-
1Academic Journal
Συγγραφείς: Nemtsova M.V., Bure I.V.
Συνεισφορές: This work was supported by the Russian Science Foundation (project Ref. No. 20-75-10117)., Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-75-10117).
Πηγή: Advances in Molecular Oncology; Vol 10, No 1 (2023); 8-17 ; Успехи молекулярной онкологии; Vol 10, No 1 (2023); 8-17 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: chromatin remodeling, SWI/ SNF, somatic mutations, synthetic lethality of cancer cells, bromodomain inhibitors, ремоделирование хроматина, соматические мутации, синтетическая летальность опухолевых клеток, ингибиторы бромодоменов
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/507/287; https://umo.abvpress.ru/jour/article/view/507
-
2Academic Journal
Συγγραφείς: Voropaeva E.N., Pospelova T.I., Karpova V.S., Churkina M.I., Vyatkin Y.V., Ageeva T.A., Maksimov V.N.
Συνεισφορές: The work was performed with the financial support of the grant of the President of the Russian Federation to young scientists MD-2706.2019.7. The work was carried out within the framework of the budget topic under the State task No. AAAAA-A17-117112850280-2., Работа выполнена при финансовой поддержке гранта Президента РФ молодым ученым МД-2706.2019.7. Работа выполнена в рамках бюджетной темы по Государственному заданию № АААА-А17-117112850280-2.
Πηγή: Advances in Molecular Oncology; Vol 9, No 3 (2022); 69-84 ; Успехи молекулярной онкологии; Vol 9, No 3 (2022); 69-84 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: lymphoma, mutational profile, high-throughput sequencing, relapse, NF-kB signaling pathway, JAK-STAT signaling pathway, ТР53 gene, chromatin remodeling, immunological control, diffuse large B-cell lymphoma, central nervous system, лимфома, мутационный профиль, высокопроизводительное секвенирование, рецидив, сигнальный путь NF-kB, сигнальный путь JAK-STAT, ген ТР53, ремоделирование хроматина, иммунологический контроль, центральная нервная система, диффузная в-клеточная крупноклеточная лимфома
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/460/272; https://umo.abvpress.ru/jour/article/view/460
-
3Academic Journal
Συγγραφείς: E. N. Voropaeva, T. I. Pospelova, V. S. Karpova, M. I. Churkina, Yu. V. Vyatkin, T. A. Ageeva, V. N. Maksimov, Е. Н. Воропаева, Т. И. Поспелова, В. С. Карпова, М. И. Чуркина, Ю. В. Вяткин, Т. А. Агеева, В. Н. Максимов
Συνεισφορές: The work was performed with the financial support of the grant of the President of the Russian Federation to young scientists MD-2706.2019.7. The work was carried out within the framework of the budget topic under the State task No. AAAAA-A17-117112850280-2., Работа выполнена при финансовой поддержке гранта Президента РФ молодым ученым МД-2706.2019.7. Работа выполнена в рамках бюджетной темы по Государственному заданию № АААА-А17-117112850280-2.
Πηγή: Advances in Molecular Oncology; Том 9, № 3 (2022); 69-84 ; Успехи молекулярной онкологии; Том 9, № 3 (2022); 69-84 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-3
Θεματικοί όροι: диффузная в-клеточная крупноклеточная лимфома, mutational profile, high-throughput sequencing, relapse, NF-kB signaling pathway, JAK-STAT signaling pathway, ТР53 gene, chromatin remodeling, immunological control, diffuse large B-cell lymphoma, central nervous system, мутационный профиль, высокопроизводительное секвенирование, рецидив, сигнальный путь NF-kB, сигнальный путь JAK-STAT, ген ТР53, ремоделирование хроматина, иммунологический контроль, центральная нервная система
