-
1Academic Journal
Συγγραφείς: V. S. Podvysotskaya, E. V. Grigor’eva, A. A. Malakhova, J. M. Minina, Y. V. Vyatkin, E. A. Khabarova, J. A. Rzaev, S. P. Medvedev, L. V. Kovalenko, S. M. Zakian, В. С. Подвысоцкая, Е. В. Григорьева, А. А. Малахова, Ю. М. Минина, Ю. В. Вяткин, Е. А. Хабарова, Дж. А. Рзаев, С. П. Медведев, Л. В. Коваленко, С. М. Закиян
Συνεισφορές: The study was carried out with the financial support of the Foundation for Scientific and Technological Development of Yugra within the framework of scientific project No. 2023-573-05, Исследование выполнено при финансовой поддержке Фонда научно-технологического развития Югры в рамках научного проекта № 2023-573-05.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 1 (2025); 15-25 ; Вавиловский журнал генетики и селекции; Том 29, № 1 (2025); 15-25 ; 2500-3259 ; 10.18699/vjgb-25-01
Θεματικοί όροι: ген LGR4, reprogramming, induced pluripotent stem cells, LGR4 gene, репрограммирование, индуцированные плюрипотентные стволовые клетки
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4469/1910; Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stemcell lines from human blastocysts. N Engl J Med. 2004;350(13):13531356. doi:10.1056/NEJMsr040330; Fernandes H.J.R., Hartfield E.M., Christian H.C., Emmanoulidou E., Zheng Y., Booth H., Bogetofte H., Lang C., Ryan B.J., Sardi S.P., Badger J., Vowles J., Evetts S., Tofaris G.K., Vekrellis K., Talbot K., Hu M.T., James W., Cowley S.A., WadeMartins R. ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBAN370S Parkinson’s iPSCderived dopamine neurons. Stem Cell Rep. 2016;6(3):342356. doi:10.1016/j.stemcr.2016.01.013; Funayama M., Nishioka K., Li Y., Hattori N. Molecular genetics of Parkinson’s disease: сontributions and global trends. J Hum Genet. 2023;68(3):125130. doi:10.1038/s10038022010585; Grigor’eva E.V., Kopytova A.E., Yarkova E.S., Pavlova S.V., Sorogina D.A., Malakhova A.A., Malankhanova T.B., Baydakova G.V., Zakharova E.Y., Medvedev S.P., Pchelina S.N., Zakian S.M. Bioche mical characteristics of iPSCderived dopaminergic neurons from N370S GBA variant carriers with and without Parkinson’s disease. Int J Mol Sci. 2023;24:4437. doi:10.3390/ijms24054437; Grigor’eva E.V., Karapetyan L.V., Malakhova A.A., Medvedev S.P., Minina J.M., Hayrapetyan V.H., Vardanyan V.S., Zakian S.M., Arakelyan A., Zakharyan R. Generation of iPSCs from a patient with the M694V mutation in the MEFV gene associated with Familial Mediterranean fever and their differentiation into macrophages. Int J Mol Sci. 2024a;25:6102. doi:10.3390/ijms25116102; Grigor’eva E.V., Malakhova A.A., Yarkova E.S., Minina J.M., Vyatkin Y.V., Nadtochy J.A., Khabarova E.A., Rzaev J.A., Medvedev S.P., Zakian S.M. Generation and characterization of two in duced pluripotent stem cell lines (ICGi052A and ICGi052B) from a patient with frontotemporal dementia with parkinsonism17 associated with the pathological variant c.2013T>G in the MAPT gene. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024b;28(7):679687. doi:10.18699/vjgb2476; Hastings R., Howell R., Bricarelli F.D., Kristoffersson U., Cavani S. General guidelines and quality assurance for cytogenetics. Eur Cytogenet Assoc Newsl. 2012;29:1125 ISCN 2020: An International System for Human Cytogenomic Nomen clature. S. Karger AG, 2020. doi:10.1159/isbn.9783318068672; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402408. doi:10.1006/meth.2001.1262; Mancini A., Howard S.R., Marelli F., Cabrera C.P., Barnes M.R., Sternberg M.J.E., Leprovots M., Hadjidemetriou I., Monti E., David A., Wehkalampi K., Oleari R., Lettieri A., Vezzoli V., Vassart G., Cariboni A., Bonomi M., Garcia M.I., Guasti L., Dunkel L. LGR4 deficiency results in delayed puberty through impaired Wnt/β-catenin signaling. JCI Insight. 2023;5(11):e133434. doi:10.1172/jci.insight.133434; Marchetti B., Tirolo C., L’Episcopo F., Caniglia S., Testa N., Smith J.A., Pluchino S., Serapide M.F. Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell. 2020;19(3):e13101. doi:10.1111/acel.13101; Marciniak S.J., Chambers J.E., Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 2022;21(2):115140. doi:10.1038/s41573021003203; Menzorov A., Pristyazhnyuk I., Kizilova H., Yunusova A., Battulin N., Zhelezova A., Golubitsa A., Serov O.L. Cytogenetic analysis and Dlk1-Dio3 locus epigenetic status of mouse embryonic stem cells during early passages. Cytotechnology. 2016;68(1):6171. doi:10.1007/s106160149751y; Niu Y., Zhang J., Dong M. Nrf2 as a potential target for Parkinson’s disease therapy. J Mol Med (Berl). 2021;99(7):917931. doi:10.1007/s00109021020715; Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integrationfree humaninduced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458-466. doi:10.1002/stem.1293; Shi S., Li S., Zhang X., Wei Z., Fu W., He J., Hu Y., Li M., Zheng L., Zhang Z. LGR4 gene polymorphisms are associated with bone and obesity phenotypes in Chinese female nuclear families. Front Endocrinol. 2021;12:656077. doi:10.3389/fendo.2021.656077; Wang M., Ling K.-H., Tan J.J., Lu C.-B. Development and differentiation of midbrain dopaminergic neuron: from bench to bedside. Cells. 2020;9(6):1489. doi:10.3390/cells9061489; Yarkova E.S., Grigor’eva E.V., Medvedev S.P., Pavlova S.V., Zakian S.M., Malakhova A.A. IPSCderived astrocytes contribute to in vitro modeling of Parkinson’s disease caused by the GBA1 N370S mutation. Int J Mol Sci. 2023;25(1):327. doi:10.3390/ijms25010327; Yarkova E.S., Grigor’eva E.V., Medvedev S.P., Tarasevich D.A., Pavlova S.V., Valetdinova K.R., Minina J.M., Zakian S.M., Malakhova A.A. Detection of ER stress in iPSCderived neurons carrying the p.N370S mutation in the GBA1 gene. Biomedicines. 2024;12:744. doi:10.3390/biomedicines12040744; https://vavilov.elpub.ru/jour/article/view/4469
-
2Academic Journal
Συγγραφείς: Desyatova, M. A., Makeev, O. G., Knyazev, V. M., Десятова, М. А., Макеев, О. Г., Князев, В. М.
