Showing 1 - 1 results of 1 for search '"репродуктивные поколения G1 и G2"', query time: 0.45s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was conducted within the framework of state assignments for Central Siberian Botanical Garden SB RAS (project “Analysis of biodiversity, conservation and restoration of rare and resource plant species using experimental methods”, No. AAAA-A21-121011290025-2) and with the financial support of the Ministry of Science and Higher Education of the Russian Federation No. FSUS-2024-0024.

    Source: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 210-218 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 210-218 ; 2500-3259 ; 10.18699/vjgb-25-20

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4539/1928; Anisimov A.A., Medvedkov M.S., Skorokhodova A.N. Yield formation features in different Miscanthus species (Miscanthus spp.). In: From Agrarian Sciences to Agriculture. Barnaul: Altai State Agricultural University Publ., 2021;115-116 (in Russian); Berseneva S.A., Ivleva O.E., Maslova A.O. Performance potential of species of Miscantus Аnderss. and genus and prospects of its cultivation in Primorsky Krai. Meždunarodnyj Naučno-issledovatel’skij Žurnal = Int Res J. 2020;7/2:6-10. doi 10.23670/IRJ.2020.97.7.033 (in Russian); Chae W.B., Hong S.J., Gifford J.M., Rayburn A.L., Sacks E.J., Juvik J.A. Plant morphology, genome size, and SSR markers differentiate five distinct taxonomic groups among accessions in the genus Miscanthus. GCB Bioenergy. 2014;6:646-660. doi 10.1111/gcbb.12101; Chen Z., He Yu., Iqbal Yu., Shi Y., Huang H., Yi Z. Investigation of genetic relationships within three Miscanthus species using SNP markers identified by SLAF-seq. BMC Genomics. 2022;23(1):43. doi 10.1186/s12864-021-08277-8; Chou C.-H., Chiang Y.-C., Chiang T.-Y. Genetic variability and phytogeography of Miscanthus sinensis var. condensatus, an apomictic grass, based on RAPD fingerprints. Can J Bot. 2000;78(10):1262- 1268. doi 10.1139/b00-102; Clark L.V., Ryan S., Nishiwaki A., Toma Yo., Zhao H., Peng J., Yoo J.H., Heo K., Yu Ch.Y., Yamada T., Sacks E.J. Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression January. J Exp Bot. 2015;66(14):4213-4225. doi 10.1093/jxb/eru511; Dorogina O.V., Vasilyeva O.Yu., Nuzhdina N.S., Buglova L.V., Gismatulina Yu.A., Zhmud E.V., Zueva G.A., Kominа O.V., Tsybchenko E.A. Resource potential of some species of the genus Miscanthus Anderss. under conditions of continental climate of West Siberian forest-steppe. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2018;22(5):553-559. doi 10.18699/VJ18.394 (in Russian); Dorogina O.V., Vasilyeva O.Yu., Nuzhdina N.S., Buglova I.V., Zhmud E.V., Zueva G.A., Kominа O.V., Kuban I.S., Gusar A.S., Dudkin R.V. The formation and the study of a collection of the Miscanthus resource species gene pool in the conditions of the West Siberian forest steppe. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2019;23(7):926-932. doi 10.18699/VJ19.568 (in Russian); Dorogina O.V., Nuzhdina N.S., Zueva G.A., Gismatulina Yu.A., Vasilyeva O.Yu. Specific shoot formation in Miscanthus sacchariflorus (Poaceae) under different environmental factors and DNA passportization using ISSR markers. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2022;26(1):22-29. doi 10.18699/VJGB-22-04; Doyle J.J., Doyle J.L. A rapid DNA isolation of fresh leaf tissue. Phytochem Bull. 1987;19:11-15 Dyuryagina G.P. On the method of introducing rare and endangered plants. Botanicheskii Zhurnal. = Bot J. 1982;67(5):679-687 (in Russian); Gifford J.M., Chae W.B., Juvik J.A., Swaminathan K., Moose S.P. Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity. GCB Bioenergy. 2014;7(4):797-810. doi 10.1111/gcbb.12201; Grechushkina-Sukhorukova L.A. Dynamics of growth processes and decorative state of Miscanthus sinensis during introduction in the steppe zone. Agrarnaya Nauka = Agrar Sci. 2022;(7-8):178-182. doi 10.32634/0869-8155-2022-361-7-8-178-182 (in Russian); Greef J.M., Deuter M., Jung C., Schondelmaier J. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol. 1997;44(2):185-195. doi 10.1023/A:1008693214629; Gushchina V.A., Volod’kin A.A., Ostroborodova N.I., Agapkin N.D., Letuchiy A.V. Peculiarities of growth and development of introduction of Miscanthus giganteus in the conditions of forest-step zone in Middle Volga. Agrarnyi Nauchnyi Zhurnal = Agrar Sci J. 2018;1: 10-13. doi 10.28983/asj.v0i1.318 (in Russian); Kapustyanchik S.Yu., Burmakina N.V., Yakimenko V.N. Evaluation of the ecological and agrochemical state of agrocenosis with long-term growing of Miscanthus in Western Siberia. Agrohimia. 