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/460/272; Воропаева Е.Н., Поспелова Т.И., Максимов В.Н. и др. Мутации в генах ARID1A и SMARCA4 при рецидивах диффузной В-крупноклеточной лимфомы с поражением ЦНС. Медицинская генетика 2020;19(6):90-2. DOI:10.25557/2073-7998.2020.06.90-92; Savage K.J. Secondary CNS relapse in diffuse large B-cell lymphoma: defining high-risk patients and optimization of prophylaxis strategies. Hematology Am Soc Hematol Educ Program 2017;2017(1):578-86. DOI:10.1182/asheducation-2017.1.578; Ollila T.A., Olszewski A.J. Extranodal diffuse large B сеЦ Lymphoma: molecular features, prognosis, and risk of central nervous system recurrence. Curr Treat Options Oncol 2018;19(8):38. DOI:10.1007/s11864-018-0555-8; Grimm K.E., O'Malley D.P. Aggressive B cell lymphomas in the 2017 revised WHO classification of tumors of hematopoietic and lymphoid tissues. Ann Diagn Pathol 2019;38:6-10. DOI:10.1016/j.anndiagpath.2018.09.014; Illerhaus G. CNS relapse in DLBCL: a calculable risk? Blood 2021;137(8):1011-2. DOI:10.1182/blood.2020009269; Hall K.H., Panjic E.H., Valla K. et al. How to decide which DLBCL patients should receive CNS prophylaxis. Oncology (Williston Park) 2018;32(6):303-9.; Ma'koseh M., Tamimi F., Abufara A. et al. Impact of Central Nervous System International Prognostic Index on the treatment of diffuse large B cell lymphoma. Cureus 2021;13(8):e16802. DOI:10.7759/cureus.16802; Nagpal S., Glantz M.J. Treatment and prevention of secondary CNS lymphoma. Semin Neurol 2010;30(3):263-72. DOI:10.1055/s-0030-1255222; Voropaeva E., Beresina O., Pospelova T. et al. Mutational profile of diffuse large B-cell lymphoma with central nervous system relapse: analysis of CBioPortal for Cancer Genomics database. 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB) 2020:190-4. DOI:10.1109/CSGB51356.2020.9214638.; NGS WIZARD by Genomenal. Доступно по: https://www.genomenal.ru/. NGS WIZARD by Genomenal. (In Russ.). Available at: https://www.genomenal.ru/.; Gao J., Aksoy B.A., Dogrusoz U. et al. Integrative analysis of complex cancer Genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6(269):pl1. DOI:10.1126/scisignal.2004088.; Jay J.J., Brouwer C. Lollipops in the clinic: information dense mutation plots for precision medicine. PLoS One 2016;11(8):e0160519. DOI:10.1371/journal.pone.0160519; Salem M.E., Bodor J.N., Puccini A. et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int J Cancer 2020;147(10):2948-56. DOI:10.1002/ijc.33115; Ortega-Molina A., Boss I., Canela A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med 2015;21:1199-208. DOI:10.1038/nm.3943. DOI:10.1038/nm.3943; Garbati M.R., Thompson R.C., Haery L., Gilmore T.D. A rearranged EP300 gene in the human B-cell lymphoma cell line RC-K8 encodes a disabled transcriptional co-activator that contributes to cell growth and oncogenicity. Cancer Letters 2011;302:76-83. DOI:10.1016/j.canlet.2010.12.018; Hu B., Lin J.-Z., Yang X.-B., Sang X.-T. The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: A review. Cell Proliferation 2020;00:e12791. DOI:10.1111/cpr.12791; Schmitz N., Nickelsen M., Savage K.J. Central nervous system prophylaxis for aggressive B-cell lymphoma: who, what, and when? Hematol Oncol Clin North Am 2016;30:1277-91. DOI:10.1016/j.hoc.2016.07.008; Karube K., Enjuanes A. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets. Leukemia 2018;32(3):675-84. DOI:10.1038/leu.2017.251; Schmitz R., Wright G.W. Genetics and pathogenesis of diffuse large B-Cell lymphoma. N Engl J Med 2018;378(15):1396-407. DOI:10.1056/NEJMoa1801445; Jardin F. Next generation sequencing and the management of diffuse large B-cell lymphoma: from whole exome analysis to targeted therapy. Discov Med 2014;18(97):51-65.; Voropaeva E.N., Pospelova T.I., Voevoda M.I., Maksimov V.N. Frequency, spectrum and the functional significance of mutations in TP53 gene in patients with diffuse large B-cell lymphoma. Mol Biol (Mosk) 2017;51(1):64v72. DOI:10.7868/S0026898416060227; cBioPortal for Cancer Genomics. Available at: https://www.cbioportal.org/.; Chapuy B., Stewart C., Dunford A.J. et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 2018;24:679-90. DOI:10.1038/s41591-018-0016-8; Lauw M.I.S., Lucas C.