Showing 1 - 20 results of 419 for search '"респираторный дистресс-синдром"', query time: 0.79s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 22, № 1 (2025); 120-128 ; Вестник анестезиологии и реаниматологии; Том 22, № 1 (2025); 120-128 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/1161/781; Александрович Ю. С., Пшениснов К. В. Острый респираторный дистресс-синдром в педиатрической практике // Вестник интенсивной терапии. – 2014. – Т. 3. – С. 23–29.; Александрович Ю. С., Пшениснов К. В. Острый респираторный дистресс-синдром в педиатрической практике // Вестник интенсивной терапии. – 2014. – Т. 4. – С. 22–29.; Александрович Ю. С., Пшениснов К. В. Респираторная поддержка при критических состояниях в педиатрии и неонатологии. – М. : ГЭОТАР-Медиа. – 2024. – 288 с.; Александрович Ю. С., Пшениснов К. В., Колодяжная В. И. Острый респираторный дистресс-синдром в педиатрической практике: диагностика и интенсивная терапия // Обзор литературы // Российский вестник детской хирургии, анестезиологии и реаниматологии. – 2024. – Т. 14, №1. – C. 83–95. https://doi.org/10.17816/psaic1569.; Российский статистический ежегодник. 2023: Стат. сб. / Росстат. – М., 2023. – 704 с.; Brower R. G., Lanken P. N., MacIntyre N. et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome // N Engl J Med. – 2004. – Vol. 351, № 4. – P. 327–336. https://doi.org/10.1056/NEJMoa032193.; Emeriaud G., López-Fernández Y. M., Iyer N. P. et al. Executive summary of the second international guidelines for the diagnosis and management of pediatric acute respiratory distress syndrome (PALICC-2) // Pediatr Crit Care Med. – 2023. – Vol. 24, № 2. – P. 143–168. https://doi.org/10.1097/PCC.0000000000003147.; Fernández A., Modesto V., Rimensberger P. C. et al. Invasive ventilatory support in patients with pediatric acute respiratory distress syndrome: from the second pediatric acute lung injury consensus conference // Pediatr Crit Care Med. – 2023. – Vol. 24, 12 Suppl 2. – S61–S75. https://doi.org/10.1097/PCC.0000000000003159.; Khemani R. G., Smith L., Lopez-Fernandez Y. M. et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study // Lancet Respir Med. – 2019. – Vol. 7, № 2. – P. 115–128. https://doi.org/10.1016/S2213-2600(18)30344-8.; Lalgudi Ganesan S., Jayashree M., Chandra Singhi S. et al. Airway pressure release ventilation in pediatric acute respiratory distress syndrome. A randomized controlled trial // Am J Respir Crit Care Med. – 2018. – Vol. 198. – P. 1199–1207. https://doi.org/10.1164/rccm.201705-0989OC.; López-Fernández Y., Azagra A.M., de la Oliva P. et al. Pediatric acute lung injury epidemiology and natural history study: incidence and outcome of the acute respiratory distress syndrome in children // Crit Care Med. – 2012. – Vol. 40, № 12. – P. 3238–3245. https://doi.org/10.1097/CCM.0b013e318260caa3.; López-Fernández Y. M., Smith L. S., Kohne J. G. et al. Prognostic relevance and inter-observer reliability of chest-imaging in pediatric ARDS: a pediatric acute respiratory distress incidence and epidemiology (PARDIE) study // Intensive Care Med. – 2020. – Vol. 46, № 7. – P. 1382–1393. https://doi.org/10.1007/s00134-020-06074-7.; Prasertsan P., Anantasit N., Walanchapruk S. et al. Sepsis-related pediatric acute respiratory distress syndrome: A multicenter prospective cohort study // Turk J Emerg Med. – 2023. – Vol. 23, № 2. – P. 96–103. https://doi.org/10.4103/tjem.tjem_237_22.; Pujari C. G., Lalitha A. V., Raj J. M. et al. Epidemiology of acute respiratory distress syndrome in pediatric intensive care unit: single-center experience // Indian J Crit Care Med. – 2022. – Vol. 26, № 8. – P. 949–955. https://doi.org/10.5005/jp-journals-10071-24285.; Schneider N, Johnson M. Management of paediatric acute respiratory distress syndrome // BJA Educ. – 2022. – Vol. 22, № 9. – P. 364–370. https://doi.org/10.1016/j.bjae.2022.04.004.; Zimmerman J. J., Akhtar S. R., Caldwell E. et al. Incidence and outcomes of pediatric acute lung injury // Pediatrics. – 2009. – Vol. 124, № 1. – P. 87–95. https://doi.org/10.1542/peds.2007-2462.

  4. 4
    Academic Journal

    Source: Journal Infectology; Том 17, № 1 (2025); 114-119 ; Журнал инфектологии; Том 17, № 1 (2025); 114-119 ; 2072-6732

    File Description: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1740/1188; Fouka E., Drakopanagiotakis F., Steiropoulos P. Pathogenesis of Pulmonary Manifestations in ANCA-Associated Vasculitis and Goodpasture Syndrome // International Journal of Molecular Sciences. 2024. Vol. 72, N 25. P. 240-249. DOI:10.1016/j.matbio.2018.05.004; Pedchenko V., Kitching A. R., Hudson B. G. Goodpasture’s autoimmune disease — A collagen IV disorder // Matrix Biology. 2018. Vol. 71-72, P. 240–249. DOI:10.1016/j.matbio.2018.05.004; Rovin B., Adler S. et al. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases // Kidney International. 2021. Vol. 4, Т.100. P. 1–276. DOI:10.1016/j.kint.2021.05.015; Reggiani F., L’Imperio V., Calatroni M., Pagni, F. Good-pasture syndrome and anti-glomerular basement membrane disease // Clinical and experimental rheumatology. 2023. Vol. 41, N 5. P. 964–974. https://doi.org/10.55563/clinexprheumatol/tep3k5; Asim M., Akhtar M. Epidemiology, Impact, and Management Strategies of Anti-Glomerular Basement Membrane Disease // International journal of nephrology and renovascular disease. 2022. Vol. 15, P.129–138. DOI:10.2147/IJNRD.S326427; Hellmark T., Segelmark M. Diagnosis and classification of Goodpasture’s disease (anti-GBM) // Journal of Autoimmunity. 2014. Vol. 48–49, P. 108–112. DOI:10.1016/j.jaut.2014.01.024; McAdoo S. P., Pusey C. D. Anti-glomerular basement membrane disease // Clinical Journal of the American Society of Nephrology. 2017. Vol. 7, T. 12. P. 1162–1172. DOI:10.2215/CJN.01380217; Schwartz J. Padmanabhan A. et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice–Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue // Journal of Clinical Apheresis. 2016. Vol. 3, Т. 31. P. 149–338. DOI:10.1002/jca.21470; Jain R., Dgheim H., Bomback A. S. Rituximab for Anti-Glomerular Basement Membrane Disease // Kidney international reports. 2018. Vol. 4, Т. 4. P. 614–618. DOI:10.1016/j.ekir.2018.12.002; Matthay M. A., Arabi, Y. et al. A New Global Definition of Acute Respiratory Distress Syndrome // American Journal of Respiratory and Critical Care Medicine. 2024. Vol. 1, Т.4. P. 37–47. DOI:10.1164/rccm.202303-0558WS; Зайцев А.А., Макаревич А.М., Паценко М.Б., Синопальников А.И., Серговенцев А.А., Крюков Е.В. Диагностика и лечение внебольничной пневмонии у военнослужащих (методические указания). Клиническая медицина. 2024;102(3):212-229. https://doi.org/10.30629/0023-2149-2023-101-11-212-229; https://journal.niidi.ru/jofin/article/view/1740

  5. 5
    Academic Journal

    Source: International Journal of Scientific Pediatrics; Vol. 4 No. 1 (2025): January-February; 782-784 ; Международный журнал научной педиатрии; Том 4 № 1 (2025): Январь-Февраль; 782-784 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 4 No. 1 (2025): Yanvar-Fevral; 782-784 ; 2181-2926

