-
1Academic Journal
Πηγή: Мать и дитя в Кузбассе, Vol 26, Iss 3, Pp 53-59 (2025)
Θεματικοί όροι: папилломавирусная инфекция и репродуктивное здоровье, папилломавирусная инфекция у беременных, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
Περιγραφή αρχείου: electronic resource
Relation: https://mednauki.ru/index.php/MD/article/view/1252; https://doaj.org/toc/1991-010X; https://doaj.org/toc/2542-0968
Σύνδεσμος πρόσβασης: https://doaj.org/article/1320ec0c851a40a6a3f28f74c0828123
-
2Academic Journal
-
3Academic Journal
-
4Academic Journal
Θεματικοί όροι: ЗДОРОВЬЕ МОЛОДЕЖИ, ИКТ, СОЦИОЛОГИЯ МЕДИЦИНЫ, МОЛОДЕЖЬ, РЕПРОДУКТИВНОЕ ПОВЕДЕНИЕ, САНИТАРНОЕ ПРОСВЕЩЕНИЕ, СОЦИОЛОГИЯ, МЕДИЦИНСКАЯ ГРАМОТНОСТЬ, ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ, СОЦИОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ, РЕПРОДУКТИВНОЕ ЗДОРОВЬЕ
Σύνδεσμος πρόσβασης: https://elar.uspu.ru/handle/ru-uspu/52099
-
5Academic Journal
Πηγή: Мать и дитя в Кузбассе, Vol 26, Iss 2, Pp 81-86 (2025)
Θεματικοί όροι: репродуктивное здоровье, микронутриенты, витамин д, девушки, юноши, дефицит витамина д, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
Περιγραφή αρχείου: electronic resource
Relation: https://mednauki.ru/index.php/MD/article/view/1228; https://doaj.org/toc/1991-010X; https://doaj.org/toc/2542-0968
Σύνδεσμος πρόσβασης: https://doaj.org/article/48bff35d39564c72936f0bac21717a69
-
6
-
7
-
8Academic Journal
Πηγή: Мать и дитя в Кузбассе, Vol 26, Iss 2, Pp 81-86 (2025)
Θεματικοί όροι: юноши, витамин д, RG1-991, дефицит витамина д, Gynecology and obstetrics, репродуктивное здоровье, Pediatrics, микронутриенты, девушки, RJ1-570
Σύνδεσμος πρόσβασης: https://doaj.org/article/48bff35d39564c72936f0bac21717a69
-
9
-
10
-
11
-
12
-
13Academic Journal
Συγγραφείς: Алла Олеговна Карчевская, Виктор Геннадьевич Пузырев, Ирина Дмитриевна Ситдикова, Марина Константиновна Иванова, Диана Борисовна Парамонова
Πηγή: Медицина и организация здравоохранения, Vol 10, Iss 2 (2025)
Θεματικοί όροι: репродуктивный потенциал, девочки-подростки, фактор риска, репродуктивное здоровье, промышленная экология, репродуктивная токсичность, Medicine (General), R5-920
Περιγραφή αρχείου: electronic resource
Relation: https://ojs3.gpmu.org/index.php/medorg/article/view/6582; https://doaj.org/toc/2658-4212; https://doaj.org/toc/2658-4220
Σύνδεσμος πρόσβασης: https://doaj.org/article/76c5b5ecf6454f3488e7da7da6b94245
-
14Academic Journal
Συγγραφείς: Savitskaya, T. V., Koneva, A. V.
Θεματικοί όροι: социально-педагогическая программа, учреждение образования, репродуктивная культура, учащаяся молодежь, reproductive health, reproductive culture, репродуктивное здоровье, young students, educational institution, social and pedagogical program
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.vsu.by/handle/123456789/48382
-
15Academic Journal
Πηγή: Пролиферативный синдром в биологии и медицине.
Θεματικοί όροι: reproductive health of girls and women, пороки развития половых органов, репродуктивное здоровье девочек и девушек, violation of the outflow of menstrual blood, 3. Good health, нарушение оттока менструальной крови, malformations of the genital organs
-
16Academic Journal
Πηγή: Пролиферативный синдром в биологии и медицине.
Θεματικοί όροι: hemostatic therapy, гинекология детей и подростков, abnormal uterine bleeding of puberty, аномальное маточное кровотечение пубертатного периода, reproductive health, gynecology of children and adolescents, гемостатическая терапия, репродуктивное здоровье, 3. Good health
-
17Academic Journal
Πηγή: Пролиферативный синдром в биологии и медицине.