-H.G., Ohgami R.S., Wen K.W. Primary central nervous system lymphomas: a diagnostic overview of key histomorphologic, immunophenotypic, and genetic features. Diagnostics (Basel) 2020;10(12):1076. DOI:10.3390/diagnostics10121076; deGroen R.A.L., Schrader A.M.R., Kersten M.J. et al. MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Haematologica 2019;104(12):2337-48. DOI:10.3324/haematol.2019.227272; Wright G.W., Huang D.W., Phelan J.D. et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 2020;37(4):551-68 e514. DOI:10.1016/j.ccell.2020.03.015; Wagener R., Seufert J. The mutational landscape of Burkitt-like lymphoma with 11q aberration is distinct from that of Burkitt lymphoma. Blood 2019;133(9):962-6. DOI:10.1182/blood-2018-07-864025; Smith M.C., Kressin M.K., Crawford E. et al. B lymphoblastic leukemia with a novel t(11;15) (q23;q15) and unique Burkittoid morphologic and immunophenotypic findings in a 9-year-old boy. Lab Med Fall 2015;46(4):320-6. DOI:10.1309/LM0BOC84GSQGHYKD; Greenough A., Dave S.S. New clues to the molecular pathogenesis of Burkitt lymphoma revealed through next-generation sequencing. Curr Opin Hematol 2014;21(4):326-32. DOI:10.1097/MOH.0000000000000059; Giulino-Roth L., Wang K. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood 2012;120(26):5181-4. DOI:10.1182/blood-2012-06-437624.; Love C., Sun Z., Jima D. et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet 2012;44(12):1321-5. DOI:10.1038/ng.2468; Helming K.C., Wang X. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell 2014;26(3):309-17. DOI:10.1016/j.ccr.2014.07.018; Bogershausen N., Wollnik B. Mutational landscapes and phenotypic spectrum of SWI/SNF-related intellectual disability disorders. Front Mol Neurosci 2018;11:252. DOI:10.3389/fnmol.2018.00252; Dhodapkar M.V. Navigating the Fas lane to improved cellular therapy for cancer. J Clin Invest 2019;129(4):1522-3. DOI:10.1172/JCI127581; Rimsza L.M., Roberts R.A., Campo E. et al. Loss of major histocompatibility class II expression in non-immune privileged site diffuse large B cell lymphoma is highly coordinated and not due to chromosomal deletions. Blood 2006;107:1101-7. DOI:10.1182/blood-2005-04-1510; Blagih J., Buck M.D. p53, cancer and the immune response. J Cell Sci 2020;133(5):jcs237453. DOI:10.1242/jcs.237453; Cortez M.A., Ivan C., Valdecanas D. et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst 2016;108:djv303. DOI:10.1093/jnci/djv303; Broseus J., Chen G., Valdecanas D. et al. Relapsed diffuse large B-cell lymphoma present different genomic profiles between early and late relapses. Oncotarget 2016;7(51):83987-4002. DOI:10.18632/oncotarget.9793; Lee B., Lee H., Cho J. et al. Mutational profile and clonal evolution of relapsed/refractory diffuse large B-cell lymphoma. Front Oncol 2021;11:628807. DOI:10.3389/fonc.2021.628807; Coccaro N., Anelli L., Zagaria A. et al. Molecular complexity of diffuse large B-cell lymphoma: can it be a roadmap for precision medicine? Cancers 2020;12(1):185. DOI:10.3390/cancers12010185; Angeli E., Nguyen T.T., Janin A. et al. How to make anticancer drugs cross the blood-brain barrier to treat brain metastases. Int J Mol Sci 2019;21(1):22. DOI:10.3390/ijms21010022; Tsang M., Rubenstein J.L., Rubenstein J.L. Primary central nervous system lymphoma in older adults and the rationale for maintenance strategies: a narrative review. Ann Lymphoma 2021;5:25. DOI:10.21037/aol-20-43; Mukasa A. Genome medicine for brain tumors: current status and future perspectives. Neurol Med Chir 2020;60(11):531-42. DOI:10.2176/nmc.ra.2020-0175; Haile W.B., Gavegnano C., Tao S. et al. The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiol Dis 2016;92(Pt. B):137-43. DOI:10.1016/j.nbd.2016.02.007; Annese T., Tamma R., De Giorgis M. et al. RNAscope dual ISH-IHC technology to study angiogenesis in diffuse large B-cell lymphomas. Histochem Cell Biol 