    File Description: application/pdf

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 6 (2024); 17-23 ; Вестник анестезиологии и реаниматологии; Том 21, № 6 (2024); 17-23 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/1102/758; Баутин А. Е., Селемир В. Д., Нургалиева А. И. и др. Ингаляционная терапия оксидом азота, полученным методом синтеза из атмосферного воздуха, в послеоперационном периоде кардиохирургических вмешательств у детей: одноцентровое ретроспективное когортное исследование // Вестник интенсивной терапии им. А. И. Салтанова. – 2021. – № 3. – С. 98–107. https://doi.org/10.21320/1818-474X-2021-3-98-107.; Баутин А. Е., Селемир В. Д., Шафикова А. И. и др. Оценка клинической эффективности и безопасности терапии оксидом азота, синтезированным из атмосферного воздуха, в послеоперационном периоде кардиохирургических вмешательств // Трансляционная медицина. – 2021. – Т. 8, № 1. – С. 38–50. https://doi.org/10.18705/2311-4495-2021-8-1-38-50.; Калашникова Т. П., Арсеньева Ю. А., Каменщиков Н. О. и др. Антибактериальное действие оксида азота на возбудители госпитальной пневмонии (экспериментальное исследование) // Общая реаниматология. – 2024. – Т. 20, № 3. – С. 32–41. https://doi.org/10.15360/1813-9779-2024-3-2424.; Козлов И. А., Попцов В. Н. Клиническое использование ингаляционной окиси азота. Обзор литературы и первые клинические наблюдения // Анест. и реаниматол. – 1997. – № 5. – С. 80–88. PMID: 9432900.; Козлов И. А., Попцов В. H. Ингаляционная окись азота пpи тpансплантации сеpдца // Анест. и pеаниматол. – 1999. – № 5. – С. 9–12. PMID: 10560143.; Козлов И. А., Попцов В. Н. Сочетанная терапия оксидом азота и сурфактантом-BL при остром респираторном дистресс-синдроме после операций с искусственным кровообращением // Общая реаниматология. – 2005. – Т. 1, № 6. – С. 15–20. https://doi.org/10.15360/1813-9779-2005-6-15-20.; Мандель И. А., Яворовский А. Г., Выжигина М. А. и др. Системная органопротекция ингаляционным оксидом азота (обзор литературы) // Вестник анестезиологии и реаниматологии. – 2024. – Т. 21, № 4. – С. 104–114. https://doi.org/10.24884/2078-5658-2024-21-4-104-114.; Нгуен Х. К., Позднякова Д. Д., Баранова И. А., Чучалин А. Г. Применение ингаляций оксида азота при COVID-19 // Пульмонология. – 2024. – Т. 34, № 3. – С. 454–463. https://doi.org/10.18093/0869-0189-2024-4305.; Пичугин В. В., Баутин А. Е., Домнин С. Е. и др. Доставка газообразного оксида азота в экстракорпоральный контур циркуляции: экспериментальные и клинические данные: обзор литературы // Вестник интенсивной терапии им. А.И. Салтанова. – 2021. – № 3. – С. 108–116. https://doi.org/10.21320/1818-474X-2021-3-108-116.; Пичугин В. В., Дерюгина А. В., Домнин С. Е. и др. Первый опыт комбинированного применения оксида азота и молекулярного водорода в обеспечении операций на сердце у пациентов высокого риска // Пульмонология. – 2024. – Т. 34, № 1. – С. 32–41. https://doi.org/10.18093/0869-0189-2024-34-1-32-41.; Пичугин В. В., Домнин С. Е., Сандалкин Е. В. и др. Подмешивание оксида азота в ЭКМО для лечения критической ОСН // СТМ. – 2021. – Т. 13, № 4. – С. 57–63. https://doi.org/10.17691/stm2021.13.4.06.; Подоксенов Ю. К., Каменщиков Н. О., Мандель И. А. Применение оксида азота для защиты миокарда при ишемической болезни сердца // Анестезиология и реаниматология. – 2019. – № 2. – С. 34–47. https://doi.org/10.17116/anaesthesiology201902134.; Попцов В. Н. Гемодинамика и газообменные эффекты ингаляционного оксида азота при ОРДС у кардиохирургических больных // Общая реаниматология. – 2006. – Т. 2, № 2. – С. 14–19. https://doi.org/10.15360/1813-9779-2006-2-14-19.; Те М. А., Каменщиков Н. О., Подоксенов Ю. К. и др. Влияние доставки оксида азота на процессы апоптоза, некроптоза и пироптоза в почечной паренхиме при моделировании искусственного кровообращения: экспериментальное исследование // Вестник анестезиологии и реаниматологии. – 2024. – Т. 21, № 3. – С. 26–33. https://doi.org/10.24884/2078-5658-2024-21-3-26-33; Чурилина Е. А., Подоксенов Ю. К., Каменщиков Н. О. и др. Влияние оксида азота на степень повреждения ткани кишечника и структурной организации мембран эритроцитов при моделировании искусственного кровообращения и циркуляторного ареста: экспериментальное рандомизированное исследование // Вестник интенсивной терапии им. А. И. Салтанова. – 2024. – № 3. – С. 48–60. https://doi.org/10.21320/1818-474X-2024-3‑48-60.; Шень Н. П., Витик А. А., Артемчук А. В. и др. Опыт применения оксида азота у пациента с острым инфарктом миокарда, осложненным кардиогенным шоком и отеком легких (клинический случай) // Вестник анестезиологии и реаниматологии. – 2024. – Т. 21, № 3. – С. 109–116. https://doi.org/10.24884/2078-5658-2024-21-3-109-116.; Штабницкий В. А., Чучалин А. Г. Ингаляционный оксид азота: возможности улучшения оксигенации при остром респираторном дистресс-синдроме // Пульмонология. – 2015. – Т. 25, № 2. – С. 180–186. https://doi.org/10.18093/0869-0189-2015-25-2-180-186.; Abouzid M., Roshdy Y., Daniel J. M. et al. The beneficial use of nitric oxide during cardiopulmonary bypass on postoperative outcomes in children and adult patients: a systematic review and meta-analysis of 2897 patients // Eur J Clin Pharmacol. – 2023. – Vol. 79, № 11. – P. 1425–1442. https://doi.org/10.1007/s00228-023-03554-9.; Al Sulaiman K., Korayem G. B., Altebainawi A. F. et al. Evaluation of inhaled nitric oxide (iNO) treatment for moderate-to-severe ARDS in critically ill patients with COVID-19: a multicenter cohort study // Crit Care. – 2022. – Vol. 26, № 1. – P. 304. https://doi.org/10.1186/s13054-022-04158-y.; Cookson M. W., Kinsella J. P. Inhaled nitric oxide in neonatal pulmonary hypertension // Clin Perinatol. – 2024. – Vol. 51, № 1. – P. 95–111. https://doi.org/10.1016/j.clp.2023.11.001.; Chang Y. T., Liu J. R., Chen W. M. et al. First-year outcomes of very low birth weight preterm singleton infants with hypoxemic respiratory failure treated with milrinone and inhaled nitric oxide (iNO) compared to iNO alone: A nationwide retrospective study // PLoS One. – 2024. – Vol. 19, № 5. – e0297137. https://doi.org/10.1371/journal.pone.0297137.; Duggal A., Rezoagli E., Pham T. et al. Patterns of use of adjunctive therapies in patients with early moderate to severe ARDS: Insights from the Lung Safe Study // Chest. – 2020. – Vol. 157, № 6. – P. 1497–1505. https://doi.org/10.1016/j.chest.2020.01.041.; Fan E., Del Sorbo L., Goligher E. C. et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome // Am J Respir Crit Care Med. – 2017. – Vol. 195, № 9. – P. 1253–1263. https://doi.org/10.1164/rccm.201703-0548ST.; Ferreira L. O., Vasconcelos V. W., Lima J. S. et al. Biochemical changes in cardiopulmonary bypass in cardiac surgery: new insights // J Pers Med. – 2023. – Vol. 13, № 10. – P. 1506. https://doi.org/10.3390/jpm13101506.; Frostell C., Fratacci M. D., Wain J. C. et al. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction // Circulation. – 1991. – Vol. 83, № 6. – P. 2038–2047. https://doi.org/10.1161/01.cir.83.6.2038.; Gebistorf F., Karam O., Wetterslev J. et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults // Cochrane Database Syst Rev. – 2016. – Vol. 6. – CD002787. https://doi.org/10.1002/14651858.CD002787.pub3.; Grasselli G., Calfee C. S., Camporota L. et al. European society of intensive care medicine taskforce on ARDS. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies // Intensive Care Med. – 2023. – Vol. 49, № 7. – P. 727–759. https://doi.org/10.1007/s00134-023-07050-7.; Griffiths M. J. D., McAuley D. F., Perkins G. D. et al. Guidelines on the management of acute respiratory distress syndrome // BMJ Open Respir Res. – 2019. – Vol. 6, № 1. – e000420. https://doi.org/10.1136/bmjresp-2019-000420.; Hubble C. L., Cheifetz I. M., Craig D. M. et al. Inhaled nitric oxide results in deteriorating hemodynamics when administered during cardiopulmonary bypass in neonatal swine // Pediatr Crit Care Med. – 2004. – Vol. 5, № 2. – P. 157–162. https://doi.org/10.1097/01.pcc.0000112377.90107.97.; Ignarro L. J., Buga G. M., Wood K. S. et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide // Proc Natl Acad Sci USA. – 1987. – Vol. 84, № 24. – P. 9265–9269. https://doi.org/10.1073/pnas.84.24.9265.; Janssens S. P., Bogaert J., Zalewski J. et al. Nitric oxide for inhalation in ST-elevation myocardial infarction (NOMI): a multicentre, double-blind, randomized controlled trial // Eur Heart J. – 2018. – Vol. 39, № 29. – P. 2717–2725. https://doi.org/10.1093/eurheartj/ehy232.; Kamenshchikov N. O., Duong N., Berra L. Nitric Oxide in cardiac surgery: a review article // Biomedicines. – 2023. – Vol. 11, № 4. – P. 1085. https://doi.org/10.3390/biomedicines11041085.; Monsalve-Naharro J. Á., Domingo-Chiva E., García Castillo S. et al. Inhaled nitric oxide in adult patients with acute respiratory distress syndrome // Farm Hosp. – 2017. – Vol. 41, № 2. – P. 292–312. https://doi.org/10.7399/fh.2017.41.2.10533.; Muenster S., Zarragoikoetxea I., Moscatelli A. et al. Inhaled NO at a crossroads in cardiac surgery: current need to improve mechanistic understanding, clinical trial design and scientific evidence // Front Cardiovasc Med. – 2024. – Vol. 11. – 1374635. https://doi.org/10.3389/fcvm.2024.1374635.; Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor // Nature. – 1987. – Vol. 327, № 6122. – P. 524–526. https://doi.org/10.1038/327524a0. PMID: 3495737.; Qadir N., Sahetya S., Munshi L. et al. An Update on management of adult patients with acute respiratory distress syndrome: an Official American Thoracic Society Clinical Practice Guideline // Am J Respir Crit Care Med. – 2024. – Vol. 209, № 1. – P. 24–36. https://doi.org/10.1164/rccm.202311-2011ST.; Redaelli S., Magliocca A., Malhotra R. et al. Nitric oxide: Clinical applications in critically ill patients // Nitric Oxide. – 2022. – Vol. 121. – P. 20–33. https://doi.org/10.1016/j.niox.2022.01.007.; Redaelli S., Pozzi M., Giani M. et al. Inhaled nitric oxide in acute respiratory distress syndrome subsets: rationale and clinical applications // J Aerosol Med Pulm Drug Deliv. – 2023. – Vol. 36, № 3. – P. 112–126. https://doi.org/10.1089/jamp.2022.0058.; Sardo S., Osawa E. A., Finco G. et al. Nitric oxide in cardiac surgery: a meta-analysis of randomized controlled trials // J Cardiothorac Vasc Anesth. – 2018. – Vol. 32, № 6. – P. 2512–2519. https://doi.org/10.1053/j.jvca.2018.02.003.; Schlapbach L. J., Gibbons K. S., Horton S. B. et al. Effect of nitric oxide via cardiopulmonary bypass on ventilator-free days in young children undergoing congenital heart disease surgery: the NITRIC randomized clinical trial // JAMA. – 2022. – Vol. 328, № 1. – P. 38–47. https://doi.org/10.1001/jama.2022.9376.; Shei R. J., Baranauskas M. N. More questions than answers for the use of inhaled nitric oxide in COVID-19 // Nitric Oxide. – 2022. – Vol. 124. – P. 39–48. https://doi.org/10.1016/j.niox.2022.05.001.; Sherlock L. G., Wright C. J., Kinsella J. P. et al. Inhaled nitric oxide use in neonates: Balancing what is evidence-based and what is physiologically sound // Nitric Oxide. – 2020. – Vol. 95. – P. 12–16. https://doi.org/10.1016/j.niox.2019.12.001.; Tasaka S., Ohshimo S., Takeuchi M. et al. ARDS Clinical Practice Guideline 2021 // J Intensive Care. – 2022. – Vol. 10, № 1. – P. 32. https://doi.org/10.1186/s40560-022-00615-6.; Wong J., Loomba R. S., Evey L. et al. Postoperative inhaled nitric oxide does not decrease length of stay in pediatric cardiac surgery admissions // Pediatr Cardiol. – 2019. – Vol. 40, № 8. – P. 1559–1568. https://doi.org/10.1007/s00246-019-02187-z.; Xu F., Li W. Delivery exogenous nitric oxide via cardiopulmonary bypass in pediatric cardiac surgery reduces the duration of postoperative mechanical ventilation – a meta-analysis of randomized controlled trials // Heliyon. – 2023. – Vol. 9, № 8. – e19007. https://doi.org/10.1016/j.heliyon.2023.e19007.; Yan Y., Kamenshchikov N., Zheng Z. et al. Inhaled nitric oxide and postoperative outcomes in cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis // Nitric Oxide. – 2024. – Vol. 146. – P. 64–74. https://doi.org/10.1016/j.niox.2024.03.004.; Yang X., Zhu L., Pan H., Yang Y. Cardiopulmonary bypass associated acute kidney injury: better understanding and better prevention // Ren Fail. – 2024. – Vol. 46, № 1. – P. 2331062. https://doi.org/10.1080/0886022X.2024.2331062.; Yu B., Ichinose F., Bloch D. B. et al. Inhaled nitric oxide // Br J Pharmacol. – 2019. – Vol. 176, № 2. – P. 246–255. https://doi.org/10.1111/bph.14512.; Zhao Y., Li C., Zhang S. et al. Inhaled nitric oxide: can it serve as a savior for COVID-19 and related respiratory and cardiovascular diseases? // Front Microbiol. – 2023. – Vol. 14. – 1277552. https://doi.org/10.3389/fmicb.2023.1277552.; Zhao M., Zhang Q., Lin Y. et al. Impact of nitric oxide via cardiopulmonary bypass on pediatric heart surgery: a meta-analysis of randomized controlled trials // J Cardiothorac Surg. – 2024. – Vol. 19, № 1. – P. 461. https://doi.org/10.1186/s13019-024-02953-y