Θεματικοί όροι: девочки-подростки, adolescent girls, specialized care, 5. Gender equality, репродуктивное здоровье подростков, распространённость гинекологической заболеваемости, prevalence of gynecological morbidity, reproductive health of adolescents, 3. Good health, специализированная помощь
-
18Conference
Συγγραφείς: Pankova, S. A.
Συνεισφορές: Вершинина, Д. Б.
Θεματικοί όροι: АБОРТ, CONTRACEPTION, ABORTION, ПРОТИВОЗАЧАТОЧНЫЕ СРЕДСТВА, REPRODUCTIVE RIGHTS, РЕПРОДУКТИВНЫЕ ПРАВА, REPRODUCTIVE HEALTH, РЕПРОДУКТИВНОЕ ЗДОРОВЬЕ
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/140060
-
19Academic Journal
Συγγραφείς: A. A. Policheva, E. A. Oganesyan, I. S. Yarushkina, A. S. Martynenko, E. E. Kormukhina, Ch. O. Taimova, A. R. Mustafina, V. V. Kim, A. A. Valitova, N. R. Suleimanov, K. A. Gaibaryan, M. E. Radzhabov, A. E. Baimukhambetova, A. E. Razumova, А. А. Поличева, Э. А. Оганесян, И. С. Ярушкина, А. С. Мартыненко, Е. Э. Кормухина, Ч. О. Таимова, А. Р. Мустафина, В. В. Ким, А. А. Валитова, Н. Р. Сулейманов, К. А. Гайбарян, М. Э. Раджабов, А. Е. Баймухамбетова, А. Э. Разумова
Πηγή: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347
Θεματικοί όροι: таргетная терапия, ceramides, CERs, sphingosine-1-phosphate, S1P, ovarian reserve, oocytes, folliculogenesis, ovarian cancer, polycystic ovary syndrome, endometriosis, obesity, premature ovarian failure, reproductive health, angiogenesis, apoptosis, biomarkers, targeted therapy, церамиды, сфингозин-1-фосфат, овариальный резерв, ооциты, фолликулогенез, рак яичников, синдром поликистозных яичников, эндометриоз, ожирение, преждевременная недостаточность яичников, репродуктивное здоровье, ангиогенез
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2609/1406; Петров И.А., Дмитриева М.Л., Тихоновская О.А. и др. Тканевые и молекулярные основы фолликулогенеза. Механизмы раннего фолликулярного роста. Проблемы репродукции. 2017;23(5):33–41. https://doi.org/10.17116/repro201723533-41.; Pors S.E., Harðardóttir L., Olesen H.Ø. et al. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod. 2020;26(5):301–11. https://doi.org/10.1093/molehr/gaaa022.; Zhang Y., Yan Z., Qin Q. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–1034.e4. https://doi.org/10.1016/j.molcel.2018.10.029.; Hernández-Coronado C.G., Guzmán A., Castillo-Juárez H. et al. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Ann Endocrinol (Paris). 2019;80(5–6):263–72. https://doi.org/10.1016/j.ando.2019.06.003.; Pitman M., Oehler M.K., Pitson S.M. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal. 2021;81:109949. https://doi.org/10.1016/j.cellsig.2021.109949.; Quinville B.M., Deschenes N.M., Ryckman A.E., Walia J.S. A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci. 2021;22(11):5793. https://doi.org/10.3390/ijms22115793.; Sukocheva O., Wadham C., Holmes A. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol. 2006;173(2):301–10. https://doi.org/10.1083/jcb.200506033.; Chou C.H., Chen M.J. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–75. https://doi.org/10.1016/bs.vh.2018.01.013.; Zeleznik O.A., Clish C.B., Kraft P. et al. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: a 23-year prospective study. J Natl Cancer Inst. 2020;112(6):628–36. https://doi.org/10.1093/jnci/djz195.; Janneh A.H., Ogretmen B. Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). 2022;14(9):2183. https://doi.org/10.3390/cancers14092183.; Gomez-Larrauri A., Das Adhikari U., Aramburu-Nuñez M. et al. Ceramide metabolism enzymes-therapeutic targets against cancer. Medicina (Kaunas). 2021;57(7):729. https://doi.org/10.3390/medicina57070729.; Companioni O., Mir C., Garcia-Mayea Y., LLeonart M.E. Targeting sphingolipids for cancer therapy. Front Oncol. 2021;11:745092. https://doi.org/10.3389/fonc.2021.745092.; Yuan Y., Jia G., Wu C. et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263–74. https://doi.org/10.1038/s41422-021-00566-x.; Lucki N.C., Sewer M.B. The interplay between bioactive sphingolipids and steroid hormones. Steroids. 2010;75(6):390–9. https://doi.org/10.1016/j.steroids.2010.01.020.; Roth Z. Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci. 2018;101(4):3642–54. https://doi.org/10.3168/jds.2017-13389.; Протопопов В.А., Секунов А.В., Панов А.В., Брындина И.Г. Взаимосвязь сфинголипидных механизмов с окислительным стрессом и изменениями митохондрий при функциональной разгрузке постуральных мышц. Acta Biomedica Scientifica. 2024;9(2):228–42. https://doi.org/10.29413/ABS.2024-9.2.23.; Kujjo L.L., Perez G.I. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction. 2012;143(1):1–10. https://doi.org/10.1530/REP-11-0350.; Zigdon H., Kogot-Levin A., Park J.W. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288(7):4947–56. https://doi.org/10.1074/jbc.M112.402719.; Arora A.S., Jones B.J., Patel T.C. et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology. 1997;25(4):958–63. https://doi.org/10.1002/hep.510250428.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Kasapoğlu I., Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020;161(2):bqaa001. https://doi.org/10.1210/endocr/bqaa001.; Smits M.A.J., Schomakers B.V., van Weeghel M. et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023;38(11):2208–20. https://doi.org/10.1093/humrep/dead177.; Lee S., Kang H.G., Jeong P.S. et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci Total Environ. 2021;755(Pt 1):144144. https://doi.org/10.1016/j.scitotenv.2020.144144.; Hernández-Coronado C.G., Guzmán A., Espinosa-Cervantes R. et al. Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. Animal. 2015;9(2):308–12. https://doi.org/10.1017/S1751731114002341.; Kujjo L.L., Acton B.M., Perkins G.A. et al. Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev. 2013;134(1–2):43–52. https://doi.org/10.1016/j.mad.2012.12.001.; Morita Y., Tilly J.L. Oocyte apoptosis: like sand through an hourglass. Dev Biol. 1999;213(1):1–17. https://doi.org/10.1006/dbio.1999.9344.; Hernández-Coronado C.G., Guzmán A., Rodríguez A. et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. Gen Comp Endocrinol. 2016;236:1–8. https://doi.org/10.1016/j.ygcen.2016.06.029.; Hao X., Zhang M. Roles of sphingosine-1-phosphate in follicle development and oocyte maturation. Anim Res One Health. 2024;2(3):314–22. https://doi.org/10.1002/aro2.53.; Park J.Y., Su Y.Q., Ariga M. et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.; Yamanaka M., Shegogue D., Pei H. et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem. 2004;279(52):53994–4001. https://doi.org/10.1074/jbc.M410144200.; Squecco R., Sassoli C., Nuti F. et al. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell. 2006;17(11):4896–910. https://doi.org/10.1091/mbc.e06-03-0243.; Giepmans B.N., Verlaan I., Hengeveld T. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol. 2001;11(17):1364–8. https://doi.org/10.1016/s0960-9822(01)00424-9.; Hao X., Wang Y., Kong N. et al. Growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biol Reprod. 2016;95(2):45. https://doi.org/10.1095/biolreprod.116.140137.; Yuan F., Hao X., Cui Y. et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022;13(11):963. https://doi.org/10.1038/s41419-022-05415-2.; Mostafa S., Nader N., Machaca K. Lipid signaling during gamete maturation. Front Cell Dev Biol. 2022;10:814876. https://doi.org/10.3389/fcell.2022.814876.; Birbes H., El Bawab S., Hannun Y.A., Obeid L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001;15(14):2669–79. https://doi.org/10.1096/fj.01-0539com.; Hernández-Corbacho M.J., Salama M.F., Canals D. et al. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):56–68. https://doi.org/10.1016/j.bbalip.2016.09.019.; Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci. 2015;16(3):5076–124. https://doi.org/10.3390/ijms16035076.; Fisher-Wellman K.H., Hagen J.T., Neufer P.D. et al. On the nature of ceramide-mitochondria interactions – dissection using comprehensive mitochondrial phenotyping. Cell Signal. 2021;78:109838. https://doi.org/10.1016/j.cellsig.2020.109838.; Eliyahu E., Shtraizent N., Martinuzzi K. et al. Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 2010;24(4):1229–38. https://doi.org/10.1096/fj.09-145508.; Santiquet N.W., Greene A.F, Becker J. et al. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. Mol Hum Reprod. 2017;23(9):594–606. https://doi.org/10.1093/molehr/gax032.; Eliyahu E., Shtraizent N., Shalgi R., Schuchman E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem. 2012;30(3):735–48. https://doi.org/10.1159/000341453.; Morita Y., Perez G.I., Paris F. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14. https://doi.org/10.1038/80442.; Coll O., Morales A., Fernández-Checa J.C., Garcia-Ruiz C. Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. J Lipid Res. 2007;48(9):1924–35. https://doi.org/10.1194/jlr.M700069-JLR200.; Yuan F., Wang Z., Sun Y. et al. Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis. 2021;12(6):574. https://doi.org/10.1038/s41419-021-03848-9.; Morita Y., Tilly J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann N Y Acad Sci. 2000;905:209–20. https://doi.org/10.1111/j.1749-6632.2000.tb06551.x.; Knapp P., Chomicz K., Świderska M. et al. Unique roles of sphingolipids in selected malignant and nonmalignant lesions of female reproductive system. Biomed Res Int. 2019;2019:4376583. https://doi.org/10.1155/2019/4376583.; Kreitzburg K.M., van Waardenburg R.C.A.M., Yoon K.J. Sphingolipid metabolism and drug resistance in ovarian cancer. Cancer Drug Resist. 2018;1:181–97. https://doi.org/10.20517/cdr.2018.06.; Rutherford T., Brown W.D., Sapi E. et al. Absence of estrogen receptor-beta expression in metastatic ovarian cancer. Obstet Gynecol. 2000;96(3):417–21. https://doi.org/10.1016/s0029-7844(00)00917-0.; Jeon S.-Y., Hwang K.-A., Choi K.-C. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016;158:1–8. https://doi.org/10.1016/j.jsbmb.2016.02.005.; Mungenast F., Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol (Lausanne). 2014;5:192. https://doi.org/10.3389/fendo.2014.00192.; Giaccari C., Antonouli S., Anifandis G. et al. An update on physiopathological roles of Akt in the reprodAKTive mammalian ovary. Life (Basel). 2024;14(6):722. https://doi.org/10.3390/life14060722.; Yang Y., Lang P., Zhang X. et al. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet. 2023;40(3):537–52. https://doi.org/10.1007/s10815-023-02724-z.; Liu L., Yin T.L., Chen Y. et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–9. https://doi.org/10.1016/j.jsbmb.2018.08.008.; Shi Y., Zhao H., Shi Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.; Parasar P., Ozcan P., Terry K.L. Endometriosis: epidemiology, diagnosis and clinical management. Curr Obstet Gynecol Rep. 2017;6(1):34–41. https://doi.org/10.1007/s13669-017-0187-1.; Lee Y.H., Tan C.W., Venkatratnam A. et al. Dysregulated sphingolipid metabolism in endometriosis. J Clin Endocrinol Metab. 2014;99(10):E1913–21. https://doi.org/10.1210/jc.2014-1340.; Zhang Q., Duan J., Liu X., Guo S.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. https://doi.org/10.1016/j.mce.2016.03.015.; Bernacchioni C., Capezzuoli T., Vannuzzi V. et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021;115(2):501–11. https://doi.org/10.1016/j.fertnstert.2020.08.012.; Turathum B., Gao E.M., Grataitong K. et al. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne). 2022;13:906570. https://doi.org/10.3389/fendo.2022.906570.; Itami N., Shirasuna K., Kuwayama T., Iwata H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod. 2018;98(5):644–53. https://doi.org/10.1093/biolre/ioy023.; Fucho R., Casals N., Serra D., Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 2017;31(4):1263–72. https://doi.org/10.1096/fj.201601156R.; Torretta E., Barbacini P., Al-Daghri N.M., Gelfi C. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment. Int J Mol Sci. 2019;20(23):5901. https://doi.org/10.3390/ijms20235901.; Samad F., Hester K.D., Yang G. et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–87. https://doi.org/10.2337/db06-0330.; Shibahara H., Ishiguro A., Inoue Y. et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology. 2020;141:54–61. https://doi.org/10.1016/j.theriogenology.2019.09.006.; Levi A.J., Raynault M.F., Bergh P.A. et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9. https://doi.org/10.1016/s0015-0282(01)02017-9.; Timur B., Aldemir O., İnan N. et al. Clinical significance of serum and follicular fluid ceramide levels in women with low ovarian reserve. Turk J Obstet Gynecol. 