2020;9:65- 73. doi 10.31857/S0002188120090082 (in Russian); Kashin A.S., Kritskaya T.A., Schanzer I.A. Genetic polymorphism of Tulipa gesneriana L. evaluated on the basis of the ISSR marking data. Russ J Genet. 2016;52(10):1023-1033. doi 10.1134/S1022795416100045; Lee K.Y., Zhang L., Lee G.-J. Botanical and germinating characteristics of Miscanthus species native to Korea. Hort Environ Biotechnol. 2012;53(6):490-496. doi 10.1007/s13580-012-0137-9; Methods for Testing Crop and Planting Material Quality. In: Crop Seeds and Planting Material. Moscow: Izdatel’stvo Standartov, 1973;238- 405 (in Russian); Mitros T., Session A.M., James B.T., Wu G.A., Belaffif M.B., Clark L.V. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat Commun. 2020;11:5442. doi 10.1038/s41467-020-18923-6; Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979; 76(10):5269-5273. doi 10.1073/pnas.76.10.5269; Nie G., Zhang X.-Q., Huang L.-K., Xu W.-Z., Wang J.-P., Zhang Y.-W., Ma X., Yan Y.-H., Yan H.-D. Genetic variability and population structure of the potential bioenergy crop Miscanthus sinensis (Poaceae) in southwest China based on SRAP markers. Molecules. 2014; 19(8):12881-12897. doi 10.3390/molecules190812881; Nishiwaki A., Mizuguti A., Kuwabara S., Matuura H., Yamaguchi S., Toma Y., Miyashita T., Yamada T., Ishigaki G., Akashi R., Rayburn L.A., Stewart J.R. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot. 2011; 98(1):154-159. doi 10.3732/ajb.1000258; Novikova A.A., Sheikina O.V., Novikov P.S., Doronina G.U. Estimation of the ISSR-markers application for systematization and genetic certification of genus Rhododendron. Politematicheckij Setevoj Elektronnyj Nauchnyj Zhurnal Kubanskogo Gosudarstvennogo Agrarnogo Universiteta = Polythematic Online Scientific Journal of Kuban State Agrarian University. 2012;82(82):916-926 (in Russian); Orzeszko-Rywka A., Rochalska M. Possibility of seed quality improvement in Miscanthus sinensis (Andersson). J Res Appl Agric Engng. 2016;61(4):83-88; Potseluyev O.M., Kapustyanchik S.Yu. Assessment of the feasibility of growing Miscanthus under a cover of cereal crops. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of Altai State Agricultural University. 2018;10(168):55-60 (in Russian); Swaminathan K., Chae W.B., Mitros T., Kranthi V., Xie L., Barling A., Glowacka K., Hall M., Jezowski S., Ming R., Hudson M., Juvik J.A., Rokhsar D.S. Moose S.P. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics. 2012;13:142. doi 10.1186/1471-2164-13-142; Tamura K., Uwatoko N., Yamashita H., Fujimori M., Akiyama Y., Shoji A., Sanada Y., Okumura K., Gau M. Discovery of natural interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis in Southern Japan: morphological characterization, genetic structure, and origin. BioEnergy Res. 2016;9(1):315-325. doi 10.1007/s12155-015-9683-1; Tang Y.-M., Xiao L., Igbal Y., Liao J.-F., Xiao L.-Q., Yi Z.-L., She C.-W. Molecular cytogenetic characterization and phylogenetic analysis of four Miscantus species (Poaceae). Comp Cytogenet. 2019;13(3): 211-230. doi 10.3897/CompCytogen.v13i3.35346; USDA Plant Hardiness Zone Map https://planthardiness.ars.usda.gov/ (accessed: 03.2024) Van de Peer Y.V., De Wachter R.D. Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Bioinformatics. 1997; 13(3):227-230. doi 10.1093/bioinformatics/13.3.227; Xu W.Z., Zhang X.Q., Huang L.K., Nie G., Wang J.P. Higher genetic diversity and gene flow in wild populations of Miscanthus sinensis in southwest China. Biochem Syst Ecol. 2013;48:174-181. doi 10.1016/j.bse.2012.11.024; Yakimenko V.N., Kapustyanchik S.Yu., Galitsyn G.Yu. Cultivation of Miscanthus in continental regions of Russia. Zemledelie = Agriculture. 2021;2:27-31. doi 10.24411/0044-3913-2021-10206 (in Russian); Zhang G., Ge C., Xu P., Wang S., Cheng S., Han Y., Wang Y., ZhuangY., Hou X., Yu T., Xu X., Yang Y., Yin X., Wang W., Liu W., Zheng C., Sun X., Wang Z., Ming R., Dong S., Ma J., Zhang X., Chen C. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Nat Plants. 2021;7:608-618. doi 10.1038/s41477-021-00908-y; Zueva G.A. Introduction of ornamental cereals and sedges in the Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences. Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal. 2020;3(35):30-41. doi 10.32516/2303-9922.2020.35.3 (in Russian); https://vavilov.elpub.ru/jour/article/view/4539