  11. 11
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 2 (2024); 56-63 ; Вестник анестезиологии и реаниматологии; Том 21, № 2 (2024); 56-63 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/966/705; Кузовлев А. Н., Ермохина Л. В., Мельникова Н. С. и др. Номограмма для прогнозирования госпитальной летальности у пациентов с COVID-19, находившихся в отделении реанимации и интенсивной терапии // Вестник анестезиологии и реаниматологии. ‒ 2022. ‒ Т. 19, № 1. ‒ С. 6‒17. DOI:10.21292/2078-5658-2022-19-1-6-17.; Badulak J., Antonini M. V., Stead C. M. et al. ELSO COVID-19 working group members. extracorporeal membrane oxygenation for COVID-19: Updated 2021 Guidelines from the extracorporeal life support organization // ASAIO J. – 2021. – Vol. 67, № 5. – P. 485‒495. DOI:10.1097/MAT.0000000000001422.; Barbaro R. P., MacLaren G., Boonstra P. S. et al. Extracorporeal life support organization. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry // Lancet. – 2020. – Vol. 396, № 10257. – P. 1071‒1078. DOI:10.1016/S0140-6736(20)32008-0.; Barbaro R. P., MacLaren G., Boonstra P. S. et al. Extracorporeal Life Support Organization. Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international extracorporeal life support organization registry // Lancet. – 2021. – Vol. 398, № 10307. – P. 1230‒1238. DOI:10.1016/S0140-6736(21)01960-7.; Beyls C., Huette P., Viart C. et al. Mortality of COVID-19 patients requiring extracorporeal membrane oxygenation during the three epidemic waves // ASAIO J. ‒ 2022. – Vol. 68, № 12. – P. 1434‒1442. DOI:10.1097/MAT.0000000000001787.; Biancari F., Mariscalco G., Dalén M. et al. Six-month survival after extracorporeal membrane oxygenation for severe COVID-19 // J Cardiothorac Vasc Anesth. ‒ 2021. – Vol. 35, № 7. – P. 1999‒2006. DOI:10.1053/j.jvca.2021.01.027.; Extracorporeal Life Support Organization Registry Dashboard of ECMO-Supported COVID-19 Patient Data. URL: https://elso.org/home.aspx (accessed: 10.03.24).; Fisser C., Rincon-Gutierrez L. A., Enger T. B. et al. Validation of prognostic scores in extracorporeal life support: a multi-centric retrospective study // Membranes (Basel). ‒ 2021. – Vol. 11, № 2. – P. 84. DOI:10.3390/membranes11020084.; Franchineau G., Luyt C. E., Combes A. et al. Ventilator-associated pneumonia in extracorporeal membrane oxygenation-assisted patients // Ann Transl Med. – 2018. – Vol. 21. – P. 427. DOI:10.21037/atm.2018.10.18.; Grasselli G., Greco M., Zanella A. et al. COVID-19 Lombardy ICU Network. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy // JAMA Intern Med. – 2020. – Vol. 180, № 10. – P. 1345‒1355. DOI:10.1001/jamainternmed.2020.3539.; Riera J., Alcántara S., Bonilla C. et al. Risk factors for mortality in patients with COVID-19 needing extracorporeal respiratory support // Eur Respir J. – 2022. – Vol. 59, № 2. – P. 2102463. DOI:10.1183/13993003.02463-2021.; MacLaren G., Schlapbach L. J., Aiken A. M. Nosocomial infections during extracorporeal membrane oxygenation in neonatal, pediatric, and adult patients: a comprehensive narrative review // Pediatr Crit Care Med. ‒ 2020. – Vol. 21, № 3. – P. 283‒290. DOI:10.1097/PCC.0000000000002190.; Nesseler N., Fadel G., Mansour A. et al. ECMOSARS Investigators. Extracorporeal membrane oxygenation for respiratory failure related to COVID-19; Shaefi S., Brenner S.K., Gupta S. et al. STOP-COVID investigators. Extracorporeal membrane oxygenation in patients with severe respiratory failure from COVID-19. Intensive Care Med, 2021, vol. 47, no. 2, pp. 208‒221. DOI:10.1007/s00134-020-06331-9.; Supady A., Dellavolpe J., Taccone F.S. et al. Outcome prediction in patients with severe covid-19 requiring extracorporeal membrane oxygenation-a retrospective international multicenter study. Membranes (Basel), 2021, vol. 11, no. 3, pp. 170. DOI:10.3390/membranes11030170.; Tabatabai A., Ghneim M.H., Kaczorowski D.J. et al. Mortality risk assessment in COVID-19 venovenous extracorporeal membrane oxygenation. Ann Thorac Surg, 2021, vol. 112, no. 6, pp. 1983‒1989. DOI:10.1016/j.athoracsur.2020.12.050.; Tran A., Fernando S.M., Rochwerg B. et al. Prognostic factors associated with mortality among patients receiving venovenous extracorporeal membrane oxygenation for COVID-19: a systematic review and meta-analysis. Lancet Respir Med, 2023, vol. 11, no. 3, pp. 235‒244. DOI:10.1016/S2213-2600(22)00296-X.; Vigneshwar N.G., Masood M.F., Vasic I. et al. Venovenous extracorporeal membrane oxygenation support in patients with COVID-19 respiratory failure: A multicenter study. JTCVS Open, 2022, vol. 12, pp. 211‒220. DOI:10.1016/j.xjon.2022.08.007.