Πηγή: Сборник статей
Θεματικοί όροι: PHILOSOPHY, ATOPIC DERMATITIS, EPIGENETIC LANDSCAPE, CHROMATIN, REPROGRAMMING, DNA METHYLATION, HISTONE ACETYLATION, ФИЛОСОФИЯ, АТОПИЧЕСКИЙ ДЕРМАТИТ, ЭПИГЕНЕТИЧЕСКИЙ ЛАНДШАФТ, ХРОМАТИН, РЕПРОГРАММИРОВАНИЕ, МЕТИЛИРОВАНИЕ ДНК, АЦЕТИЛИРОВАНИЕ ГИСТОНОВ
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; http://elib.usma.ru/handle/usma/13794
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/13794
-
3Academic Journal
Συγγραφείς: Rumyantsev, V.A., Denis, A.G., Shimansky, Sh.L., Shestakova, V.G., Donskov, S.A., Blinova, A.V.
Πηγή: Head and neck. Russian Journal. 10
Θεματικοί όροι: аутосыворотка крови, autologous serum, репрограммирование макрофагов, inflammation, пародонт, гистоморфологическое исследование, histomorphological study, chronic generalized periodontitis, macrophage reprogramming, воспаление, periodontium, 3. Good health, хронический генерализованный пародонтит
-
4Academic Journal
Συγγραφείς: Baklanova, S. A., Desyatova, M. A., Makeev, O. G., Бакланова, С. А., Десятова, М. А., Макеев, О. Г.
Πηγή: Сборник статей
Θεματικοί όροι: AGING, EPIGENETICS, CHROMATIN, REPROGRAMMING, DNA METHYLATION, СТАРЕНИЕ, ЭПИГЕНЕТИКА, ХРОМАТИН, РЕПРОГРАММИРОВАНИЕ, МЕТИЛИРОВАНИЕ ДНК
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г.; http://elib.usma.ru/handle/usma/7876
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/7876
-
5Academic Journal
Πηγή: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :41-46
Θεματικοί όροι: репрограммирование макрофагов, солидная карцинома, reprogramming, carcinoma, 3. Good health, macrophages
Σύνδεσμος πρόσβασης: https://pfiet.ru/index.php/pfiet/article/view/914
-
6Academic Journal
Συγγραφείς: Ванг, Кен
Πηγή: Problems of Environmental Biotechnology; No. 1 (2021) ; Проблемы экологической биотехнологии; № 1 (2021) ; Проблеми екологічної біотехнології; № 1 (2021) ; 2306-6407
Θεματικοί όροι: genome editing, targeted mutagenesis, transcriptional reprogramming, GMO technologies, редактирование генома, целевой мутагенез, транскрипционное репрограммирование, технологии ГМО, редагування геному, цільовий мутагенез, перепрограмування транскрипції, технології ГМО
Περιγραφή αρχείου: application/pdf
Relation: https://jrnl.nau.edu.ua/index.php/ecobiotech/article/view/16128/23388; https://jrnl.nau.edu.ua/index.php/ecobiotech/article/view/16128
-
7Academic Journal
Πηγή: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :67-73
Θεματικοί όροι: 0301 basic medicine, макрофаги, lymphocytes, 0303 health sciences, 03 medical and health sciences, карцинома, иммуный ответ, лимфоциты, репрограммирование, carcinoma, 3. Good health, macrophages, reprogramming, immune response
Σύνδεσμος πρόσβασης: https://j.iph.ras.ru/index.php/pfiet/article/view/588
https://pfiet.ru/article/download/588/471 -
8Academic Journal
Πηγή: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :4-9
Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, цитокины, reprogramming, карцинома Эрлиха, cytokines, 3. Good health, macrophages, макрофаги, 03 medical and health sciences, Ehrlich carcinoma, опухолевое микроокружение, tumor microenvironment, репрограммирование
Σύνδεσμος πρόσβασης: https://j.iph.ras.ru/index.php/pfiet/article/view/388
-
9Academic Journal
Συγγραφείς: I. N. Lebedev, И. Н. Лебедев
Πηγή: Medical Genetics; Том 19, № 3 (2020); 5-6 ; Медицинская генетика; Том 19, № 3 (2020); 5-6 ; 2073-7998
Θεματικοί όροι: CNV, онтогенетика, хромосомные болезни, клеточное репрограммирование, pathogenetics, ontogenetics, chromosomal diseases, cell reprogramming
Περιγραφή αρχείου: application/pdf
-
10Academic Journal
Συγγραφείς: E.V. Novosadova, E.D. Nekrasov, I.V. Chestkov, A.V. Surdina, E.M. Vasina, A.N. Bogomazova, E.S. Manuilova, E.L. Arsenyeva, V.V. Simonova, E.V. Konovalova, E.Yu. Fedotova, N.Yu. Abramycheva, L.G. Khaspekov, I.A. Grivennikov, V.Z. Tarantul, S.L. Kiselev, S.N. Illarioshkin
Πηγή: Sovremennye tehnologii v medicine. 8:157-166
Θεματικοί όροι: 0301 basic medicine, 03 medical and health sciences, cell reprogramming, induced pluripotent stem cells, platform for iPSC, fibroblasts, dopaminergic neurons, Parkinson's disease, КЛЕТОЧНОЕ РЕПРОГРАММИРОВАНИЕ,ИНДУЦИРОВАННЫЕ ПЛЮРИПОТЕНТНЫЕ СТВОЛОВЫЕ КЛЕТКИ,ПЛАТФОРМА ДЛЯ ИПСК,ФИБРОБЛАСТЫ,ДОФАМИНЕРГИЧЕСКИЕ НЕЙРОНЫ,БОЛЕЗНЬ ПАРКИНСОНА
Περιγραφή αρχείου: text/html
Σύνδεσμος πρόσβασης: http://www.stm-journal.ru/en/numbers/2016/4/1293/pdf
https://cyberleninka.ru/article/n/a-platform-for-studying-molecular-and-cellular-mechanisms-of-parkinson-s-disease-based-on-human-induced-pluripotent-stem-cells-1/pdf
http://www.stm-journal.ru/en/numbers/2016/4/1293
https://cyberleninka.ru/article/n/a-platform-for-studying-molecular-and-cellular-mechanisms-of-parkinson-s-disease-based-on-human-induced-pluripotent-stem-cells-1
