Εμφανίζονται 1 - 20 Αποτελέσματα από 135 για την αναζήτηση '"рекуррентные нейронные сети"', χρόνος αναζήτησης: 0,98δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Civil Aviation High Technologies; Том 28, № 1 (2025); 20-38 ; Научный вестник МГТУ ГА; Том 28, № 1 (2025); 20-38 ; 2542-0119 ; 2079-0619

    Περιγραφή αρχείου: application/pdf

    Relation: https://avia.mstuca.ru/jour/article/view/2498/1421; Bolstad C.A., Riley J.M. Using goal directed task analysis with Army brigade officer teams // Proceedings of the Human Factors and Ergonomics Society Annual Meeting. SAGE Publications. 2002. Vol. 46, no.3. Pp. 472–476. DOI:10.1177/154193120204600354; Stanton N.A., Chambers P.R.G., Piggott J. Situational awareness and safety // Safety science. 2001. Vol. 39, no. 3. Pp. 189–204. DOI:10.1016/S0925-7535(01)00010-8; Sarter N.B., Woods D.D. Situation awareness: A critical but Ill-defined phenomenon // The International Journal of Aviation Psychology. 1991. Vol. 1, no. 1. Pp. 45–57. DOI:10.1207/s15327108ijap0101_4; Стрелков Ю.К. Инженерная и профессиональная психология: учеб. пособие. М.: Академия; Высшая школа, 2001. 360 с.; De Gooijer J.G., Hyndman R.J. 25 years of time series forecasting // International Journal of Forecasting. 2006. Vol. 22, no. 3. Pp. 443–473. DOI:10.1016/j.ijforecast.2006.01.001; Stevenson S. A comparison of the forecasting ability of ARIMA models // Journal of Property Investment & Finance. 2007. Vol. 25, no. 3. Pp. 223–240. DOI:10.1108/14635780710746902; Chatfield C. A new look at models for exponential smoothing / C. Chatfield, A.B. Koehler, J.K. Ord, R.D. Snyder // Journal of the Royal Statistical Society: Series D (The Statistician). 2001. Vol. 50, no. 2. Pp. 147–159. DOI:10.1111/1467-9884.00267; Bentéjac C., Csörgő A., Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms // Artificial Intelligence Review. 2021. Vol. 54. Pp. 1937–1967. DOI:10.1007/s10462-020-09896-5; Faloutsos C. Classical and contemporary approaches to big time series forecasting / C. Faloutsos, J. Gasthaus, T. Januschowski, Y. Wang // SIGMOD '19: Proceedings of the 2019 International Conference on Management of Data, 2019. Pp. 2042–2047. DOI:10.1145/3299869.3314033; Makridakis S., Spiliotis E., Assimakopoulos V. The M4 Competition: Results, findings, conclusion and way forward // International Journal of Forecasting. 2018. Vol. 34, iss. 4. Pp. 802–808. DOI:10.1016/j.ijforecast.2018.06.001; Taieb S.B., Sorjamaa A., Bontempi G. Multiple-output modeling for multi-step-ahead time series forecasting // Neurocomputing. 2010. Vol. 73, iss. 10–12. Pp. 1950–1957. DOI:10.1016/j.neucom.2009.11.030; Sutskever I., Vinyals O., Quoc V.L. Sequence to sequence learning with neural networks // Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014. No. 2. Pp. 3104–3112. DOI:10.48550/arXiv.1409.3215; Caterini A.L. Recurrent neural networks / A.L. Caterini, D.E. Chang, A.L. Caterini, D.E. Chang. In book: Deep Neural Networks in a Mathematical Framework. Springer Briefs in Computer Science. Springer, Cham, 2018. Pp. 59–79. DOI:10.1007/978-3-319-75304-1_5; Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by backpropagating errors // Nature. 1986. No. 323. Pp. 533–536. DOI:10.1038/323533a0; Rasamoelina A.D., Adjailia F., Sinčák P. A review of activation function for artificial neural network // 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI). Slovakia, Herlany, 2020. Pp. 281–286. DOI:10.1109/SAMI48414.2020.9108717; Toharudin T. Employing long shortterm memory and Facebook prophet model in air temperature forecasting / T. Toharudin, R.S. Pontoh, R.E. Caraka, S. Zahroh, Y. Lee Y, R.C. Chen // Communications in Statistics-Simulation and Computation. 2023. Vol. 52, iss. 2. Pp. 279–290. DOI:10.1080/03610918.2020.1854302; Schmidhuber J., Hochreiter S. Long short-term memory // Neural Computation. 1997. Vol. 9, iss. 8. Pp. 1735–1780. DOI:10.1162/neco.1997.9.8.1735; De Mulder W., Bethard S., Moens M.F. A survey on the application of recurrent neural networks to statistical language modeling / Computer Speech & Language. 2015. Vol. 30, iss. 1. Pp. 61–98. DOI:10.1016/j.csl.2014.09.005; Shi X. Convolutional LSTM network: A machine learning approach for precipitation nowcasting / X. Shi, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, W.C. Woo // NIPS'15: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015. Vol. 1. Pp. 802–810. DOI:10.48550/arXiv.1506.04214; Li Z. A survey of convolutional neural networks: analysis, applications, and prospects / Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou // IEEE transactions on neural networks and learning systems. 2021. Vol. 33, no. 12. Pp. 6999–7019. DOI:10.1109/TNNLS.2021.3084827; Ballas N. Delving deeper into convolutional networks for learning video representations / N. Ballas, L. Yao, C.J. Pal, A. Courville [Электронный ресурс] // 4th International Conference on Learning Representations (ICLR 2016), 2016. 2 p. DOI:10.48550/arXiv.1511.06432 (дата обращения: 08.10.2024).; Mahafza B.R. Radar systems analysis and design using MATLAB. 2nd ed. Chapman and Hall, CRC, 2005. 638 p. DOI:10.1201/9781420057072; Van Dyk D.A., Meng X.L. The art of data augmentation // Journal of Computational and Graphical Statistics. 2001. Vol. 10, no. 1. Pp. 1–50. DOI:10.1198/10618600152418584; Masters D., Luschi C. Revisiting small batch training for deep neural networks [Электронный ресурс] // Computer Science and Machine Learning. 2018. Pp. 1–18. DOI:10.48550/arXiv.1804.07612 (дата обращения: 08.10.2024).; Werbos P.J. Backpropagation through time: what it does and how to do it // Proceedings of the IEEE. 1990. Vol.78, no. 10. Pp. 1550–1560. DOI:10.1109/5.58337; Llugsi R. Comparison between Adam, AdaMax and Adam W optimizers to implement a weather forecast based on neural networks for the Andean city of Quito / R. Llugsi, S.E. Yacoubi, A. Fontaine, P. Lupera // 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), 2021. Pp. 1–6. DOI:10.1109/ETCM53643.2021.9590681; Bejani M.M., Ghatee M. A systematic review on overfitting control in shallow and deep neural networks // Artificial Intelligence Review. 2021. Vol. 54. Pp. 6391–6438. DOI:10.1007/s10462-021-09975-1; Passos D., Mishra P. A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks [Электронный ресурс] // Chemometrics and Intelligent Laboratory Systems. 2022. Vol. 223. ID: 104520. DOI:10.1016/j.chemolab.2022.10 4520 (дата обращения: 08.10.2024).; Koloskova A., Hendrikx H., Stich S.U. Revisiting gradient clipping: Stochastic bias and tight convergence guarantees // International Conference on Machine Learning. 2023. Pp. 17343–17363. DOI:10.48550/arXiv.2305. 01588; Endsley M.R. Toward a theory of situation awareness in dynamic systems // Human factors. 1995. Vol. 37, no. 1. Pp. 32–64. DOI:10.1518/001872095779049543; Kaikkonen L. Bayesian networks in environmental risk assessment: A review / L. Kaikkonen, T. Parviainen, M. Rahikainen, L. Uusitalo, A. Lehikoinen // Integrated environmental assessment and management. 2021. Vol. 17, no. 1. Pp. 62–78. DOI:10.1002/ieam.4332; Kovalenko G.V., Yadrov I.A., Kuts K.A. Intelligent adaptive flight crew decision support system for thunderstorm avoidance // Russian Aeronautics. 2023. Vol. 66. Pp. 552–559. DOI:10.3103/S1068799823030170; https://avia.mstuca.ru/jour/article/view/2498