  12. 12
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 2 (2024); 112-121 ; Вестник анестезиологии и реаниматологии; Том 21, № 2 (2024); 112-121 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/973/712; Александрович Ю. С., Пшениснов К. В. Респираторная поддержка при критических состояниях в педиатрии и неонатологии. М.: ГЭОТАР-Медиа, 2020. – 272 с.; Иванов Д. О., Кирьяков К. С., Пшениснов К. В. и др. Эндобронхиальное введение сурфактанта у доношенного новорожденного с респираторным дистресс-синдромом (клинический случай) // Педиатр. – 2022. – Т. 13. – № 6. –C. 107‒115. DOI:10.17816/PED136107-115.; Руководство по перинатологии в двух томах; издание 2-е, переработанное и дополненное / под ред. Д.О. Иванова. СПб.: ООО «Информ Навигатор», 2019.; Abdul-Mumin A., Owusu S. A., Abubakari A. Factors associated with treatment outcome of preterm babies at discharge from the neonatal Intensive Care Unit (NICU) of the Tamale Teaching Hospital, Ghana // Int J Pediatr. – 2020. – Vol. 2020. ‒ 5696427. DOI:10.1155/2020/5696427.; Ahmed M. A. A., Mahgoub H. M., Al-Nafeesah A. et al. Neonatal mortality and associated factors in the Neonatal Intensive Care Unit of Gadarif Hospital, Eastern Sudan // Children (Basel). – 2022. – Vol. 9, № 11. – P. 1725. DOI:10.3390/children9111725.; Al Riyami N., Al Hadhrami A., Al Lawati T. et al. Respiratory Distress Syndrome in neonates delivered at term-gestation by elective cesarean section at Tertiary Care Hospital in Oman // Oman Med J. – 2020. – Vol. 35. – e133. DOI:10.5001/omj.2020.51.; Alfarwati T. W., Alamri A. A., Alshahrani M. A. et al. Incidence, risk factors and outcome of Respiratory Distress Syndrome in term infants at Academic Centre, Jeddah, Saudi Arabia // Med Arch. – 2019. – Vol. 73, № 3. – P. 183‒186. DOI:10.5455/medarh.2019.73.183-186.; Bandoli G., Chambers C. D., Wells A. et al. Prenatal antidepressant use and risk of adverse neonatal outcomes // Pediatrics. – 2020. – Vol. 146, № 1. – e20192493. DOI:10.1542/peds.2019-2493.; Baseer K. A. A., Mohamed M., Abd-Elmawgood E. A. Risk factors of respiratory diseases among neonates in neonatal intensive care unit of Qena University Hospital, Egypt // AnnGlob Health. – 2020. – Vol. 86, № 1. – P. 22. DOI:10.5334/aogh.2739.; Bulimba M., Cosmas J., Abdallah Y. et al. Early outcomes of preterm neonates with respiratory distress syndrome admitted at Muhimbili National Hospital, a prospective study // BMC Pediatr. – 2022. – Vol. 22, № 1. – P. 731. DOI:10.1186/s12887-022-03731-2.; Charles E., Hunt K. A., Harris C. et al. Small for gestational age and extremely low birth weight infant outcomes // J Perinat Med. – 2019. – Vol. 47, № 2. – P. 247‒251. DOI:10.1515/jpm-2018-0295.; Chavan S., Malwade S. D., Kumari S. et al. Incidence, clinical features, and outcomes of transient tachypnea of the newborn at a tertiary care center in Western India // Cureus. – 2022. – Vol. 14, № 4. – e23939. DOI:10.7759/cureus.23939.; Chen L., Li J., Shi Y. et al. Clinical characteristics and outcomes in neonates with perinatal acute respiratory distress syndrome in China: A national, multicentre, cross-sectional study. E Clinical Medicine, 2022, vol. 55, pp. 101739. DOI:10.1016/j.eclinm.2022.101739.; Chen X., Li H., Qiu X. et al. Neonatal hematological parameters and the risk of moderate-severe bronchopulmonary dysplasia in extremely premature infants. BMC Pediatr, 2019, vol. 19, no. 1, pp. 138. DOI:10.1186/s12887-019-1515-6.; De Luca D., van Kaam A.H., Tingay D.G. et al. The Montreux definition of neonatal ARDS, pp. biological and clinical background behind the description of a new entity. Lancet Respir Med, 2017, vol.5, no. 8, pp. 657‒666. DOI:10.1016/S2213-2600(17)30214-X.; Desalew A., Sintayehu Y., Teferi N. et al. Cause and predictors of neonatal mortality among neonates admitted to neonatal intensive care units of public hospitals in eastern Ethiopia, pp. a facility-based prospective follow-up study. BMC Pediatr, 2020, vol. 20, no. 1, pp. 160. DOI:10.1186/s12887-020-02051-7.; Dhaded S.M., Saleem S., Goudar S.S. et al. T The causes of preterm neonatal deaths in India and Pakistan (PURPOSe): a prospective cohort study. Lancet Glob Health, 2022, vol. 10, no. 11, pp. e1575‒e1581. DOI:10.1016/S2214-109X(22)00384-9.; Ding S., Xu Y., Wang H. et al. Outcome of neonatal hypoxemic respiratory failure: a livebirth population-based retrospective survey. BMC Pediatr, 2022, vol. 22, no. 1, pp. 552. DOI:10.1186/s12887-022-03603-9.; Dumpa V., Avulakunta I., Bhandari V. Respiratory management in the premature neonate. Expert Rev Respir Med. 2023, vol. 17, no. 2, pp. 155‒170. DOI:10.1080/17476348.2023.2183843.; Egesa W.I., Odong R.J., Kalubi P. et al. Preterm neonatal mortality and its determinants at a Tertiary Hospital in Western Uganda: a prospective cohort study. Pediatric Health Med Ther, 2020, vol. 11, pp. 409‒420. DOI:10.2147/PHMT.S266675.; Halliday H.L. Surfactants: past, present and future. J Perinatol, 2008, vol. 28, Suppl 1, pp. 47‒56. DOI:10.1038/jp.2008.50.; Hubbard R. M., Choudhury K. M., Lim G. Treatment patterns and clinical outcomes in neonates diagnosed with Respiratory Distress Syndrome in a low-income country: a report from Bangladesh // AnesthAnalg. – 2018. – Vol. 126, № 5. – P. 1684‒1686. DOI:10.1213/ANE.0000000000002865.; Ismaeil T., Almutairi J., Alshaikh R. et al. Survival of mechanically ventilated patients admitted to intensive care units. Results from a tertiary care center between 2016-2018 // Saudi Med J. – 2019. – Vol. 40, № 8. – P. 781‒788. DOI:10.15537/smj.2019.8.24447.; Jensen E. A., Whyte R. K., Schmidt B. et al. Association between intermittent hypoxemia and severe bronchopulmonary dysplasia in preterm infants // Am J Respir Crit Care Med. – 2021. – Vol. 204, № 10. – P. 1192‒1199. DOI:10.1164/rccm.202105-1150OC.; Jeon G. W., Lee J. H., Oh M. et al. Serial short-term outcomes of very-low-birth-weight infants in the Korean Neonatal Network From 2013 to 2020 // J Korean MedSci. – 2022. – Vol. 37, № 29. – P. e229. DOI:10.3346/jkms.2022.37.e229.; Jia C.H., Feng Z.S., Lin X.J. et al. Short term outcomes of extremely low birth weight infants from a multicenter cohort study in Guangdong of China // SciRep. – 2022. – Vol. 12, № 1. – P. 11119. DOI:10.1038/s41598-022-14432-2.; Khasawneh W., Khriesat W. Assessment and comparison of mortality and short-term outcomes among premature infants before and after 32-week gestation: A cross-sectional analysis // Ann Med Surg (Lond). – 2020. – Vol. 60. – P. 44‒49. DOI:10.1016/j.amsu.2020.10.017.; Kiatchoosakun P., Jirapradittha J., Paopongsawan P. et al. Mortality and comorbidities in extremely low birth weight thai infants: a nationwide data analysis // Children (Basel). – 2022. – Vol. 9, № 12. – P. 1825. DOI:10.3390/children9121825.; Lee J. H., Youn Y., Chang Y. S. Short- and long-term outcomes of very low birth weight infants in Korea: Korean Neonatal Network update in 2019 // Clin Exp Pediatr. – 2020. – Vol. 63, № 8. – P. 284-290. DOI:10.3345/cep.2019.00822.; Li S. J., Feng Q., Tian X. Y. et al. Delivery room resuscitation and short-term outcomes of extremely preterm and extremely low birth weight infants: a multicenter survey in North China // ChinMed J (Engl). – 2021. – Vol. 134, № 13. – P. 1561‒1568. DOI:10.1097/CM9.0000000000001499.; Mengistu T. S., Schreiber V., Flatley C. et al. Factors associated with increased risk of early severe neonatal morbidity in late preterm and early term infants // J Clin Med. – 2021. – Vol. 10, № 6. – P. 1319. DOI:10.3390/jcm10061319.; Ogunkunle T. O., Odiachi H., Chuma J. R. et al. Postnatal outcomes and risk factors for in-hospital mortality among asphyxiated newborns in a low-resource hospital setting: experience from North-Central Nigeria // Ann Glob Health. – 2020. – Vol. 86, № 1. – P. 63. DOI:10.5334/aogh.2884.; Pandya S., Baser O., Wan G. J. et al. The burden of hypoxic respiratory failure in preterm and term/near-term infants in the United States 2011-2015 // J Health Econ Outcomes Res. – 2019. – Vol. 6, № 3. – P. 130‒141. DOI:10.36469/9682.; Persson M., Shah P. S., Rusconi F. et al. Association of maternal diabetes with neonatal outcomes of very preterm and very low-birth-weight infants: an international cohort study // JAMA Pediatr. – 2018. – Vol. 172, № 9. – P. 867‒875. DOI:10.1001/jamapediatrics.2018.1811.; Plunkett B. A., Sandoval G., Bailit J. L. et al. Association of labor with neonatal respiratory outcomes at 36‒40 weeks of gestation // Obstet Gynecol. – 2019. – Vol. 134, № 3. – P. 495‒501. DOI:10.1097/AOG.0000000000003415.; Razaz N., Cnattingius S., Joseph K. S. Association between Apgar scores of 7 to 9 and neonatal mortality and morbidity: population based cohort study of term infants in Sweden // BMJ. 2019. – Vol. 365. – P. l1656. DOI:10.1136/bmj.l1656.; Shim S. Y., Yun J. Y., Cho S. J. et al. The prediction of bronchopulmonary dysplasia in very low birth weight infants through clinical indicators within 1 hour of delivery // J Korean MedSci. – 2021. – Vol. 36, № 11. – e81. DOI:10.3346/jkms.2021.36.e81.; Spillane N. T., Zamudio S., Alvarez-Perez J. et al. Increased incidence of respiratory distress syndrome in neonates of mothers with abnormally invasive placentation // PLoS One. – 2018. – Vol. 13, № 7. – e0201266. DOI:10.1371/journal.pone.0201266.; Su Z., Lin L., Fan X. et al. Increased risk for respiratory complications in male extremely preterm infants: a propensity score matching study // Front endocrinol (Lausanne). – 2022. – Vol. 13. – P. 823707. DOI:10.3389/fendo.2022.823707.; Su Z. W., Lin L. L., Shi B. J. et al. Sex differences in clinical outcomes of extremely preterm infants/extremely low birth weight infants: a propensity score matching study // Zhongguo Dang Dai Er Ke Za Zhi. – 2022. – Vol. 24, № 5. – P. 514‒520. DOI:10.7499/j.issn.1008-8830.2201049.; Tefera M., Assefa N., Roba K. T., Gedefa L. Adverse neonatal outcome are more common among babies born by cesarean section than naturally babies at public hospitals in Eastern Ethiopia: a comparative prospective follow-up study at Eastern Ethiopia // Glob Pediatr Health. – 2021. – Vol. 8. – P. 2333794X211018350. DOI:10.1177/2333794X211018350.; Thomas J., Olukade T. O., Naz A. et al. The neonatal respiratory morbidity associated with early term caesarean section - an emerging pandemic // J PerinatMed. – 2021. – Vol. 49, № 7. – P. 767‒772. DOI:10.1515/jpm-2020-0402.; Tibaijuka L., Bawakanya S. M., Owaraganise A. et al. Incidence and predictors of preterm neonatal mortality at Mbarara Regional Referral Hospital in South Western Uganda // PLoS One. – 2021. – Vol. 16, № 11. – e0259310. DOI:10.1371/journal.pone.0259310.; Toijonen A., Heinonen S., Gissler M. et al. Neonatal outcome in vaginal breech labor at 32 + 0-36 + 0 weeks of gestation: a nationwide, population-based re- cord linkage study // BMC Pregnancy Childbirth. – 2022. – Vol. 22, № 1. – P. 211. DOI:10.1186/s12884-022-04547-9.; Treiber M., Mujezinović F., Pečovnik Balon B. et al. Association between umbilical cord vitamin D levels and adverse neonatal outcomes. J Int Med Res, 2020, vol. 48, no. 10, pp. 300060520955001. DOI:10.1177/0300060520955001.; Yadav S., Lee B., Kamity R. Neonatal respiratory distress syndrome. Treasure Island (FL): StatPearls Publishing, 2023. PMID: 32809614 https://pubmed.ncbi.nlm.nih.gov/32809614/.; Von Neergaard K. Neue auffassungen uber einengrundbegriff der atemmechanik. Die retraktionskraft der lunge, abhangig von der ober flachenspannung in den alveolen // Z Gesamt Exp Med. – 1929. – Vol. 66. – P. 373‒394. DOI:10.1007/BF02621963.; Werner E. F., Romano M. E., Rouse D. J. et al. Association of gestational diabetes mellitus with neonatal respiratory morbidity // Obstet Gynecol. – 2019. – Vol. 133, № 2. – P. 349‒353. DOI:10.1097/AOG.0000000000003053.; Wu F., Liu G., Feng Z. et al. Short-term outcomes of extremely preterm infants at discharge: a multicenter study from Guangdong province during 2008‒2017 // BMC Pediatr. – 2019. – Vol. 19, № 1. – P. 405. DOI:10.1186/s12887-019-1736-8.; Zhang Y. F., Yu X. Q., Liao J. H. et al. A clinical epidemiological investigation of neonatal acute respiratory distress syndrome in southwest Hubei // China Zhongguo Dang Dai Er Ke Za Zhi. – 2020. – Vol. 22, № 9. – P. 942‒947. DOI:10.7499/j.issn.1008-8830.2003271.