http://cyberleninka.ru/article/n/a-platform-for-studying-molecular-and-cellular-mechanisms-of-parkinson-s-disease-based-on-human-induced-pluripotent-stem-cells-1
http://cyberleninka.ru/article_covers/16966121.png
http://cyberleninka.ru/article/n/a-platform-for-studying-molecular-and-cellular-mechanisms-of-parkinson-s-disease-based-on-human-induced-pluripotent-stem-cells
http://cyberleninka.ru/article_covers/16942207.png -
11
-
12Academic Journal
Συγγραφείς: V. R. Beklemisheva, A. G. Menzorov, В. Р. Беклемишева, А. Г. Мензоров
Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 8 (2018); 1020-1025 ; Вавиловский журнал генетики и селекции; Том 22, № 8 (2018); 1020-1025 ; 2500-3259
Θεματικοί όροι: CytoTune EmGFP Sendai Fluorescence Reporter, seals, walrus, reprogramming, iPS cells, Sendai virus, тюлени, морж, репрограммирование, ИПСК, вирус Сендай
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1804/1160; Борода А.В., Питерсон С.Е., Монтэгю С.К., Пиварофф К.Дж., Штейн Дж., Ли Ч.Я., Лорин Дж.Ф., Одинцова Н.А. Получение индуцированных плюрипотентных стволовых клеток из замороженных в жидком азоте биоптатов кожи байкальской нерпы (Pusa sibirica) и сивуча (Eumetopias jubatus). Морские млекопитающие Голарктики. Сб. науч. тр. по матер. VIII междунар. конф. Санкт-Петербург, 22-27 сентября 2014 г. М., 2015;1:73-77.; Пристяжнюк И.Е., Мензоров А.Г. Получение индуцированных плюрипотентных стволовых клеток американской норки: протокол. Вавиловский журнал генетики и селекции. 2017;21(6):701- 709. DOI 10.18699/VJ17.288.; Baird A., Barsby T., Guest D.J. Derivation of canine induced pluripotent stem cells. Reprod. Domest. Anim. 2015;50(4):669-676. DOI 10.1111/rda.12562.; Ban H., Nishishita N., Fusaki N., Tabata T., Saeki K., Shikamura M., Takada N., Inoue M., Hasegawa M., Kawamata S., Nishikawa S. Effcient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc. Natl. Acad. Sci. USA. 2011;108(34):14234-14239. DOI 10.1073/pnas.1103509108.; Coppiello G., Abizanda G., Aguado N., Iglesias E., Arellano-Viera E., Rodriguez-Madoz J.R., Carvajal-Vergara X., Prosper F., Aranguren X.L. Generation of Macaca fascicularis iPS cell line ATCiMF1 from adult skin fbroblasts using non-integrative Sendai viruses. Stem Cell Res. 2017;21:1-4. DOI 10.1016/j.scr.2017.03.008.; Cronin J., Zhang X.Y., Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 2005;5(4):387-398.; Cubitt A.B., Woollenweber L.A., Heim R. Understanding structurefunction relationships in the Aequorea victoria green fluorescent protein. Met. Cell Biol. 1999;58:19-30.; Fujie Y., Fusaki N., Katayama T., Hamasaki M., Soejima Y., Soga M., Ban H., Hasegawa M., Yamashita S., Kimura S., Suzuki S., Matsuzawa T., Akari H., Era T. New type of Sendai virus vector provides transgene-free iPS cells derived from chimpanzee blood. PLoS One. 2014;9(12):e113052. DOI 10.1371/journal.pone.0113052.; Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. Effcient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009; 85(8):348-362.; Galat V., Galat Y., Perepitchka M., Jennings L.J., Iannaccone P.M., Hendrix M.J. Transgene reactivation in induced pluripotent stem cell derivatives and reversion to pluripotency of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Dev. 2016; 25(14):1060-1072. DOI 10.1089/scd.2015.0366.; Karwacki-Neisius V., Göke J., Osorno R., Halbritter F., Ng J.H., Weiße A.Y., Wong F.C., Gagliardi A., Mullin N.P., Festuccia N., Colby D., Tomlinson S.R., Ng H.H., Chambers I. Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell. 2013;12(5):531-545. DOI 10.1016/j.stem.2013.04.023.; Koh S., Thomas R., Tsai S., Bischoff S., Lim J.-H., Breen M., Olby N.J., Piedrahita J.A. Growth requirements and chromosomal instability of induced pluripotent stem cells (iPSC) generated from adult canine fbroblasts. Stem Cells Dev. 2012;22(6):951-963. DOI 10.1089/scd.2012.0393.; Lee A.S., Xu D., Plews J.R., Nguyen P.K., Nag D., Lyons J.K., Han L., Hu S., Lan F., Liu J., Huang M., Narsinh K.H., Long C.T., de Almeida P.E., Levi B., Kooreman N., Bangs C., Pacharinsak C., Ikeno F., Yeung A.C., Gambhir S.S., Robbins R.C., Longaker M.T., Wu J.C. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J. Biol. Chem. 2011; 286(37):32697-32704. DOI 10.1074/jbc.M111.235739.; Li H.O., Zhu Y.F., Asakawa M., Kuma H., Hirata T., Ueda Y., Lee Y.S., Fukumura M., Iida A., Kato A., Nagai Y., Hasegawa M. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with effcient gene transfer and expression. J. Virol. 