen W, Probst-Hensch NM, Felix JC, Wan PC, Mack TM. Estrogen-progestin replacement therapy and endometrial cancer. J Natl Cancer Inst. 1997 Aug 6;89(15):1110–1116. DOI:10.1093/jnci/89.15.1110.; Kaaks R, Lukanova A, Kurzer MS (2002). Obesity, endogenous hormones, and endometrial cancer risk: A synthetic review. Cancer Epidemiol Biomarkers Prev. 2002 Dec;11(12):1531–1543.; Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008 Feb 16;371(9612):569–578. DOI:10.1016/S0140-6736(08)60269-X.; Grady D, Gebretsadik T, Kerlikowske K, Ernster V, Petitti D. Hormone replacement therapy and endometrial cancer risk: a meta-analysis. Obstet Gynecol. 1995 Feb;85(2):304–313. DOI:10.1016/0029-7844(94)00383-O.; Purdie DM, Green AC. Epidemiology of endometrial cancer. Best Pract Res Clin Obstet Gynaecol. 2001 Jun;15(3):341–354. DOI:10.1053/beog.2000.0180.; Duska LR, Garrett A, Rueda BR, Haas J, Chang Y, Fuller AF. Endometrial cancer in women 40 years old or younger. Gynecol Oncol. 2001 Nov;83(2):388–393. DOI:10.1006/gyno.2001.6434.; Tarone RE, Chu KC. Age-period-cohort analyses of breast-, ovarian-, endometrial- and cervical-cancer mortality rates for Caucasian women in the USA. J Epidemiol Biostat. 2000;5(4):221–231.; Fung-Kee-Fung M, Dodge J, Elit L, Lukka H, Chambers A, Oliver T. Follow-up after primary therapy for endometrial cancer: A systematic review. Gynecol Oncol. 2006 Jun;101(3):520–529. DOI:10.1016/j.ygyno.2006.02.011.; Huijgens ANJ, Mertens HJMM. Factors predicting recurrent endometrial cancer. Facts Views Vis Obgyn. 2013;5(3):179-86.; Jeppesen MM, Jensen P T, Gilså Hansen D, Iachina M, Mogensen O. The nature of early-stage endometrial cancer recurrence—A national cohort study. Eur J Cancer. 2016 Dec;69:51–60. DOI:10.1016/j.ejca.2016.09.033.; Getz G, Gabriel SB, Cibulskis K, Lander E, Sivachenko A, Sougnez C, Lawrence M, Kandoth C, Dooling D, Fulton R, Fulton L, Kalicki-Veizer, J; McLellan MD, O’Laughlin M, Schmidt H, Wilson RK, Ye K, Li D, Ally A, Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67–73. DOI:10.1038/nature12113.; Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983 Feb;15(1):10–17. DOI:10.1016/0090-8258(83)90111-7.; Byron SA, Pollock PM. FGFR2 as a molecular target in endometrial cancer. Future Oncol. 2009 Feb;5(1):27–32. DOI:10.2217/14796694.5.1.27.; Sasada S, Yunokawa M, Takehara Y, Ishikawa M, Ikeda S, Kato T, Tamura K. Baseline risk of recurrence in stage I–II endometrial carcinoma. J Gynecol Oncol. 2018 Jan;29(1):e9. DOI:10.3802/jgo.2018.29.e9.; Morrow CP, Bundy BN, Kurman RJ, Creasman W T, Heller P, Homesley HD, Graham JE. Relationship between surgical-pathological risk factors and outcome in clinical stage I and II carcinoma of the endometrium: A gynecologic oncology group study. Gynecol Oncol. 1991 Jan;40(1):55–65. DOI:10.1016/0090-8258(91)90086-k.; Carey MS, O’Connell GJ, Johanson CR, Goodyear MD, Murphy KJ, Daya DM, Schepansky A, Peloquin A, Lumsden BJ. Good outcome associated with a standardized treatment protocol using selective postoperative radiation in patients with clinical stage i adenocarcinoma of the endometrium. Gynecol Oncol. 1995 May;57(2):138–144. DOI:10.1006/gyno.1995.1115.; Mariani A, Webb MJ, Keeney GL, Haddock MG, Calori G, Podratz KC. Low-risk corpus cancer: Is lymphadenectomy or radiotherapy necessary? Am J Obstet Gynecol. 2000 Jun;182(6):1506–1519. DOI:10.1067/mob.2000.107335.; Güngördük K, Cuylan ZF, Kahramanoglu I, Oge T, Akbayir O, Dede M, Taşkln S, Ozgul N, Simsek T, Turan H, Gülseren V, Ozdemir A, Meydanll MM, Ayhan A. Risk Factors for Recurrence in Low-Risk Endometrial Cancer: A Case-Control Study. Oncol Res Treat. 