  13. 13
    Academic Journal

    Contributors: 1

    Source: Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care; Vol 14, No 1 (2024); 83-95 ; Российский вестник детской хирургии, анестезиологии и реаниматологии; Vol 14, No 1 (2024); 83-95 ; 2587-6554 ; 2219-4061 ; 10.17816/psaic.20241

    File Description: application/pdf

  14. 14
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 5 (2024); 41-48 ; Медицинский Совет; № 5 (2024); 41-48 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8220/7243; Hentschel R, Bohlin K, van Kaam A, Fuchs H, Danhaive O. Surfactant replacement therapy: from biological basis to current clinical practice. Pediatr Res. 2020;88(2):176–183. https://doi.org/10.1038/s41390-020-0750-8.; Garcia MJ, Amarelle L, Malacrida L, Briva A. Novel opportunities from bioimaging to understand the trafficking and maturation of intracellular pulmonary surfactant and its role in lung diseases. Front Immunol. 2023;14:1250350. https://doi.org/10.3389/fimmu.2023.1250350.; Milad N, Morissette MC. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. Eur Respir Rev. 2021;30(162):210077. https://doi.org/10.1183/16000617.0077-2021.; Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1725–1739. https://doi.org/10.1016/j.bbamem.2017.03.015.; Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat. 2017;209:78–92. https://doi.org/10.1016/j.aanat.2016.09.008.; Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis. 2020;19(1):122. https://doi.org/10.1186/s12944-020-01278-8.; Numata M, Kandasamy P, Voelker DR. The anti-inflammatory and antiviral properties of anionic pulmonary surfactant phospholipids. Immunol Rev. 2023;317(1):166–186. https://doi.org/10.1111/imr.13207.; Voelker DR, Numata M. Phospholipid regulation of innate immunity and respiratory viral infection. J Biol Chem. 2019;294(12):4282–4289. https://doi.org/10.1074/jbc.AW118.003229.; Tlatelpa-Romero B, Cázares-Ordoñez V, Oyarzábal LF, Vázquez-de-Lara LG. The Role of Pulmonary Surfactant Phospholipids in Fibrotic Lung Diseases. Int J Mol Sci. 2022;24(1):326. https://doi.org/10.3390/ijms24010326.; Walther FJ, Sharma S, Gordon LM, Waring AJ. Structural and functional stability of the sulfur-free surfactant protein B peptide mimic B-YL in synthetic surfactant lipids. BMC Pulm Med. 2021;21(1):330. https://doi.org/10.1186/s12890-021-01695-0.; Porras-Gómez M, Shoaib T, Steer D, Espinosa-Marzal RM, Leal C. Pathological cardiolipin-promoted membrane hemifusion stiffens pulmonary surfactant membranes. Biophys J. 2022;121(6):886–896. https://doi.org/10.1016/j.bpj.2022.02.018.; Numata M, Voelker DR. Anti-inflammatory and anti-viral actions of anionic pulmonary surfactant phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867(6):159139. https://doi.org/10.1016/j.bbalip.2022.159139.; Pérez-Gil J. A recipe for a good clinical pulmonary surfactant. Biomed J. 2022;45(4):615–628. https://doi.org/10.1016/j.bj.2022.03.001.; Hallman M, Herting E. Historical perspective on surfactant therapy: Transforming hyaline membrane disease to respiratory distress syndrome. Semin Fetal Neonatal Med. 2023;28(6):101493. https://doi.org/10.1016/j.siny.2023.101493.; De Luca D, Autilio C. Strategies to protect surfactant and enhance its activity. Biomed J. 2021;44(6):654–662. https://doi.org/10.1016/j.bj.2021.07.011.; Suresh GK, Soll RF. Lung surfactants for neonatal respiratory distress syndrome: animal-derived or synthetic agents?. Paediatr Drugs. 2002;4(8): 485–492. https://doi.org/10.2165/00128072-200204080-00001.; Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang JS et al. A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact. 2021;20(1):120. https://doi.org/10.1186/s12934-021-01613-3.; Lv MY, Qiang LX, Wang BC, Zhang YP, Li ZH, Li XS et al. Complex Evaluation of Surfactant Protein A and D as Biomarkers for the Severity of COPD. Int J Chron Obstruct Pulmon Dis. 2022;17:1537–1552. https://doi.org/10.2147/COPD.S366988.; Moya F, Curstedt T, Johansson J, Sweet D. Synthetic surfactants. Semin Fetal Neonatal Med. 2023;28(6):101503. https://doi.org/10.1016/j.siny.2023.101503.; Härtel C, Glaser K, Speer CP. The Miracles of Surfactant: Less Invasive Surfactant Administration, Nebulization, and Carrier of Topical Drugs. Neonatology. 2021;118(2):225–234. https://doi.org/10.1159/000516106.; Ramanathan R, Biniwale M, Sekar K, Hanna N, Golombek S, Bhatia J et al. Synthetic Surfactant CHF5633 Compared with Poractant Alfa in the Treatment of Neonatal Respiratory Distress Syndrome: A Multicenter, Double-Blind, Randomized, Controlled Clinical Trial. J Pediatr. 2020;225:90–96.e1. https://doi.org/10.1016/j.jpeds.2020.06.024.; Weaver TE. Synthesis, processing and secretion of surfactant proteins B and C. Biochim Biophys Acta. 1998;1408(2-3):173–179. https://doi.org/10.1016/s0925-4439(98)00066-0.; Ghati A, Dam P, Tasdemir D, Kati A, Sellami H, Sezgin GC et al. Exogenous pulmonary surfactant: A review focused on adjunctive therapy for severe acute respiratory syndrome coronavirus 2 including SP-A and SP-D as added clinical marker. Curr Opin Colloid Interface Sci. 2021;51:101413. https://doi.org/10.1016/j.cocis.2020.101413.; Hsieh MH, Chen PC, Hsu HY, Liu JC, Ho YS, Lin YJ et al. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol Immunol. 2023;20(1):38–50. https://doi.org/10.1038/s41423-022-00946-2.; Cavallin F, Bua B, Pasta E, Savio F, Villani PE, Trevisanuto D. Device positioning with LISA vs. INSURE: a crossover randomized controlled manikin trial. J Matern Fetal Neonatal Med. 2022;35(26):10577–10583. https://doi.org/10.1080/14767058.2022.2134774.; Ricci F, Bresesti I, LaVerde PAM, Salomone F, Casiraghi C, Mersanne A et al. Surfactant lung delivery with LISA and InSurE in adult rabbits with respiratory distress. Pediatr Res. 2021;90(3):576–583. https://doi.org/10.1038/s41390-020-01324-2.; Баутин АЕ, Авдеев СН, Сейлиев АА, Швечкова МВ, Мержоева ЗМ, Трушенко НВ и др. Ингаляционная терапия сурфактантом в комплексном лечении тяжелой формы COVID-19-пневмонии. Туберкулез и болезни легких. 2020;98(9):6–12. https://doi.org/10.21292/2075-1230-2020-98-9-6-12.; Ma CC, Ma S. The role of surfactant in respiratory distress syndrome. Open Respir Med J. 2012;6:44–53. https://doi.org/10.2174/1874306401206010044.; Li D, Wang X, Liao Y, Wang S, Shan J, Ji J. Insights Gained Into the Treatment of COVID19 by Pulmonary Surfactant and Its Components. Front Immunol. 2022;13:842453. https://doi.org/10.3389/fimmu.2022.842453.; Calabrese F, Pezzuto F, Fortarezza F, Hofman P, Kern I, Panizo A et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020;477(3):359–372. https://doi.org/10.1007/s00428-020-02886-6.; Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375(6585):1122–1127. https://doi.org/10.1126/science.abm8108.; Zhou R, To KK, Wong YC, Liu L, Zhou B, Li X et al. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity. 2020;53(4):864–877.e5. https://doi.org/10.1016/j.immuni.2020.07.026.; Bos LDJ, Sjoding M, Sinha P, Bhavani SV, Lyons PG, Bewley AF et al. Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts. Lancet Respir Med. 2021;9(12):1377–1386. https://doi.org/10.1016/S2213-2600(21)00365-9.; Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. https://doi.org/10.1126/science.abd4570.; Woods PS, Doolittle LM, Rosas LE, Joseph LM, Calomeni EP, Davis IC. Lethal H1N1 influenza A virus infection alters the murine alveolar type II cell surfactant lipidome. Am J Physiol Lung Cell Mol Physiol. 2016;311(6): L1160–L1169. https://doi.org/10.1152/ajplung.00339.2016.; Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J et al. Pulmonary alveolar proteinosis. Nat Rev Dis Primers. 2019;5(1):16. https://doi.org/10.1038/s41572-019-0066-3.; Salvaterra E, Campo I. Pulmonary alveolar proteinosis: from classification to therapy. Breathe (Sheff). 2020;16(2):200018. https://doi.org/10.1183/20734735.0018-2020.; Trapnell BC, Whitsett JA. Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol. 2002;64:775–802. https://doi.org/10.1146/annurev.physiol.64.090601.113847.; Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V, Kreuter M. The therapy of idiopathic pulmonary fibrosis: what is next? Eur Respir Rev. 2019;28(153):190021. https://doi.org/10.1183/16000617.0021-2019.; Zhu W, Tan C, Zhang J. Alveolar Epithelial Type 2 Cell Dysfunction in Idiopathic Pulmonary Fibrosis. Lung. 2022;200(5):539–547. https://doi.org/10.1007/s00408-022-00571-w.; Agudelo CW, Kumley BK, Area-Gomez E, Xu Y, Dabo AJ, Geraghty P et al. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS ONE. 2020;15(2):e0228279. https://doi.org/10.1371/journal.pone.0228279.; Hohlfeld JM. The role of surfactant in asthma. Respir Res. 2002;3(1):4. https://doi.org/10.1186/rr176.; Choi Y, Jang J, Park HS. Pulmonary Surfactants: a New Therapeutic Target in Asthma. Curr Allergy Asthma Rep. 2020;20(11):70. https://doi.org/10.1007/s11882-020-00968-8.; Ledford JG, Addison KJ, Foster MW, Que LG. Eosinophil-associated lung diseases. A cry for surfactant proteins A and D help? Am J Respir Cell Mol Biol. 2014;51(5):604–614. https://doi.org/10.1165/rcmb.2014-0095TR.; Luppi F, Kalluri M, Faverio P, Kreuter M, Ferrara G. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res. 2021;22(1):109. https://doi.org/10.1186/s12931-021-01711-1.; Griese M, Essl R, Schmidt R, Ballmann M, Paul K, Rietschel E, Ratjen F. Sequential analysis of surfactant, lung function and inflammation in cystic fibrosis patients. Respir Res. 2005;6(1):133. https://doi.org/10.1186/1465-9921-6-133.; Gunasekara L, Al-Saiedy M, Green F, Pratt R, Bjornson C, Yang A et al. Pulmonary surfactant dysfunction in pediatric cystic fibrosis: Mechanisms and reversal with a lipid-sequestering drug. J Cyst Fibros. 2017;16(5):565–572. https://doi.org/10.1016/j.jcf.2017.04.015.