2000;74(14):6564- 6569.; Lu J., Liu H., Huang C.T., Chen H., Du Z., Liu Y., Sherafat M.A., Zhang S.C. Generation of integration¬free and region-specifc neural progenitors from primate fbroblasts. Cell Rep. 2013;3(5):1580- 1591. DOI 10.1016/j.celrep.2013.04.004.; Luo J., Suhr S.T., Chang E.A., Wang K., Ross P.J., Nelson L.L., Venta P.J., Knott J.G., Cibelli J.B. Generation of leukemia inhibitory factor and basic fbroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev. 2011;20(10):1669-1678. DOI 10.1089/scd.2011.0127.; Maherali N., Sridharan R., Xie W., Utikal J., Eminli S., Arnold K., Stadtfeld M., Yachechko R., Tchieu J., Jaenisch R., Plath K., Hochedlinger K. Directly reprogrammed fbroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55-70. DOI 10.1016/j.stem.2007.05.014.; Menzorov A.G., Matveeva N.M., Markakis M.N., Fishman V.S., Christensen K., Khabarova A.A., Pristyazhnyuk I.E., Kizilova E.A., Cirera S., Anistoroaei R., Serov O.L. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes. BMC Genomics. 2015;16(Suppl. 13):S6. DOI 10.1186/1471-2164-16-S13-S6.; Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-3/4 defnes differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 2000;24(4):372-376. DOI 10.1038/74199.; Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-317. DOI 10.1038/nature05934.; Shimada H., Nakada A., Hashimoto Y., Shigeno K., Shionoya Y., Nakamura T. Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol. Reprod. Dev. 2010;77(1):2. DOI 10.1002/mrd.21117.; Takahashi K., Okita K., Nakagawa M., Yamanaka S. Induction of pluripotent stem cells from fbroblast cultures. Nat. Protoc. 2007;2(12): 3081-3089. DOI 10.1038/nprot.2007.418.; Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fbroblast cultures by defned factors. Cell. 2006;126(4):663-676. DOI 10.1016/j.cell.2006.07.024.; Tsukamoto M., Nishimura T., Yodoe K., Kanegi R., Tsujimoto Y., Alam M.E., Kuramochi M., Kuwamura M., Ohtaka M., Nishimura K., Nakanishi M., Inaba T., Sugiura K., Hatoya S. Generation of footprint-free canine induced pluripotent stem cells using auto-erasable Sendai virus vector. Stem Cells Dev. 2018;27(22):1577-1586. [Epub ahead of print]. DOI 10.1089/scd.2018.0084.; Tucker B.A., Anfnson K.R., Mullins R.F., Stone E.M., Young M.J. Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl. Med. 2013;2(1):16-24. DOI 10.5966/sctm.2012-0040.; Verma R., Holland M.K., Temple-Smith P., Verma P.J. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid. Theriogenology. 2012;77(1):220-228, 228.e221- 222. DOI 10.1016/j.theriogenology.2011.09.022.; Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernstein B.E., Jaenisch R. In vitro reprogramming of fbroblasts into a pluripotent ES-cell-like state. Nature. 2007;448: 318-324. DOI 10.1038/nature05944.; Whitworth D.J., Ovchinnikov D.A., Wolvetang E.J. Generation and Characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal Fibroblasts. Stem Cells Dev. 2012;21(12): 2288-2297. DOI 10.1089/scd.2011.0608.; Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917- 1920. DOI 10.1126/science.1151526.; https://vavilov.elpub.ru/jour/article/view/1804
-
13Academic Journal
Συγγραφείς: A. V. Tikhonov, O. A. Efimova, A. A. Pendina, V. S. Baranov, А. В. Тихонов, О. А. Ефимова, А. А. Пендина, В. С. Баранов
Πηγή: Medical Genetics; Том 16, № 5 (2017); 17-25 ; Медицинская генетика; Том 16, № 5 (2017); 17-25 ; 2073-7998
Θεματικοί όροι: human embryogenesis, 5-метилцитозин, 5-гидроксиметилцитозин, активное деметилирование ДНК, эпигенетическое репрограммирование генома, эмбриогенез человека, DNA methylation 5-methylcytosine, 5-hydroxymethylcytosine, active DNA demethylation, epigenetic genome reprogramming
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/263/211; Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007; 447: 425-432.; Lange UC, Schneider R. What an epigenome remembers. Bioessays. 2010; 32(8): 659-668.; Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001; 293: 1089-1093.; Пендина АА, Гринкевич ВВ, Кузнецова ТВ, Баранов ВС. Метилирование ДНК - универсальный механизм регуляции активности генов. Экологическая генетика. 2004; 1(II): 27-37.; Пендина АА, Ефимова ОА, Кузнецова ТВ, Баранов ВС. Болезни геномного импринтинга. Журнал акушерства и женских болезней. 2007; LVI(1): 76-83.; Ефимова ОА, Пендина АА, Тихонов АВ, и др. Метилирование ДНК - основной механизм репрограммирования и регуляции генома человека. Медицинская генетика. 2012; 11(4): 10-18.; Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 2007 Feb 1; 67(3): 946-950.; Tahiliani M, Koh KP, Shen Y. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324: 930-935.; Ефимова ОА, Пендина АА, Тихонов АВ, и др. Гидроксильная форма 5-метилцитозина - 5-гидроксиметилцитозин: новый взгляд на биологическую роль в геноме млекопитающих. Экологическая генетика. 2014; XII(1): 3-13.; Ефимова ОА, Пендина АА, Тихонов АВ, Баранов ВС. Эволюция представлений о биологической роли кислородсодержащих производных 5-метилцитозина в геноме млекопитающих. Экологическая генетика. 