2018;41(7-8):466–470. DOI:10.1159/000488112.; Versluis MA, De Jong RA, Plat A, Bosse T, Smit VT, Mackay H, Powell M, Leary A, Mileshkin L, Kitchener HC, Crosbie EJ, Edmondson RJ, Creutzberg CL, Hollema H, Daemen T, De Bock GH, Nijman HW. Prediction model for regional or distant recurrence in endometrial cancer based on classical pathological and immunological parameters. Br J Cancer. 2015 Sep 1;113(5):786–793. DOI:10.1038/bjc.2015.268.; Zeimet AG, Reimer D, Huszar M, Winterhoff B, Puistola U., Azim SA, Müller-Holzner E, Ben-Arie A, Van Kempen LC, Petru E, Jahn S, Geels YP, Massuger LF, Amant F, Polterauer S, Lappi-Blanco E, Bulten J, Meuter A, Tanouye S, Fogel M. L1CAM in early-stage type i endometrial cancer: Results of a large multicenter evaluation. J Natl Cancer Inst. 2013 Aug 7;105(15):1142–1150. DOI:10.1093/jnci/djt144.; Bosse T, Nout RA, Stelloo E, Dreef E, Nijman HW, Jürgenliemk- Schulz IM, Jobsen JJ, Creutzberg CL, Smit VTHBM. L1 cell adhesion molecule is a strong predictor for distant recurrence and overall survival in early stage endometrial cancer: Pooled PORTEC trial results. Eur J Cancer. 2014 Oct;50(15):2602–2610. DOI:10.1016/j.ejca.2014.07.014.; Werner HMJ, Trovik J, Halle MK, Wik E, Akslen LA, Birkeland E, Bredholt T, Tangen IL, Krakstad C, Salvesen HB. Stathmin protein level, a potential predictive marker for taxane treatment response in endometrial cancer. PLoS One. 2014 Feb 25;9(2):e90141. DOI:10.1371/journal.pone.0090141.; Odagiri T, Watari H, Hosaka M, Mitamura T, Konno Y, Kato T, Kobayashi N, Sudo S, Takeda M, Kaneuchi M, Sakuragi N. Multivariate survival analysis of the patients with recurrent endometrial cancer. J Gynecol Oncol. 2011 Mar 31;22(1):3–8. DOI:10.3802/jgo.2011.22.1.3.; Shim SH, Kim DY, Kim HJ, Lee SW, Park JY, Suh DS, Kim JH, Kim YM, Kim YT, Nam JH. Stratification of risk groups according to survival after recurrence in endometrial cancer patients. Medicine (Baltimore). 2017 May;96(21):e6920. DOI:10.1097/MD.0000000000006920.; Francis SR, Ager BJ, Do OA, Huang YHJ, Soisson AP, Dodson MK, Werner TL, Sause WT, Grant JD, Gaffney DK. Recurrent early stage endometrial cancer: Patterns of recurrence and results of salvage therapy. Gynecol Oncol. 2019 Jul;154(1):38–44. DOI:10.1016/j.ygyno.2019.04.676.; DeVita VT, Lawrence, TS, Rosenberg SA. DeVita, Hellman, and Rosenberg’s cancer: Principles & practice of oncology. In DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology, Wolters Kluwer. 2018. p. 2170–2101.; Tkachev V, Sorokin M, Garazha A, Borisov N, Buzdin A. Oncobox Method for Scoring Efficiencies of Anticancer Drugs Based on Gene Expression Data. Methods Mol Biol. 2020;2063:235–255. DOI:10.1007/978-1-0716-0138-9_17; Sorokin M, Poddubskaya E, Baranova M, et al. RNA sequencing profiles and diagnostic signatures linked with response to ramucirumab in gastric cancer. Cold Spring Harb Mol Case Stud. 2020;6(2):a004945. Published 2020 Apr 1. DOI:10.1101/mcs.a004945; Poddubskaya E, Bondarenko A, Boroda A, et al. Transcriptomics- Guided Personalized Prescription of Targeted Therapeutics for Metastatic ALK-Positive Lung Cancer Case Following Recurrence on ALK Inhibitors. Front Oncol. 2019;9:1026. Published 2019 Oct 15. DOI:10.3389/fonc.2019.01026; Poddubskaya EV, Baranova MP, Allina DO, et al. Personalized prescription of imatinib in recurrent granulosa cell tumor of the ovary: case report. Cold Spring Harb Mol Case Stud. 2019;5(2):a003434. Published 2019 Apr 1. DOI:10.1101/mcs.a003434; Poddubskaya EV, Baranova MP, Allina DO, et al. Personalized prescription of tyrosine kinase inhibitors in unresectable metastatic cholangiocarcinoma. Exp Hematol Oncol. 2018;7:21. Published 2018 Sep 6. DOI:10.1186/s40164-018-0113-x; Moisseev A, Albert E, Lubarsky D, Schroeder D, Clark J. Transcriptomic and Genomic Testing to Guide Individualized Treatment in Chemoresistant Gastric Cancer Case. Biomedicines. 2020;8(3):67. Published 2020 Mar 23. DOI:10.3390/biomedicines8030067