  15. 15
    Academic Journal

    Source: General Reanimatology; Том 20, № 4 (2024); 13-22 ; Общая реаниматология; Том 20, № 4 (2024); 13-22 ; 2411-7110 ; 1813-9779

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2505/1851; https://www.reanimatology.com/rmt/article/view/2505/1858; Azagew A.W., Beko Z.W., Ferede Y.M., Mekonnen H.S., Abate H.K., Mekonnen C.K. Global prevalence of COVID-19-induced acute respiratory distress syndrome: systematic review and meta-analysis. Syst Rev. 2023; 12 (1): 212. DOI:10.1186/s13643023-02377-0. PMID: 37957723.; Extracorporeal Life Support Organization. Registry Dashboard of ECMO-Supported COVID-19 Patient Data [Электронный ресурс] // https://elso.org/home.aspx.2023.; Badulak J., Antonini M.V., Stead C.M, Shekerdemian L., Raman L., Paden M.L., Agerstrand C., et al. Extracorporeal membrane oxygenation for COVID-19: updated 2021 guidelines from the Extracorporeal Life Support Organization. ASAIO J. 2021; 67 (5): 485–495. DOI:10.1097/MAT.0000000000001422. PMID: 33657573.; Chong W.H., Biplab K.S., Medarov B.I. Clinical characteristics between survivors and nonsurvivors of COVID-19 patients requiring extracorporeal membrane oxygenation (ECMO) support: a systematic review and meta-analysis. J Intensive Care Med. 2022; 37 (3): 293–303. DOI:10.1177/08850666211045632. PMID: 34636697.; Beyls C., Huette P., Viart C., Mestan B., Haye G., Guilbart M., Bernasinski M., et al. Mortality of COVID-19 patients requiring extracorporeal membrane oxygenation during the three epidemic waves. ASAIO J. 2022; 68 (12): 1434–1442. DOI:10.1097/MAT.0000000000001787. PMID: 36194473.; Riera J., Alcántara S., Bonilla C., Fortuna P., Ortiz A.B., Vaz A., Albacete C., et al. Risk factors for mortality in patients with COVID-19 needing extracorporeal respiratory support. Eur Respir J. 2022; 59 (2): 2102463. DOI:10.1183/13993003.02463-2021. PMID: 34824058.; Barbaro R.P., MacLaren G., Boonstra P.S., Iwashyna T.J., Slutsky A.S., Fan E., Bartlett R.H., et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet. 2020; 396 (10257): 1071–1078. DOI:10.1016/S0140-6736(20)32008-0. PMID: 32987008.; Tran A., Fernando S.M., Rochwerg B., Barbaro R.P., Hodgson C.L., Munshi L., MacLaren G., et al. Prognostic factors associated with mortality among patients receiving venovenous extracorporeal membrane oxygenation for COVID-19: a systematic review and meta-analysis. Lancet Respir Med. 2023; 11 (3): 235–244. DOI:10.1016/S2213-2600(22)00296-X. PMID: 36228638.; Biancari F., Mariscalco G., Dalén M., Settembre N., Welp H., Perrotti A., Wiebe K., et al. Six-month survival after extracorporeal membrane oxygenation for severe COVID-19. J Cardiothorac Vasc Anesth. 2021; 35 (7): 1999–2006. DOI:10.1053/j.jvca.2021.01.027. PMID: 33573928.; Giraud R., Legouis D., Assouline B., De Charriere A., Decosterd D., Brunner M.E., Moret-Bochatay M., et al. Timing of VV-ECMO therapy implementation influences prognosis of COVID-19 patients. Physiol Rep. 2021; 9 (3): 1–11. DOI:10.14814/phy2.14715. PMID: 33527751.; Sromicki J., Schmiady M., Maisano F., Mestres C.A. ECMO therapy in COVID-19: an experience from Zurich. J Card Surg. 2021; 36 (5): 1707–1712. DOI:10.1111/jocs.15147. PMID: 33124076.; Li X., Guo Z., Li B., Zhang X., Tian R., Wu W., Zhang Z., et al. Extracorporeal membrane oxygenation for coronavirus disease 2019 in Shanghai, China. ASAIO J. 2020; 66 (5): 475–481. DOI:10.1097/MAT.0000000000001172. PMID: 32243266.; Bergman Z.R., Wothe J.K., Alwan F.S., Dunn A., Lusczek E.R., Lofrano A.E., Tointon K.M., et al. The use of venovenous extracorporeal membrane oxygenation in COVID-19 infection: one region’s comprehensive experience. ASAIO J. 2021; 67 (5): 503–510. DOI:10.1097/MAT.0000000000001403. PMID: 33492851.; Zayat R., Kalverkamp S., Grottke O., Durak K., Dreher M., Autschbach R., Marx G., et al. Role of extracorporeal membrane oxygenation in critically Ill COVID-19 patients and predictors of mortality. Artif Organs. 2021; 45 (6): 158–170. DOI:10.1111/aor.13873. PMID: 33236373.; Dreier E., Malfertheiner M.V., Dienemann T., Fisser C., Foltan M., Geismann F., Graf B., et al. ECMO in COVID-19-prolonged therapy needed? A retrospective analysis of outcome and prognostic factors. Perfusion. 2021; 36 (6): 582–591. DOI:10.1177/0267659121995997. PMID: 33612020.; Alnababteh M., Hashmi M.D., Vedantam K., Chopra R., Kohli A., Hayat F., Kriner E., et al. Extracorporeal membrane oxygenation for COVID-19 induced hypoxia: single-center study. Perfusion. 2021; 36 (6): 564-572. DOI:10.1177/0267659120963885. PMID: 33021147.; Zhang J., Merrick B., Correa G.L., Camporota L., Retter A., Doyle A., Glover G.W., et al. Veno-venous extracorporeal membrane oxygenation in coronavirus disease 2019: a case series. ERJ Open Res. 2020; 6 (4): 1–8. DOI:10.1183/23120541.00463-2020. PMID: 33257913.; Kon Z.N., Smith D.E., Chang S.H., Goldenberg R.M., Angel L.F., Carillo J.A., Geraci T.C., et al. Extracorporeal membrane oxygenation support in severe COVID-19. Ann Thorac Surg. 2021; 111 (2): 537–543. DOI:10.1016/j.athoracsur.2020.07.002. PMID: 32687823.; Harnisch L.O., Moerer O. Contraindications to the initiation of veno-venous ECMO for severe acute respiratory failure in adults: a systematic review and practical approach based on the current literature. Membranes (Basel). 2021; 11 (8): 1–31. DOI:10.3390/membranes11080584. PMID: 34436348.; Shaefi S., Brenner S.K., Gupta S., O’Gara B.P., Krajewski M.L., Charytan D.M., Chaudhry S., et al. Extracorporeal membrane oxygenation in patients with severe respiratory failure from COVID-19. Intensive Care Med. 2021; 47 (2): 208–221. DOI:10.1007/s00134-020-06331-9. PMID: 33528595.; Enger T., Philipp A., Videm V., Lubnow M., Wahba A., Fischer M., Schmid C., et al. Prediction of mortality in adult patients with severe acute lung failure receiving veno-venous extracorporeal membrane oxygenation: a prospective observational study. Crit Care. 2014; 18 (2): 1–10. DOI:10.1186/cc13824. PMID: 24716510.; Herrmann J., Lotz C., Karagiannidis C., Weber-Carstens S., Kluge S., Putensen C., Wehrfritz A., et al. Key characteristics impacting survival of COVID-19 extracorporeal membrane oxygenation. Crit Care. 2022; 26 (1): 1–14. DOI:10.1186/s13054-022-04053-6. PMID: 35765102.; Supady A., DellaVolpe J., Taccone F.S., Scharpf D., Ulmer M., Lepper P.M., Halbe M., et al. Outcome prediction in patients with severe COVID-19 requiring extracorporeal membrane oxygenation — a retrospective international multicenter study. Membranes (Basel). 