Showing 1 - 1 results of 1 for search '"рецепторная визуализация"', query time: 0.39s Refine Results
  1. 1
    Academic Journal

    Source: Medical Visualization; Том 24, № 1 (2020); 119-132 ; Медицинская визуализация; Том 24, № 1 (2020); 119-132 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/895/595; Brooks P.C., Strömblad S., Sanders L.C., von Schalscha T.L., Aimes R.T., Stetler-Stevenson W.G., Quigley J.P., Cheresh D.A. Localization of matrix metalloproteinase; MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell. 1996; 85 (5): 683–693. https://doi.org/10.1016/s0092-8674(00)81235-0; Haubner R., Wester H.J., Reuning U., SenekowitschSchmidtke R., Diefenbach B., Kessler H., Stöcklin G., Schwaiger M. Radiolabeled αvβ3 Integrin Antagonists: A New Class of Tracers for Tumor Targeting. J. Nucl. Med. 1999; 40: 1061–1071.; Chen H., Niu G., Wu H., Chen X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016; 6 (1): 78–92. https://doi.org/10.7150/thno.13242; Karen A., Kurdziel M.D., Lindenberg L., Choyke P.L. Oncologic angiogenesis imaging in the clinic – how and why. Imaging Med. 2011; 3 (4): 445–457.; Haubner R., Wester H.J., Reuning U., SenekowitschSchmidtke R., Diefenbach B., Kessler H., Stöcklin G., Schwaiger M. Radiolabeled αvβ3 integrin antagonists: A new class of tracers for tumor targeting. J. Nucl. Med. 1999; 40 (6): 1061–1071.; Niu G., Chen X. RGD PET: From Lesion Detection to Therapy Response Monitoring. J. Nucl. Med. 2015; 57 (4): 501–502. https://doi.org/10.2967/jnumed.115.168278; Zhang H., Liu N., Gao S., Hu X., Zhao W., Tao R., Chen Z., Zheng J., Sun X., Xu L., Li W., Yu J., Yuan S. Can an 18F-AlF-NOTA-PRGD2 PET/CT scan predict the treatment sensitivity of concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma? J. Nucl. Med. 2016; 57: 524–529. https://doi.org/10.2967/jnumed.115.165514; Cescato R., Schulz S., Waser B., Eltschinger V., Rivier J.E., Wester H.J., Culler M., Ginj M., Liu Q., Schonbrunn A., Reubi J.C. Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J. Nucl. Med. 2006; 47 (3): 502–511. https://doi.org/10.1111/bph.12551; Sollini M., Erba P.A., Fraternali A. PET and PET/CT with 68Gallium-labeled somatostatin analogues in non GEPNETs tumors. Sci. Wld J. 2014; 2014: Article ID 194123. https://doi.org/10.1155/2014/194123; Hofland L.J., Lamberts S.W. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr. Rev. 2003; 24: 28–47. https://doi.org/10.1210/er.2000-0001; Virgolini I., Ambrosini V., Bomanji J.B., Baum R.P., Fanti S., Gabriel M., Papathanasiou N.D., Pepe G., Oyen W., De Cristoforo C., Chiti A. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37: 2004–2010. https://doi.org/10.1007/s00259-010-1512-3; Geijer H., Breimer L.H. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J. Nucl. Med. Mol. Imaging. 2013; 40 (11): 1770–1780. https://doi.org/10.1007/s00259-013-2482-z; Fani M., Nicolas G.P., Wild D. Somatostatin Receptor Antagonists for Imaging and Therapy. J. Nucl. Med. 2017; 58 (Suppl. 2): 61S–66S. https://doi.org/10.2967/jnumed.116.186783; Chan D.L.H., Pavlakis N., Schembri G.P., Bernard E.J., Hsiao E., Hayes A., Barnes T., Diakos C., Khasraw M., Samra J., Eslick E., Roach P.J., Clarke S.J., Bailey D.L. Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine tumours: proposal for a novel grading scheme with prognostic significance. Theranostics. 2017; 7 (5): 1149–1158. https://doi.org/10.7150/thno.18068; Hindié E. The NETPET Score: Combining FDG and Somatostatin Receptor Imaging for Optimal Management of Patients with Metastatic Well-Differentiated Neuroendocrine Tumors. Theranostics. 2017; 7 (5): 1159–1163. https://doi.org/10.7150/thno.19588; Fani M., Nicolas G.P., Wild D. Somatostatin receptor antagonists for imaging and therapy. J. Nucl. Med. 2017; 58: 61S–66S. https://doi.org/10.2967/jnumed.116.186783; Fani M., Peitl P.K., Velikyan I. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms. Pharmaceuticals. 