2016; XVI(4): 14-25.; Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell. 2011; 146(6): 866-872.; Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010; 466: 1129-1133.; He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011; 333: 1303-1307.; Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; 333(6047): 1229-1230.; Maiti A, Drohat A. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011 Oct 14; 286(41): 35334-35338.; Iqbal K, Jin SG, Pfeifer GP, Szabо PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA. 2011; 108(9): 3642-3647.; Wossidlo M, Nakamura T, Lepikhov K, et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun. 2011; 2: 241.; Beaujean N, Hartshorne G, Cavilla J, et al. Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol. 2004; 14(7): R266-7.; Shi W, Dirim F, Wolf E, et al. Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol Reprod. 2004; 71: 340-347.; Hou J, Lei TH, Liu L, et al. DNA methylation patterns in in vitro-fertilized goat zygotes. Reprod Fert Devel. 2005; 17: 809-813.; Fulka J, Fulka H, Slavik T, et al. DNA methylation pattern in pig in vivo produced embryos. Histochem Cell Biol. 2006; 126: 213-217.; Carlson BM. Human embryology and developmental biology. 4th edition. USA. Mosby. 2009: 541 p.; Quenneville S, Verde G, Corsinotti A, et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Molecular Cell. 2011; 44: 361-372.; Walter M, Teissandier A, Perez-Palacios R, Bourc’his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. Elife. 2016; 5. doi:10.7554/eLife.11418.; Bostick M, Kim JK, Esteve PO, et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007; 317: 1760-1764.; Rottach A, Frauer C, Pichler G, Bonapace IM, et al. The multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Res. 2010; 38: 1796-1804.; Fang J, Cheng J, Wang J, et al. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat Commun. 2016; 7: 11197.; Tang WWC, Dietmann S, Irie N, et al. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell. 2015; 161: 1453-1467.; Guo F, Yan L, Guo H, et al. The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells. Cell. 2015; 161: 1437-1452.; Gkountela S, Zhang KX, Shafiq TA, et al. DNA Demethylation Dynamics in the Human Prenatal Germline. Cell. 2015; 161: 1425-1436.; von Meyenn F, Berrens RV, Andrews S, et al. Comparative principles of DNA methylation reprogramming during human and mouse in vitro primordial germ cell specification. Dev Cell. 2016; 39: 104-115.; Zhang W, Xia W, Wang Q, et al. Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol Cell. 2016; 64(6): 1062-1073.; Gkountela S, Li Z, Vincent JJ, et al. The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nat Cell Biol. 2013; 15: 113-122.; Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb Perspect Biol. 2011 Jul 1; 3(7).; Macdonald WA, Mann MRW. Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev. 2014; 81: 126-140.; Spahn L, Barlow DP. An ICE pattern crystallizes. Nat Genet 2003; 35: 11-12.; Kerjean A, Dupont JM, Vasseur C, et al. Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet. 2000; 9: 2183-2187.; Kagiwada S, Kurimoto K, Hirota T, et al. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. Embo J. 2013; 32: 340-353.; Wermann H, Stoop H, Gillis AJM, et al. Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J Pathol. 2010; 221: 433-442.; Okae H, Chiba H, Hiura H, et al. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet. 2014; 10: e1004868.; Kobayashi H, Sakurai T, Imai M, et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 2012; 8: e1002440.; Smallwood SA, Tomizawa S-I, Krueger F, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011; 43: 811-814.; Guo H, Zhu P, Yan L, et al. The DNA methylation landscape of human early embryos. Nature. 2014; 511: 606-610.; Smith ZD, Chan MM, Humm KC, et al. DNA methylation dynamics of the human preimplantation embryo : Nature : Nature Publishing Group. Nature. 2014; 511: 611-615.; Marques CJ, Joаo Pinho M, Carvalho F, et al. DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics. 2011; 6: 1354-1361.; Kobayashi H, Sato A, Otsu E, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007; 16: 2542-2551.; Marques CJ, Costa P, Vaz B, et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 2008; 14: 67-74.; Sato A, Hiura H, Okae H, et al. Assessing loss of imprint methylation in sperm from subfertile men using novel methylation polymerase chain reaction Luminex analysis. Fertil Steril. 2011; 95: 129-34- 134.e1-4.; Boissonnas CC, Abdalaoui HE, Haelewyn V, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010; 18: 73-80.; Sato A, Otsu E, Negishi H, et al. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Human Reproduction. 