2021; 11 (3): 1–12. DOI:10.3390/membranes11030170. PMID: 33673615.; Wu M.Y., Chang Y.S., Huang C.C., Wu T.I., Lin P.J. The impacts of baseline ventilator parameters on hospital mortality in acute respiratory distress syndrome treated with venovenous extracorporeal membrane oxygenation: a retrospective cohort study. BMC Pulm Med. 2017; 17 (1): 1–11. DOI:10.1186/s12890017-0520-5. PMID: 29221484.; Tabatabai A., Ghneim M.H., Kaczorowski D.J., Shah A., Dave S., Haase D.J., Vesselinov R., et al. Mortality risk assessment in COVID-19 venovenous extracorporeal membrane oxygenation. Ann Thorac Surg. 2021; 112 (6): 1983–1989. DOI:10.1016/j.athoracsur.2020.12.050. PMID: 33485917.; Nesseler N., Fadel G., Mansour A., Para M., Falcoz P.E., Mongardon N., Porto A., et al. Extracorporeal membrane oxygenation for respiratory failure related to COVID-19: a nationwide cohort study. Anesthesiology. 2022; 136 (5): 732–748. DOI:10.1097/ALN.0000000000004168. PMID: 35348610.; Supady A., Combes A., Barbaro R.P., Camporota L., Diaz R., Fan E., Giani M., et al. Respiratory indications for ECMO: focus on COVID-19. Intensive Care Med. 2022; 48 (10): 1326–1337. DOI:10.1007/s00134-022-06815-w. PMID: 35945343.; MacLaren G., Schlapbach L.J., Aiken A.M. Nosocomial infections during extracorporeal membrane oxygenation in neonatal, pediatric, and adult patients: a comprehensive narrative review. Pediatr Crit Care Med. 2020; 21 (3): 283–290. DOI:10.1097/PCC.0000000000002190. PMID: 31688809.; Franchineau G., Luyt C.E., Combes A., Schmidt M. Ventilator-associated pneumonia in extracorporeal membrane oxygenation-assisted patients. Ann Transl Med. 2018; 6 (21): 427. DOI:10.21037/atm.2018.10.18. PMID: 30581835.; Андреев С. С., Кецкало М.В., Нарусова П.О., Лысенко М.А. Вторичные инфекции у пациентов с COVID-19 крайне тяжелого течения во время проведения ЭКМО. Общая реаниматология. 2023; 19 (2): 4–13. DOI:10.15360/18139779-2023-2-2265.; Vigneshwar N.G., Masood M.F., Vasic I., Krause M., Bartels K., Lucas M.T., Bronsert M., et al. Venovenous extracorporeal membrane oxygenation support in patients with COVID-19 respiratory failure: a multicenter study. JTCVS Open. 2022; 12: 211-220. DOI:10.1016/j.xjon.2022.08.007. PMID: 36097635.; Azoulay É., Thiéry G., Chevret S., Moreau D., Darmon M., Bergeron A., Yang K., et al. The prognosis of acute respiratory failure in critically ill cancer patients. Medicine (Baltimore). 2004; 83 (6): 360–370. DOI:10.1097/01.md.0000145370.63676.fb. PMID: 15525848.; Lecuyer L., Chevret S., Guidet B., Aegerter P., Martel .P, Schlemmer B., Azoulay E. Case volume and mortality in haematological patients with acute respiratory failure. Eur Respir J. 2008; 32 (3): 748–754. DOI:10.1183/09031936.00142907. PMID: 18448491.; Minne L., Abu-Hanna A., de Jonge E. Evaluation of SOFAbased models for predicting mortality in the ICU: a systematic review. Crit Care. 2008; 12 (6): 1–13. DOI:10.1186/cc7160. PMID: 19091120.; de Grooth H.J., Geenen I.L., Girbes A.R., Vincent J.L., Parienti J.J., Oudemans-van Straaten H.M. SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis. Crit Care. 2017; 21 (1): 1–9. DOI:10.1186/s13054-017-1609-1. PMID: 28231816.; Safari S., Shojaee M., Rahmati F., Barartloo A., Hahshemi B., Forouzanfar M.M., Mohammadi E. Accuracy of SOFA score in prediction of 30-day outcome of critically ill patients. Turk J Emerg Med. 2016; 16 (4): 146–150. DOI:10.1016/j.tjem.2016.09.005. PMID: 27995206.; Hayanga J.W.A., Kakuturu J., Dhamija A., Asad F., McCarthy P., Sappington P., Badhwar V. Cannulate, extubate, ambulate approach for extracorporeal membrane oxygenation for COVID-19. J Thorac Cardiovasc Surg. 2023; 166 (4): 1132–1142. DOI:10.1016/j.jtcvs.2022.02.049. PMID: 35396123.; Cheng Y., Luo R., Wang K., Zhang M., Wang Z., Dong L., Li J., et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020; 97 (5): 829–838. DOI:10.1016/j.kint.2020.03.005. PMID: 32247631.; Ronco C., Reis T., Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med. 2020; 8 (7): 738–742. DOI:10.1016/S2213-2600(20)30229-0. PMID: 32416769.; Wengenmayer T., Schroth F., Biever P.M., Duerschmied D., Benk C., Trummer G., Kaier K., et al. Albumin fluid resuscitation in patients on venoarterial extracorporeal membrane oxygenation (VA-ECMO) therapy is associated with improved survival. Intensive Care Med. 2018; 44 (12): 2312–2314. DOI:10.1007/s00134-018-5443-y. PMID: 30430211.; Jeon J.B., Lee C.H., Lim Y., Kim M.C., Cho H.J., Kim D.W., Lee K.S., et al. Hypoalbuminemia and albumin replacement during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Chest Surg. 2023; 56 (4): 244–251. DOI:10.5090/jcs.22.130. PMID: 37096254.; Staley E.M., Wool G.D., Pham H.P., Dalton H.J., Wong E.C.C. Extracorporeal corporeal membrane oxygenation: indications, technical considerations, and future trends. Annals of Blood. 2023; 7. 1–25. DOI:10.21037/aob-21-85.; Yang X., Hu M., Yu Y., Zhang X., Fang M., Lian Y., Peng Y., et al. Extracorporeal membrane oxygenation for SARS-CoV-2 acute respiratory distress syndrome: a retrospective study from Hubei, China. Front Med (Lausanne). 2021; 12 (7): 1–8. DOI:10.3389/fmed.2020.611460. PMID: 33511146.; Ripoll B., Rubino A., Besser M., Patvardhan C., Thomas W., Sheares K., Shanahan H., et al. Observational study of thrombosis and bleeding in COVID-19 VV ECMO patients. Int J Artif Organs. 2022; 45 (2): 239–242. DOI:10.1177/0391398821989065. PMID: 33506708.; Журавель С.В., Иванов И.В., Талызин А.М., Клычникова Е.В., Буланов А.Ю., Попугаев К.А., Владимиров В.В., с соавт. Особенности изменений показателей системы гемостаза при экстракорпоральной мембранной оксигенации у пациентов с новой коронавирусной инфекцией. Вестник анестезиологии и реаниматологии. 2022; 4 (19): 15–21. DOI:10.21292/2078-56582022-19-4-15-21.; Рыбалко А.С., Галкина С.Н., Сарыглар А.С., Колеров В.А., Воронин А.В., Переходов С.Н., Карпун Н.А. Лечение осложнений при проведении экстракорпоральной мембранной оксигенации у больного с COVID-19 (клиническое наблюдение). Общая реаниматология. 2022; 18 (6): 30–36. DOI:10.15360/1813-9779-2022-6-30-36.; Mansour A., Flecher E., Schmidt M., Rozec B., Gouin-Thibault I., Esvan M., Fougerou C., et al; ECMOSARS Investigators. Bleeding and thrombotic events in patients with severe COVID-19 supported with extracorporeal membrane oxygenation: a nationwide cohort study. Intensive Care Med. 2022; 48 (8): 1039–1052. DOI:10.1007/s00134-022-06794-y. PMID: 35829723.; Jin Y., Zhang Y., Liu J., Zhou Z. Thrombosis and bleeding in patients with COVID-19 requiring extracorporeal membrane oxygenation: a systematic review and meta-analysis. Res Pract Thromb Haemost. 2023; 7 (2): 1–17. DOI:10.1016/j.rpth.2023.100103. PMID: 36999123.; https://www.reanimatology.com/rmt/article/view/2505

  16. 16
    Academic Journal

    Source: General Reanimatology; Том 20, № 5 (2024); 44-54 ; Общая реаниматология; Том 20, № 5 (2024); 44-54 ; 2411-7110 ; 1813-9779