2022;19(3):207–14. https://doi.org/10.4274/tjod.galenos.2022.05760.; Alizadeh J., da Silva Rosa S.C., Weng X. et al. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol. 2023;102(3):151337. https://doi.org/10.1016/j.ejcb.2023.151337.; Nakahara T., Iwase A., Nakamura T. et al. Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril. 2012;98(4):1001–8.e1. https://doi.org/10.1016/j.fertnstert.2012.06.008.; Valtetsiotis K., Valsamakis G., Charmandari E., Vlahos N.F. Metabolic mechanisms and potential therapeutic targets for prevention of ovarian aging: data from up-to-date experimental studies. Int J Mol Sci. 2023;24(12):9828. https://doi.org/10.3390/ijms24129828.; Li F., Turan V., Lierman S. et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13. https://doi.org/10.1093/humrep/det391.; Pascuali N., Scotti L., Di Pietro M. et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.; Абусуева З.А., Мухтарова М.М., Хашаева Т.Х. и др. Компаративная оценка провоспалительных цитокинов у женщин с диагностированными наследственными тромбофилиями различного генеза и их ассоциация с ранними и поздними эмбриональными потерями. Проблемы репродукции. 2022;28(3):10–7. https://doi.org/10.17116/repro20222803110.; Cianci A., Calogero A.E., Palumbo M.A. et al. Relationship between tumour necrosis factor alpha and sex steroid concentrations in the follicular fluid of women with immunological infertility. Hum Reprod. 1996;11(2):265–8. https://doi.org/10.1093/humrep/11.2.265.; Banaras S., Paracha R.Z., Nisar M. et al. System level modeling and analysis of TNF-α mediated sphingolipid signaling pathway in neurological disorders for the prediction of therapeutic targets. Front Physiol. 2022;13:872421. https://doi.org/10.3389/fphys.2022.872421.; Sukocheva O.A., Neganova M.E., Aleksandrova Y/ et al. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal. 2024;22(1):251. https://doi.org/10.1186/s12964-024-01626-6.; Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110(1):3–8. https://doi.org/10.1172/JCI16127.; Di Paolo A., Vignini A., Alia S. et al. Pathogenic role of the sphingosine 1-phosphate (S1P) pathway in common gynecologic disorders (GDs): a possible novel therapeutic target. Int J Mol Sci. 2022;23(21):13538. https://doi.org/10.3390/ijms232113538.; Коваль О.М., Хачанова Н.В., Журавлева М.В. и др. Безопасность воспроизведенного финголимода. Безопасность и риск фармакотерапии. 2018;6(1):23–31. https://doi.org/10.30895/2312-7821-2018-6-1-23-31.; https://www.gynecology.su/jour/article/view/2609
-
20Academic Journal
Συγγραφείς: A. D. Makatsariya, A. V. Vorobev, А. Д. Макацария, А. В. Воробьев
Συνεισφορές: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 5 (2025); 626-631 ; Акушерство, Гинекология и Репродукция; Vol 19, No 5 (2025); 626-631 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: эндокринные дизрапторы, preeclampsia, endometriosis, perioperative analgesia, venous thromboembolic complications, nutritional support, reproductive health, fertility, endocrine disruptors, преэклампсия, эндометриоз, периоперационная аналгезия, венозные тромбоэмболические осложнения, нутрициальная поддержка, репродуктивное здоровье, фертильность
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2591/1388; Матвеев М.О., Прокопенко Е.И., Никольская И.Г., Федосов А.А., Блинов Д.В., Бицадзе В.О. Исследование уровней биомаркеров – растворимой fms-подобной тирозинкиназы-1 (sFlt-1), плацентарного фактора роста (PlGF) и их соотношения sFlt-1/PlGF у пациенток с экстрагенитальными заболеваниями для диагностики ранней и поздней преэклампсии. Акушерство, Гинекология и Репродукция. 2025;19(5):632–653. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.671.; Жильнио Е.Ю., Салов И.А., Наумова Ю.В. Персонализация вероятности рецидива и профилактики эндометриоза яичников после операции. Акушерство, Гинекология и Репродукция. 2025;19(5):654–666. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.649.; Иноятова Н.М., Каюмова Д.