  9. 9
    Academic Journal

    Πηγή: Biomedical Chemistry: Research and Methods; Vol. 4 No. 1 (2021); e00144 ; Biomedical Chemistry: Research and Methods; Том 4 № 1 (2021); e00144 ; 2618-7531

    Περιγραφή αρχείου: application/zip; application/pdf; text/html

  10. 10
  11. 11
  12. 12
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 60, № 6 (2016); 72-83 ; Доклады Национальной академии наук Беларуси; Том 60, № 6 (2016); 72-83 ; 2524-2431 ; 1561-8323 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/375/376; JGI Phytozome 10.3 [Electronic resource]. – Mode of access: http://phytozome.jgi.doe.gov. – Date of access: 12.10.2015.; Wang, Z. RNA-Seq: a revolutionary tool for transcriptomics / Z. Wang, M. Gerstein, M. Snyder // Nature reviews genetics. – 2009. – Vol. 10, N 1. – P. 57–63.; Giorgi, F. M. Comparative study of RNA-seq- and microarray-derived coexpression networks in Arabidopsis thaliana /; F. M. Giorgi, C. Del Fabbro, F. Licausi // Bioinformatics. – 2013. – Vol. 29, N 6. – P. 717–724.; Chu, Y. RNA Sequencing: Platform Selection, Experimental Design, and Data Interpretation / Y. Chu, D. R. Corey // Nucleic Acid Therapeutics. – 2012. – Vol. 22, N 4. – P. 271–274.; Wakasa, Y. RNA sequencing-mediated transcriptome analysis of rice plants in endoplasmic reticulum stress conditions / Y. Wakasa, Y. Oono, Sh. Yazawa // BMC Plant Biology. – 2014. – Vol. 14. – P. 101.; RNA-Seq Analysis of the Response of the Halophyte, Mesembryanthemum crystallinum (Ice Plant) to High Salinity /; H. Tsukagoshi [et al.] // PLoS ONE. – 2015. – Vol. 10, N 2. – e0118339. doi.org/10.1371/journal.pone.0118339.; Горшкова, Т. А. Растительная клеточная стенка как динамическая система / Т. А. Горшкова. – Москва, 2007. – 429 с.; RNA-Seq data from Phytozome [Electronic resource]. – Mode of access: http://phytozome.jgi.doe.gov/phytomine/aspect.do?name=Expression. – Date of access: 12.10.2015.; Biomart [Electronic resource]. – Mode of access: http://www.biomart.org/. – Date of access: 12.10.2015.; EMBL-EBL: Family: Cellulose_synt (PF03552) [Electronic resource]. – Mode of access: http://pfam.xfam.org/family/Cellulose_synt#tabview=tab0. – Date of access: 12.10.2015.; EMBL-EBL: MUSCLE. Multiple Sequence Alignment [Electronic resource]. – Mode of access: https://www.ebi.ac.uk/Tools/msa/muscle/. – Date of access: 12.10.2015.; EMBL-EBL: ClustalW2 – Phylogeny [Electronic resource]. – Mode of access: http://www.ebi.ac.uk/Tools/phylogeny/clustalw2_phylogeny/. – Date of access: 12.10.2015.; ATGC: South of France bioinformatics platform [Electronic resource]. – Mode of access: http://www.atgc-montpellier.fr/phyml/. – Date of access: 12.10.2015.; Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation / C. Trapnell [et al.] // Nat. Biotechnol. – 2010. – Vol. 28, N 5. – P. 511–515. doi.org/10.1038/nbt.1621.; Genome sequence of the palaeopolyploid soybean / J. Schmutz [et al.] // Nature. – 2010. – Vol. 463. – P. 178–183. doi.org/10.1038/nature08670.; https://doklady.belnauka.by/jour/article/view/375; undefined

  13. 13
    Academic Journal
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Dissertation/ Thesis

    Συνεισφορές: Крутовский, Константин Валерьевич, Институт фундаментальной биологии и биотехнологии, Кафедра геномики и биоинформатики

    Relation: Бауэр, Эдуард Евгеньевич. Изучение генетических механизмов нарушения доминирования апикального роста деревьев [Электронный ресурс] : магистерская диссертация : 06.04.01 / Э. Е. Бауэр. — Красноярск : СФУ, 2024.

    Διαθεσιμότητα: https://elib.sfu-kras.ru/handle/2311/154630