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2359/1873; https://www.reanimatology.com/rmt/article/view/2359/1884; https://www.reanimatology.com/rmt/article/downloadSuppFile/2359/854; https://www.reanimatology.com/rmt/article/downloadSuppFile/2359/855; https://www.reanimatology.com/rmt/article/downloadSuppFile/2359/856; https://www.reanimatology.com/rmt/article/downloadSuppFile/2359/857; Hooper S. B., Te Pas A. B., Kitchen M. J. Respiratory transition in the newborn: a three-phase process. Arch Dis Child. Fetal Neonatal Ed. 2016; 101 (3): F266–271. DOI 10.1136/archdischild-2013-305704. PMID: 26542877.; Brown M. J., Olver R. E., Ramsden C. A., Strang L. B., Walters D. V. Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb. J Physiol. 1983; 344: 137–152. DOI 10.1113/jphysiol.1983.sp014929. PMID: 6655575.; Umran R. M. R., Khalil R. M. Association between low cord serum cortisol level and transient tachypnea of the newborn in late preterm and term neonates delivered by elective cesarean section. Am J Perinatol. 2022; 39 (11): 1254–1260. DOI:10.1055/s-00401722603. PMID: 33454947.; Mahoney A. D., Jain L. Respiratory disorders in moderately preterm, late preterm, and early term infants Clin Perinatol. 2013; 40 (4): 665–678. DOI 10.1016/j.clp.2013.07.004. PMID: 24182954.; Овсянников Д. Ю., Бойцова Е. В., Жесткова М. А., Кршеминская И. В., Ашерова И. К., Украинцев С. Е., Межинский С. С. Неонатальная пульмонология: Монография. (ред. Овсянников Д. Ю.). М.: СевенПринт; 2022: 168. ISBN 978-5-91556-757-2. EDN NGFFJV.; Шестак Е. В., Ковтун О. П., Ксенофонтова О. Л. Транзиторное тахипноэ у новорожденных: монография; ред. Ковтун О. П. д‑р мед. наук, проф., акад. РАН; М‑во здравоохранения РФ, Урал. гос. мед. ун-т. Екатеринбург : УГМУ; 2023: 144. ISBN 978-5-00168-047-5.; Овсянников Д. Ю., Володин Н. Н. Заболевания легких новорожденных: трудности диагностики, диагностические критерии и последствия. Педиатрия. Журнал им. Г. Н. Сперанского. 2022; 101 (3): 170–177. DOI:10.24110/0031-403X-2022-101-3-170-177.; Антонов А. Г., Байбарина Е. Н., Балашова Е. Н., Дегтярев Д. Н., Зубков В. В., Иванов Д. О., Ионов О. В., с соавт. Врожденная пневмония: клинические рекомендации. Неонатология: новости, мнения, обучение. 2017; 4: 133–148. DOI 10.24411/23082402-2017-00049.; Шестак Е. В. Кистозно-аденоматозная мальформация легкого II типа у новорожденного, проблемы ранней диагностики. Уральский медицинский журнал. 2022; 21 (1): 77–84. DOI:10.52420/20715943-2022-21-1-77-84.; Перепелица С. А. Острый респираторный дистресс-синдром у недоношенных новорожденных (морфологическое исследование). Общая реаниматология. 2020; 16 (1): 35–44. DOI:10.15360/18139779-2020-1-35-44.; Голомидов А. В., Григорьев Е. В., Мозес В. Г., Мозес К. Б. Патогенез, прогнозирование и исходы синдрома полиорганной недостаточности у новорожденных (обзор). Общая реаниматология. 2022; 18 (6): 37–49.DOI:10.15360/1813-9779-2022-6-37-49.; Osman A. M., El-Farrash R. A., Mohammed E. H. Early rescue Neopuff for infants with transient tachypnea of newborn: a randomized controlled trial. J Matern Fetal Neonatal Med. 2019; 32 (4): 597–603. DOI 10.1080/14767058.2017.1387531. PMID: 28965435.; Gizzi C., Klifa R., Pattumelli M. G., Massenzi L., Taveira M., Shankar-Aguilera S., De Luca D. Continuous positive airway pressure and the burden of care for transient tachypnea of the neonate: retrospective cohort study. Am J Perinatol. 2015; 32 (10): 939–943. DOI:10.1055/s-0034-1543988. PMID: 25811328.; Migliori C., Motta M., Angeli A., Chirico G. Nasal bilevel vs. continuous positive airway pressure in preterm infants. Pediatr Pulmonol. 2005; 40 (5): 426–430. DOI:10.1002/ppul.20276. PMID: 16155882.; Реанимация и стабилизация состояния новорожденных детей в родильном зале: методическое письмо Министерства Здравоохранения Российской Федерации от 4 марта 2020 г. № 15–4/И/2–2570 под редакцией профессора Е. Н. Байбариной; 2020: 55. URL: http: //niiomm.ru/attachments/article/370/Реанимация%20и%20стабилизация%20состояния%20новорожденных%20детей%20в%20ро дильном%20зале%202020.pdf.; Неонатология: национальное руководство: краткое издание. ред. Володин Н. Н. Москва: ГЭОТАР–Медиа; 2019: 896. ISBN 978–5–9704–4877–9.; Шестак Е. В., Ковтун О. П., Ксенофонтова О. Л., Додров Д. С., Калякова Н. В. Респираторные стратегии, влияющие на тяжесть течения транзиторного тахипноэ новорожденных. Врач. 2022; (1): 56–60. DOI:10.29296/25877305-2022-01-09.; Шестак Е. В., Ковтун О. П., Ксенофонтова О. Л., Додров Д. С. Эффективность и безопасность стандартизированного протокола СРАР-терапии доношенных новорожденных в родовом зале при транзиторном тахипноэ: клиническое исследование с историческим контролем. Вопросы современной педиатрии. 2022; 21 (4): 320–330. DOI:10.15690/vsp.v21i4.2445.; Шестак Е. В., Ковтун О. П. Стандартизированный подход к СРАР-терапии в родовом зале у доношенных детей с врожденной инфекцией: наблюдательное исследование. Российский педиатрический журнал. 2023; 4 (3): 85–93. DOI:10.15690/rpj.v4i3.2618.; Шестак Е. В., Ковтун О. П. Прогнозирование тяжести течения транзиторного тахипноэ у доношенных новорожденных в родовом зале. Российский педиатрический журнал. 2022; 25 (2): 91–95. DOI:10.46563/1560-9561-2022-252-91-95.; Мостовой А. В., Карпова А. Л., Володин Н. Н., Петрова А. С., Милева О. И., Захарова Н. И., Дмитриев А. В., с соавт. Оценка клинической практики проведения респираторной терапии и ее исходов у недоношенных новорожденных гестационного возраста 34–36 недель с респираторным дистресс-синдромом. Анестезиология и реаниматология. 2021; (4): 67–72. DOI:10.17116/anaesthesiology202104167.; Kumar A., Bha B.V Epidemiology of respiratory distress of newborns. Indian J Pediatr. 1996; 63 (1): 93–98. DOI:10.1007/BF02823875. PMID: 10829971.; Ryan C. A. Hughes P. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br J Obstet Gynaecol. 1995; 102 (10): 843–844. DOI:10.1111/j.14710528.1995.tb10861.x. PMID: 7547751.; Kasap B., Duman N., Ozer E., Tatli M., Kumral A., Ozkan H. Transient tachypnea of the newborn: predictive factor for prolonged tachypnea. Pediatr Intl. 2008; 50 (1): 81–84. DOI:10.1111/j.1442200X.2007.02535.x. PMID: 18279211.; Jain L. Respiratory morbidity in late–preterm infants: prevention is better than cure! Am J Perinatol. 2008; 25 (2): 75–78. DOI:10.1055/s–2007–1022471. PMID: 18214813.; Raju T. N. K., Higgins R.D, Stark A. R., Leveno K. J. Optimizing care and outcome for late–preterm (near–term) infants: a summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics. 2006; 118 (3): 1207–1214. DOI:10.1542/peds.2006–0018. PMID: 16951017.; Gomez-Lopez N., Galaz J., Miller D., Farias-Jofre M., Liu Z., Arenas-Hernandez M., Garcia-Flores V., et al. The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. Reproduction. 2022; 164 (2): R11–R45. DOI:10.1530/REP-22-0046. PMID: 35559791.; Jiang M., Mishu M. M., Lu D., Yin X. A case control study of risk factors and neonatal outcomes of preterm birth. Taiwan J Obstet Gynecol. 2018; 57 (6): 814–818. DOI:10.1016/j.tjog.2018.10.008. PMID: 30545533.; Gibbs R. S. The origins of stillbirth: infectious diseases. Semin Perinatol. 2002; 26 (1): 75–78. DOI:10.1053/sper.2002.29839. PMID: 11876570.; Rawlinson W. D., Hall B., Jones C. A., Jeffery H. E., Arbuckle S. M., Graf N., Howard J., et al. Viruses and other infections in stillbirth: what is the evidence and what should we be doing? Pathology. 2008; 40 (2): 149–160. DOI:10.1080/00313020701813792. PMID: 18203037.; Goldenberg R. L., Thompson C. The infectious origins of stillbirth. Am J Obstet Gynecol. 2003; 189 (3): 861–873. DOI:10.1067/s00029378(03)00470-8. PMID: 14526331.; Puopolo K. M., Benitz W. E., Zaoutis T. E.; Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of neonates born at 35 0/7 weeks‘ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics. 2018; 142 (6): e20182894. DOI:10.1542/peds.2018-2894. PMID: 30455342.; Greco P., Nencini G., Piva I., Scioscia M., Volta C. A., Spadaro S., Neri M., et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol Bel. 2020; 120 (2): 277–288. DOI:10.1007/s13760-020-01308-3. PMID: 32112349.; Шестак Е. В., Ковтун О. П., Ксенофонтова О. Л. Оценка церебральной оксигенации при развитии транзиторного тахипноэ у новорожденных. Педиатрия. Журнал им. Г. Н. Сперанского. 2023; 102 (1): 27–35. DOI:10.24110/0031-403X-2023-102-1-27-35.; Шестак Е. В., Ковтун О. П., Базарный В. В., Полушина Л. Г., Максимова А. Ю. Диагностическая оценка уровня нейротрофических факторов VEGF, BDNF, β-NGF у новорожденных с транзиторным тахипноэ и церебральной ишемией в сравнении со здоровыми детьми. Педиатрия. Журнал им. Г. Н. Сперанского. 2024; 103 (1): 49–57. DOI:10.24110/0031-403X2024-103-1-49-57.; https://www.reanimatology.com/rmt/article/view/2359

  17. 17
    Academic Journal

    Source: EMERGENCY MEDICINE; № 3.98 (2019); 152-155
    МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 3.98 (2019); 152-155
    МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 3.98 (2019); 152-155

    File Description: application/pdf

  18. 18
  19. 19
    Academic Journal

    Source: Zdorovʹe Rebenka, Vol 13, Iss 5, Pp 516-523 (2018)
    CHILD`S HEALTH; Том 13, № 5 (2018); 516-523
    Здоровье ребенка-Zdorovʹe rebenka; Том 13, № 5 (2018); 516-523
    Здоров'я дитини-Zdorovʹe rebenka; Том 13, № 5 (2018); 516-523

    File Description: application/pdf

  20. 20