2017; 10 (1): 30. https://doi.org/10.3390/ph10010030; Ginj M., Zhang H., Waser B., Cescato R., Wild D., Wang X., Erchegyi J., Rivier J., Mäcke H.R., Reubi J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proceedings of the National Academy of Sciences. 2006; 103 (44): 16436–16441. https://doi.org/10.1073/pnas.0607761103; Lenzo N., Cardaci J., Meyrick D., Henderson A., Crouch J., Yeo S., Turner H. Lu-177 OPS-201 (satareotide) Trial for Metastatic Neuroendocrine Tumour. Доступно по: http://theranostics.com.au/wp-content/uploads/2016/05/Lu-177-OPS-201-Satareotide-Trial-for-Metastatic-Neuroendocrine-Tumours.pdf. Ссылка активна на 01.07.2019г.; Rylova S.N., Stoykow C., Del Pozzo L., Abiraj K., Tamma M.L., Kiefer Y., Fani M., Maecke H.R. The somatostatin receptor 2 antagonist 64Cu-NODAGA-JR11 outperforms 64Cu-DOTA-TATE in a mouse xenograft model. PLoS One. 2018; 13 (4): e0195802. https://doi.org/10.1371/journal.pone.0195802; Ginj M., Zhang H., Waser B., Cescato R., Wild D., Wang X., Erchegyi J., Rivier J.R. Mäcke H.R, Reubi J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc. Natl. Acad. Sci. USA. 2006; 3 (44): 16436–16441. https://doi.org/10.1073/pnas.0607761103; Nicolas G.P., Schreiter N., Kaul F., Uiters J., Bouterfa H., Kaufmann J., Wild D. Sensitivity comparison of 68GaOPS202 and 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospec tive phase II imaging study. J. Nuclear Med. 2017; 59 (6): 915–921. https://doi.org/10.2967/jnumed.117.199760; Kunz P.L. Carcinoid and neuroendocrine tumors: building on success. J. Clin. Oncol. 2015; 33: 1855–1863. https://doi.org/10.1200/JCO.2014.60.2532; Эндокринология: Национальное руководство. Краткое издание / Под ред. И.И. Дедова, Г.А. Мельниченко. М.: ГЭОТАР-Медиа, 2013. 752 с.; Bozkurt M.F., Virgolini I., Balogova S., Beheshti M., Rubello D., Decristoforo C., Ambrosini V., Kjaer A., Delgado-Bolton R., Kunikowska J., Oyen W.J.G., Chiti A., Giammarile F., Sundin A., Fanti S. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTAconjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (9): 1588–1601. https://doi.org/10.1007/s00259-017-3728-y; Khayum M.A., Doorduin J. Glaudemans A.W.J.M., Dierckx R.A.J.O. , E.F.J., de Vries R.A.J.O. PET and SPECT of Neurobiological Systems. Chapter 14. Berlin; Heidelberg: Springer-Verlag, 2014.; Liu C., Gong C., Liu S., Zhang Y., Zhang Y., Xu X., Yuan H., Wang B., Yang Z. 18F-FES PET/CT influences the staging and management of newly diagnosed Oestrogen Receptor positive Breast Cancer Patients: A Retrospective Comparative Study with 18F-FDG PET/CT. J. Nucl. Med. 2019; 60 (1): 596.; Sun Y., Yang Z., Zhang Y., Xue J., Wang M., Shi W., Zhu B., Hu S., Yao Z., Pan H., Zhang Y. The preliminary study of 16α-[18F]fluoroestradiol PET/CT in assisting the individualized treatment decisions of breast cancer patients. PLoS ONE. 2015; 10 (1): e0116341. https://doi.org/10.1371/journal.pone.0116341; Nienhuis H.H., van Kruchten M., Elias S.G., Glaudemans A.W.J.M., de Vries E.F.J., Bongaerts A.H.H., Schröder C.P., de Vries E.G.E., Hospers G.A.P. 18F-Fluoroestradiol Tumor Uptake Is Heterogeneous and Influenced by Site of Metastasis in Breast Cancer Patients. J. Nucl. Med. 2018; 59 (8): 1212–1218. https://doi.org/10.2967/jnumed.117.198846; Gong C., Yang Z., Sun Y., Zhang J., Zheng C., Wang L., Zhang Y., Xue J., Yao Z., Pan H., Wang B., Zhang Y. A preliminary study of 18F-FES PET/CT in predicting metastatic breast cancer in patients receiving docetaxel or fulvestrant with docetaxel. Scientific Reports. 2017; 7: 6584. https://doi.org/10.1038/s41598-017-06903-8; Mertan F.V., Lindenberg L., Choyke P.L., Turkbey B. PET imaging of recurrent and metastatic prostate cancer with novel tracers. Future Oncol. 2016; 12 (21): 2463–2477. https://doi.org/10.2217/fon-2016-0270; Horoszewicz J.S., Kawinski E., Murphy G.P. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987; C (7): 27–935.; Afshar-Oromieh A., Babich J.W., Giesel C.K.F.L., Eisenhut M., Kopka K., Haberkorn U. The Rise of PSMA Ligands for Diagnosis and Therapy of Prostate Cancer. J Nucl Med. 2016;57:79S–89S. https://doi.org/10.2967/jnumed.115.170720; Giesel F.L., Kesch C., Yun M., Cardinale J., Haberkorn U., Kopka K., Kratochwil C., Hadaschik B.A. 18F-PSMA-1007 PET/CT detects micrometastases in a patient with biochemically recurrent prostate cancer. Clin. Genitourin Cancer. 2017; 15 (3): 497–499. https://doi.org/10.1016/j.clgc.2016.12.029; Леонтьев А.В., Рубцова Н.А., Халимон А.И., Кулиев М.Т., Пылова И.В., Лазутина Т.Н., Хамадеева Г.Ф., Алексеев Б.Я., Костин А.А., Каприн А.Д. Применение радиомеченых лигандов к простатспецифическому мембранному антигену для определения локализации био химического рецидива рака предстательной железы методом ПЭТ/КТ (обзор литературы). Медицинская визуализация. 2018; 22 (3): 81–97. https://doi.org/10.24835/1607-0763-2018-3-81-97.; Afshar-Oromieh A., Holland-Letz T., Giesel F.L., Kratochwil C., Mier W., Haufe S., Debus N., Eder M., Eisenhut M., Schäfer M., Neels O., Hohenfellner M., Kopka K., Kauczor H.U., Debus J., Haberkorn U. Diagnostic performance of (68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: Evaluation in 1007 patients. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (8): 1258–1268. https://doi.org/10.1007/s00259-017-3711-7; Schwenck J., Rempp H., Reischl G., Kruck S., Stenzl A., Nikolaou K., Pfannenberg C., la Fougère C. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (1): 92–101. https://doi.org/10.1007/s00259-016-3490-6; Roach P.J., Francis R., Emmett L., Hsiao E., Kneebone A., Hruby G., Eade T., Nguyen Q.A., Thompson B.D., Cusick T., McCarthy M., Tang C., Ho B., Stricker P.D., Scott A.M. The impact of 68Ga-PSMA PET/CT on management intent in prostate cancer: Results of an Australian prospective multicenter study. J. Nucl. Med. 2018; 59 (1): 82–88. https://doi.org/10.2967/jnumed.117.197160; Albisinni S., Artigas C., Aoun F., Biaou I., Grosman J., Gil T., Hawaux E., Limani K., Otte F.X., Peltier A., Sideris S., Sirtaine N., Flamen P., van Velthoven R. Clinical impact of 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) in patients with prostate cancer with rising prostate-specific antigen after treatment with curative intent: Preliminary analysis of a multidisciplinary approach. BJU Int. 2017; 120 (2): 197–203. https://doi.org/10.1111/bju.13739; Велиев Е.И., Томилов А.А., Богданов А.Б. Спасительная лимфаденэктомия у пациентов с подтвержденным ПЭТ/КТ олигометастатическим рецидивом рака предстательной железы. Онкоурология. 2018; 14 (4): 79–86. https://doi.org/10.17650/1726-9776-2018-14-4-79-86; Kabasakal L., Demirci E., Ocak M. et al. Evaluation of PSMA PET/CT imaging using a 68Ga- HBED-CC ligand in patients with prostate cancer and the value of early pelvic imaging. Nucl. Med. Commun. 2015; C-36 (6): 582–587.; Giesel F.L., Knorr K., Spohn F. et al. Detection efficacy of [18F]PSMA-1007 PET/CT in 251 Patients with biochemical recurrence after radical prostatectomy. J. Nucl. Med. 2018; 60 (3): 362–368. https://doi.org/10.2967/jnumed.118.212233; Сакаева Д.Д., Гордиев М. Г. Рецептор эпидермального фактора роста как мишень молекулярно-направленной терапии у непредлеченых пациентов с немелкоклеточным раком легкого. Злокачественные опухоли. 2016; 3 (19). https://doi.org/10.18027/2224-5057-2016-3-54-59; Горбунова В.А., Артамонова Е.В., Бредер В.В., Лактионов К.К., Моисеенко Ф.В., Реутова Е.В. и др. Практические рекомендации по лекарственному лечению немелкоклеточного рака легкого. Злокачественные опухоли: Практические рекомендации RUSSCO; 3s2, 2017 (т. 7): с. 28–42.; Sun X., Xiao Z.,Chen G. et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl. Med. 2018: 7: 10 (431). https://doi.org/10.1126/scitranslmed.aan8840; https://medvis.vidar.ru/jour/article/view/895