2020;153(3):185-92. DOI:10.1007/s00418-019-01834-z; Rubenstein J.L., Geng H., Fraser E.J. et al. Phase 1 investigation of lenalidomide/rituximab plus outcomes of lenalidomide maintenance in relapsed CNS lymphoma. Blood Adv 2018;2(13):1595-607. DOI:10.1182/bloodadvances.2017014845; Ghesquieres H., Chevrier M., Laadhari M. et al. Lenalidomide in combination with intravenous rituximab (REVRI) in relapsed/ refractory primary CNS lymphoma or primary intraocular lymphoma: a multicenter prospective ‘proof of concept' phase II study of the French Oculo-Cerebral lymphoma (LOC) Network and the Lymphoma Study Association (LYSA). Ann Oncol 2019;30(4):621-8. DOI:10.1093/annonc/mdz032; De Groen R.A.L., Schrader A.M.R., Kersten M.J. et al. MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Vermaat Haematologica 2019;104(12):2337-48. DOI:10.1093/annonc/mdz032; Wudhikarn K., Pennisi M., Garcia-Recio M. et al. DLBCL patients treated with CD19 CAR T cells experience a high burden of organ toxicities but low nonrelapse mortality. Blood Adv 2020;4(13):3024-33. DOI:10.1182/bloodadvances.2020001972; Nayak L., Iwamoto F.M., LaCasce A. et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 2017;129(23):3071-3. DOI:10.1182/blood-2017-01-764209; Grommes C., Nayak L., Tun H.W., Batchelor T.T. Introduction of novel agents in the treatment of primary CNS lymphoma. Neuro Oncol 2019;21(3):306-13. DOI:10.1093/neuonc/noy193; Wellenstein M.D., de Visser K.E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 2018;48(3): 399-416. DOI:10.1016/j.immuni.2018.03.004; Яшин К.С., Медяник И.А. Иммунотерапия злокачественных опухолей головного мозга (обзор). СТМ 2014;6(4):189-200.; https://umo.abvpress.ru/jour/article/view/460
-
4Academic Journal
Συγγραφείς: V. M. Studitsky, I. V. Orlovsky, O. V. Chertkov, N. S. Efimova, M. A. Loginova, O. I. Kulaeva, В. М. Студитский, И. В. Орловский, О. В. Чертков, Н. С. Ефимова, М. А. Логинова, О. И. Кулаева
Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2012); 10-16 ; Вестник Московского университета. Серия 16. Биология; № 4 (2012); 10-16 ; 0137-0952 ; 10.1234/XXXX-XXXX-2012-4
Θεματικοί όροι: РНК-полимераза 3, transcription, nucleosome, nucleosome barrier, chromatin remodeling, elongation, RNA polymerase III, транскрипция, нуклеосома, “нуклеосомный барьер”, ремоделирование хроматина, элонгация
Περιγραφή αρχείου: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/68/70; Bednar J., Studitsky V.M., Grigoryev S.A., Felsenfeld G., Woodcock C.L. The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy // Mol. Cell. 1999. Vol. 4. N 3. P. 377—386.; Studitsky V.M., Kassavetis G.A., Geiduschek E.P., Felsenfeld G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase // Science. 1997. Vol. 278. N 5345. P. 1960—1963.; Gangaraju V.K., Bartholomew B. Mechanisms of ATP dependent chromatin remodeling // Mutat. Res. 2007. Vol. 618. N 1—2. P. 3—17.; Cairns B.R. Chromatin remodeling: insights and intrigue from single-molecule studies // Nat. Struct. Mol. Biol. 2007. Vol. 14. N 11. P. 989—996.; Studitsky V.M., Clark D.J., Felsenfeld G. A histone octamer can step around a transcribing polymerase without leaving the template // Cell. 1994. Vol. 76. N 2. P. 371—382.; Oler A.J., Alla R.K., Roberts D.N., Wong A., Hollenhorst P.C., Chandler K.J., Cassiday P.A., Nelson C.A., Hagedorn C.H., Graves B.J., Cairns B.R. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors // Nat. Struct. Mol. Biol. 2010. Vol. 17. N 5. P. 620—628.; Kireeva M.L., Walter W., Tchernajenko V., Bondarenko V., Kashlev M., Studitsky V.M. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription // Mol. Cell. 2002. Vol. 9. N 3. P. 541—552.; Kulaeva O.I., Gaykalova D.A., Pestov N.A., Golovastov V.V., Vassylyev D.G., Artsimovitch I., Studitsky V.M. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II // Nat. Struct. Mol. Biol. 2009. Vol. 16. N 12. P. 1272—1278.