2007; 22: 26-35.; Khoueiry R, Khoureiry R, Ibala-Rhomdane S, et al. Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J Med Genet. 2008; 45: 583-588.; Arima T, Wake N. Establishment of the primary imprint of the HYMAI/PLAGL1 imprint control region during oogenesis. Cytogenet Genome Res. 2006; 113: 247-252.; Geuns E, Hilven P, Van Steirteghem A, et al. Methylation analysis of KvDMR1 in human oocytes. J Med Genet. 2006; 44: 144-147.; Geuns E, De Temmerman N, Hilven P, et al. Methylation analysis of the intergenic differentially methylated region of DLK1-GTL2 in human. Eur J Hum Genet. 2007; 15: 352-361.; Geuns E, De Rycke M, Van Steirteghem A, Liebaers I. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Hum Mol Genet. 2003; 12: 2873-2879.; Anckaert E, De Rycke M, Smitz J. Culture of oocytes and risk of imprinting defects. Human Reproduction Update. 2013; 19: 52-66.; Petrussa L, Van de Velde H, De Rycke M. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies. Mol Hum Reprod. 2014; 20: 861-874.; Huntriss J, Hinkins M, Oliver B, et al. Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol Reprod Dev. 2004; 67: 323-336.; Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013; 20: 1131-1139.; Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010; 330(6004): 622-627.; Ooi SL, Henikoff S. Germline histone dynamics and epigenetics. Curr Opin Cell Biol. 2007; 19: 257-265.; Fulka H, Mrazek M, Tepla O, Fulka J. DNA methylation pattern in human zygotes and developing embryos. Reproduction. 2004; 128: 703-708.; Fulka H, Barnetova I, Mosko T, Fulka J. Epigenetic analysis of human spermatozoa after their injection into ovulated mouse oocytes. Hum Reprod. 2008; 23: 627-634.; Pendina AA, Efimova OA, Fedorova ID, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011; 132: 1-7.; Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015; 149: 223-233.; Iurlaro M, von Meyenn F, Reik W. DNA methylation homeostasis in human and mouse development. Curr Opin Genet Dev. 2017; 43: 101-109.; Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005; 14: R47-R58.; Xu Y, Zhang JJ, Grifo JA, Krey LC. DNA methylation patterns in human tripronucleate zygotes. Mol Hum Reprod. 2005; 11(3): 167-171.; Баранов ВС, Пендина АА, Кузнецова ТВ, и др. Некоторые особенности статуса метилирования метафазных хромосом у зародышей человека доимплантационных стадий развития. Цитология. 2005; 47(8): 723-730.; Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development. 2012; 139: 15-31.; Payer B, Saitou M, Barton SC, et al. Stella is a maternal effect gene required for normal early development in mice. Curr Biol. 2003; 13: 2110-2117.; Bortvin A, Goodheart M, Liao M, Page DC. Dppa3 / Pgc7 / stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev Biol. 2004; 4: 1-5.; Li X, Ito M, Zhou F, et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell. 2008; 15: 547-557.; Li W, Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids. 2011; 2011: 870726.; Wright FA, Lemon WJ, Zhao WD, et al. A draft annotation and overview of the human genome. Genome Biol. 2001: 2: 1-18.; Musio A, Mariani T, Vezzoni P, Frattini A. Heterogeneous gene distribution reflects human genome complexity as detected at the cytogenetic level. Cancer Genet Cytogenet. 2002; 134(2): 168-171.; Straussman R, Neiman D, Roberts D, et al. Developmental programming of CpG islands methylation profiles in the human genome. Net Struct Mol Biol. 2009; 16: 571-594.; Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG-binding proteins. Mol Cell Biol. 1998; 18: 6538-6547.; Пендина АА, Ефимова ОА, Каминская АН, и др. Иммуноцитохимический анализ статуса метилирования метафазных хромосом человека. Цитология. 2005; 47(8): 731-737.; Ефимова ОА, Пендина АА, Тихонов АВ, и др. Сравнительный иммуноцитохимический анализ профилей метилирования ДНК метафазных хромосом из лимфоцитов взрослых индивидов и плодов человека. Молекулярная медицина. 2015; 3: 17-21.; Santos F, Hyslop L, Stojkovic P, et al. Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod. 2010; 25(9): 2387-2395.; Robinson WP, Price EM. The human placental methylome. Cold Spring Harb Perspect Med. 2015. doi:10.1101/cshperspect.a023044.; Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science. 2011; 334: 194.; Goto T, Jones GM, Lolatgis N, et al. Identification and characterisation of known and novel transcripts expressed during the final stages of human oocyte maturation. Mol Reprod Dev. 2002; 62: 13-28.; Anvar Z, Cammisa M, Riso V, et al. ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. Nucleic Acids Res. 2015.; Court F, Tayama C, Romanelli V, et al. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res. 2014; 24: 554-569.; Takikawa S, Wang X, Ray C, et al. Human and mouse ZFP57 proteins are functionally interchangeable in maintaining genomic imprinting at multiple imprinted regions in mouse ES cells. Epigenetics. 2013; 8: 1268-1279.; Tian X, Pascal G, Monget P. Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol Biol. 2009; 9: 202.; Murdoch S, Djuric U, Mazhar B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006; 38: 300-302.; Nguyen NM, Slim R. Genetics and epigenetics of recurrent hydatidiform moles: Basic science and genetic counselling. Curr Obstet Gynecol Rep. 2014; 3: 55-64.; Mahadevan S, Wen S, Wan YW, et al. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet. 2013; 23(3): 706-716.; Soellner L, Begemann M, Mackay DJ, et al. Recent Advances in Imprinting Disorders. Clin Genet. 2017; 91(1): 3-13.; Gicquel C, Gaston V, Mandelbaum J, et al. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet. 2003; 72: 1338-1341.; Maher ER, Brueton LA, Bowdin SC, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003; 40: 62-64.; Sutcliffe AG, Peters CJ, Bowdin S, et al. Assisted reproductive therapies and imprinting disorders-a preliminary British survey. Human Reproduction. 2006; 21: 1009-1011.; Doornbos ME, Maas SM, McDonnell J, Vermeiden JPW, Hennekam RCM. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Human Reproduction. 2007; 22: 2476-2480.; Vermeiden JPW, Bernardus RE. Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmic sperm injection? Fertil Steril. 2013; 99: 642-651.; Ludwig M, Katalinic A, Gross S, et al. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet. 2005; 42: 289-291.; Chiba H, Hiura H, Okae H, et al. DNA methylation errors in imprinting disorders and assisted reproductive technology. Pediatr Int. 2013; 55: 542-549.; Bliek J, Terhal P, van den Bogaard M-J, et al. Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype. Am J Hum Genet. 2006; 78: 604-614.; Chopra M, Amor DJ, Sutton L, et al. Russell-Silver syndrome due to paternal H19/IGF2 hypomethylation in a patient conceived using intracytoplasmic sperm injection. Reprod Biomed Online. 2010; 20: 843-847.; Hiura H, Okae H, Miyauchi N, et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum Reprod. 2012; 27: 2541-2548.; Cocchi G, Marsico C, Cosentino A, et al. Silver-Russell syndrome due to paternal H19/IGF2 hypomethylation in a twin girl born after in vitro fertilization. Am J Med Genet A. 2013; 161A: 2652-2655.; Talaulikar VS, Arulkumaran S. Reproductive outcomes after assisted conception. Obstet Gynecol Surv. 2012; 67: 566-583.; Okun N, Sierra S. Pregnancy outcomes after assisted human reproduction. J Obstet Gynaecol Can 2014; 36: 64-83.
Διαθεσιμότητα: https://www.medgen-journal.ru/jour/article/view/263
-
14Academic Journal
Συγγραφείς: Строгонова Валерия Викторовна, Valeria V. Strogonova, Мальцева Александра Сергеевна, Aleksandra S. Maltseva
Πηγή: Students' scientific research and developments; № 1(3); 24-28 ; Научные исследования и разработки студентов; № 1(3); 24-28
Θεματικοί όροι: макрофаги, фенотипы макрофагов, репрограммирование, поляризация, факторы репрограммирования макрофагов
Περιγραφή αρχείου: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-9909794-3-7; https://interactive-plus.ru/e-articles/385/Action385-119320.pdf; 1. Круглов С.В. Репрограммирование механизмов синтеза оксида азота у М1 и М2 фенотипов перитонеальных макрофагов мышей in vitro в присутствии разных концентраций сыворотки / С.В. Круглов, С.В. Лямина, Т.Ю. Веденикин [и др.] // Медицинская иммунология. – 2012. – №1–2. – С. 127–132.; 2. Лямина С.В. Репрограммирование альвеолярных макрофагов – новая возможность управления иммунным ответом / С.В. Лямина, С.В. Круглов, С.В. Калиш [и др.] // Вестник Волгоградского государственного медицинского университета. – 2011. – №4 (40). – С. 42–46.; 3. Лямина С.В. Поляризация макрофагов в современной концепции формирования иммунного ответа / С.В. Лямина, И.Ю. Малышев // Фундаментальные исследования. – 2014. – №10. – С. 930–935.; 4. Сахаров В.Н. Роль различных фенотипов макрофагов в развитии заболеваний человека / В.Н. Сахаров, П.Ф. Литвицкий // Актуальные вопросы патофизиологии. – 2015. – №1. – С. 26–31.; 5. Сумина В.П. Репрограммирование клеточных ответов макрофагов: возможности управления воспалительным процессом / В.П. Сумина, А.В. Гагиева, М.И. Диденко // Здоровье и образование в XXI веке. – 2016. – №3 (18). – С. 92–95.
-
15
-
16Academic Journal
Συγγραφείς: NOVOSADOVA E.V., NEKRASOV E.D., CHESTKOV I.V., SURDINA A.V., VASINA E.M., BOGOMAZOVA A.N., MANUILOVA E.S., ARSENYEVA E.L., SIMONOVA V.V., KONOVALOVA E.V., FEDOTOVA E.YU., ABRAMYCHEVA N.YU., KHASPEKOV L.G., GRIVENNIKOV I.A., TARANTUL V.Z., KISELEV S.L., ILLARIOSHKIN S.N.
Περιγραφή αρχείου: text/html
-
17Academic Journal
Συγγραφείς: Шубейкина, Т. Д.