Т. Влияние перевязки трех пар маточных сосудов на кровоснабжение матки и яичников у пациенток с патологической кровопотерей. Акушерство, Гинекология и Репродукция. 2025;19(5):667–674. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.659.; Громова О.А., Торшин И.Ю., Иловайская И.А., Громов А.Н. Комплексный биохимический анализ состава препаратов и биологически активных добавок омега-3 полиненасыщенных жирных кислот для нутрициальной поддержки беременности. Акушерство, Гинекология и Репродукция. 2025;19(5):675–689. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.669.; Пачулия О.В., Лазарева Т.Е., Халенко В.В., Илларионов Р.А., Вашукова Е.С., Постникова Т.Б., Мальцева А.Р., Милютина Ю.П., Корнюшина Е.А., Беспалова О.Н., Глотов А.С. Раннее моделирование риска преждевременных родов на платформе биоколлекции образцов беременных, созданной на разных сроках гестации согласно стратегии «лонгитюдное биобанкирование». Акушерство, Гинекология и Репродукция. 2025;19(5):691–704. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.686.; Стрюк Р.И., Крикунова О.В., Локшина Э.Э., Гомова Т.А., Федотова Е.E. Эффективность и безопасность профилактики венозных тромбоэмболических осложнений у беременных высокого риска: анализ результатов регистра беременных «БЕРЕГ». Акушерство, Гинекология и Репродукция. 2025;19(5):705–715. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.652.; Харлов Н.С., Шаповалова Е.А., Басос А.С., Карамян Р.А., Бабина У.Ф., Белоусов А.М. Блокада верхнего гипогастрального сплетения в сочетании с превентивной инфильтрационной анестезией операционных ран – новый взгляд на периоперационную анальгезию при лапароскопической миомэктомии. Акушерство, Гинекология и Репродукция. 2025;19(5):717–726. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.682.; Гридасова О.С., Хизроева Д.Х., Солопова А.Г., Иванов А.Е., Блинов Д.В., Татаринцева А.Ю. Оценка уровня фактора роста эндотелия сосудов в крови пациенток с вульвовагинальной атрофией. Акушерство, Гинекология и Репродукция. 2025;19(5):727–736. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.684.; Громова О.А., Торшин И.Ю., Тапильская Н.И. Миоинозитол и D-хироинозитол в комплексе с фолатами и марганцем как факторы мужского здоровья: воздействие на структуру и фертильность сперматозоидов. Акушерство, Гинекология и Репродукция. 2025;19(5):737–757. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.687.; Коломыцева Л.Н., Небора Е.Д., Джамалутинов А.Д., Суфияров Д.И., Мугинова Д.Р., Муллагулова И.И., Тушигов А.С., Базарова З.Д., Носинкова Т.А., Хусейнова Л.А., Деревянко К.А., Абаева М.П., Магомедова Ж.Ж., Борлакова С.М. Овариальная токсичность эндокринных дизрапторов: современное состояние проблемы. Акушерство, Гинекология и Репродукция. 2025;19(5):759–775. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.658.; Павлова З.Ш., Орлова Я.А., Камалов А.А. Влияние прогестерона на заболевания предстательной железы и перспективы его использования для профилактики и лечения доброкачественной гиперплазии предстательной железы. Акушерство, Гинекология и Репродукция. 2025;19(5):776–787. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.662.; Аполихина И.А., Горбунова Е.А., Саидова А.С., Тарнаева Л.А. Роль локальной гормональной терапии эстриолом в комплексном ведении женщин с генитоуринарным менопаузальным синдромом: серия клинических наблюдений. Акушерство, Гинекология и Репродукция. 2025;19(5):788–799. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.668.; Карпова А.Л., Мостовой А.В., Баранов А.А., Аникеева Л.А., Клубничкина Е.В., Заплатников А.Л., Карпов Л.Н. Врожденная инфекция у доношенного новорожденного ребенка, вызванная вирусом герпеса человека 6-го типа: обзор литературы и клинический случай. Акушерство, Гинекология и Репродукция. 2025;19(5):801–811. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.635.; Козлов Л.А., Чикмарева К.А. Педагогические раздумья о термине «Признак отделения последа Кюстнера–Чукалова». Акушерство, Гинекология и Репродукция. 2025;19(5):812–817. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.685.; https://www.gynecology.su/jour/article/view/2591