Πηγή: Vistnyk V. N. Karazin Kharkiv national University; № 1043; 73 ; Вестник Харьковского национального университета имени В. Н. Каразина. Серия «Валеология: современность и будущее»; № 1043; 73 ; Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Валеологія: сучасність і майбутнє»; № 1043; 73
Θεματικοί όροι: Геном Мира, Генетическая Нить, гравитон, Дека-Дельта Система, Мир Протоса, Монада, сознание, спинирующий объект, протоэнергон, репрограммирование
Περιγραφή αρχείου: application/pdf
Relation: http://periodicals.karazin.ua/valeology/article/view/1935/1626; http://periodicals.karazin.ua/valeology/article/view/1935
Διαθεσιμότητα: http://periodicals.karazin.ua/valeology/article/view/1935
-
18Academic Journal
Συγγραφείς: E. B. Dashinimaev, I. A. Muchkaeva, R. R. Faizullin, Y. Y. Yegorov, S. S. Akimov, V. V. Terskikh, A. V. Vasiliev, M. P. Kirpichnikov, Э. Б. Дашинимаев, И. А. Мучкаева, Р. Р. Файзуллин, Е. Е. Егоров, С. С. Акимов, В. В. Терских, А. В. Васильев, М. П. Кирпичников
Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 1 (2012); 8-14 ; Вестник Московского университета. Серия 16. Биология; № 1 (2012); 8-14 ; 0137-0952
Θεματικοί όροι: фибробласты кожи человека, reprogramming, human skin fibroblasts, репрограммирование
Περιγραφή αρχείου: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/39/41; Campbell K.H., McWhir J., Ritchie W.A., Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line // Nature. 1996. Vol. 380. P. 64—66.; Byrne J.A., Pedersen D.A., Clepper L.L., Nelson M., Sanger W.G., Gokhale S., Wolf D.P., Mitalipov S.M. Producing primate embryonic stemm cells by somatic cell nuclear transfer // Nature. 2007. Vol. 450(7169). P. 497—502.; Tada M., Takahama Y., Abe K., Nakatsuji N., Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells // Curr. Biol. 2001. Vol. 11. P. 1553—1558.; Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. Vol. 126(4). P. 663—676.; Takahashi K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell. 2007. Vol. 131(5). P. 861—872.; Okita K., Nakagawa M., Hyenjong H., Ichisaka T., Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors // Science. 2008. Vol. 322(5903). P. 949—953.; Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y. Takizawa N., Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts // Nature Biotechnology. 2008.Vol. 26. P. 101—106.; Mathew R., Jia W., Sharma A., Zhao Y., Clarke L.E., Cheng X., Wang H., Salli U., Vrana K.E., Robertson G.P., Zhu J., Wang S. Robust activation of the human but not mouse telomerase gene during the induction of pluripotency // FASEB J. 2010. Vol. 24. P. 2702—2715.; Agarwal S., Loh Y.H., McLoughlin E.M., Huang J., Park I.H., Miller J.D., Huo H., Okuka M., Dos Reis R.M., Loewer S., Ng H.H., Keefe D.L., Goldman F.D., Klingelhutz A.J., Liu L., Daley G.Q. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients // Nature. 2010. Vol. 464 P. 292—296.; Utikal J., Polo J.M., Stadtfeld M., Maherali N., Kulalert W., Walsh R.M., Khalil A., Rheinwald J.G., Hochedlinger K. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells // Nature. 2009. Vol. 460. P. 1145—1148.; Yehezkel S., Rebibo-Sabbah A., Segev Y., Tzukerman M., Shaked R., Huber I., Gepstein L., Skorecki K., Selig S. Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives // Epigenetics. 2011. Vol. 6. P. 63—75.; Scheper W., Copray S. The molecular mechanism of indused pluripotency: a two-stage switch // Stem Cell Rev. 2009. Vol. 5(3). P. 204—223.; Patel M., Yang S. Advances in reprogramming somatic cells to induced pluripotent stem cells // Stem Cell Rev. 2010. Vol. 6(3). P. 367—380.; Егоров Е.Е. Теломераза, старение, рак // Молекулярная биология. 1997. Т. 31. С. 16—25.; Егоров Е.Е., Молдавер М.В., Вишнякова Х.С., Терехов С.М., Дашинимаев Э.Б., Чеглаков И.Б., Торопыгин И.Ю., Ярыгин К.Н., Чумаков П.М., Корочкин Л.И., Антонова Г.А., Рыбалкина Е.Ю., Сабурина И.Н., Бурнаевский Н.С., Зеленин А.В. Усиление контроля пролиферации в теломеризованых клетках // Онтогенез. 2007. Т. 38, № 2. С. 105—19.; Armstrong L., Saretzki G., Peters H., Wappler I., Evans J., Hole N., von Zglinicki T., Lako M. Overexpression of telomerase confers growth advantage, stress resistance, andenhanced differentiation of ESCs toward the hematopoietic lineage// Stem Cells. 2005. Vol. 23(4). P. 516—529.; Zvereva M.I., Shcherbakova D.M., Dontsova O.A. Telomerase: structure, functions, and activity regulation // Biochemistry. 2010. Vol. 75(13). P. 1563—83.; Bryan T.M., Englezou A., Gupta J., Bacchetti S., Reddel R.R. Telomere elongation in immortal human cells without detectable telomerase activity // EMBO J. 1995. Vol. 14(17). P. 4240—4248.; Wright W.E., Shay J.W. Telomere positional effects and the regulation of cellular senescence // Trends Genet. 1992. Vol. 8(6). P. 193—197.
-
19Academic Journal
Συγγραφείς: ГРИГОРЬЕВА Е.В., ШЕВЧЕНКО А.И., МЕДВЕДЕВ С.П., МАЗУРОК Н.А., ЖЕЛЕЗОВА А.И., ЗАКИЯН С.М.
Θεματικοί όροι: РЕПРОГРАММИРОВАНИЕ,ИНДУЦИРОВАННЫЕ ПЛЮРИПОТЕНТНЫЕ СТВОЛОВЫЕ КЛЕТКИ,ОБЫКНОВЕННЫЕ ПОЛЁВКИ
Περιγραφή αρχείου: text/html
-
20Academic Journal
Συγγραφείς: ЕФИМОВА ОЛЬГА АЛЕКСЕЕВНА, ПЕНДИНА АННА АНДРЕЕВНА, ТИХОНОВ АНДРЕЙ ВЛАДИМИРОВИЧ, КУЗНЕЦОВА ТАТЬЯНА ВЛАДИМИРОВНА, БАРАНОВ ВЛАДИСЛАВ СЕРГЕЕВИЧ
Περιγραφή αρχείου: text/html