  3. 3
    Conference

    Συγγραφείς: Волегов, И. А.

    Συνεισφορές: Ляхов, С. В.

    Θέμα γεωγραφικό: RSVPU

    Περιγραφή αρχείου: application/pdf

    Relation: XVII Всероссийская студенческая научно-практическая конференция «Документ в современном обществе: искусственный интеллект и цифровая трансформация». — Екатеринбург, 2024

    Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/45540

  4. 4
  5. 5
    Academic Journal

    Πηγή: «System analysis and applied information science»; № 2 (2025); 11-16 ; Системный анализ и прикладная информатика; № 2 (2025); 11-16 ; 2414-0481 ; 2309-4923 ; 10.21122/2309-4923-2025-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://sapi.bntu.by/jour/article/view/742/533; Rossi, A. Effective injury forecasting in soccer with GPS training data and machine learning / A. Rossi, L. Pappalardo, P. Cintia, F.M. Iaia, J. Fernàndez, D. Medina // PLoS ONE. – 2018. – Vol. 13, Iss. 7. – P. 1–15. – DOI10.1371/journal.pone.0201264; Carey, D.L. Predictive modelling of training loads and injury in Australian football / D.L. Carey, K.L. Ong, R. Whiteley, K.M. Crossley, J. Crow, M.E. Morris // International Journal of Computer Science in Sport. – 2018. – Vol. 17, Iss. 1. – P. 1–18. – DOI:10.2478/ijcss-2018-0002; Eetvelde, H.V. Machine learning methods in sport injury prediction and prevention: a systematic review / H.V. Eetvelde, L.D. Mendonça, C. Ley, R. Seil, T. Tischer // Journal of Experimental Orthopaedics. – 2021. – Vol. 8, Iss. 27. – P. 1–15. – DOI:10.1186/s40634-021-00346-x; Bahr, R. Understanding injury mechanisms: A key component of preventing injuries in sport / R. Bahr, T. Krosshaug // British Journal of Sports Medicine. – 2005. – Vol. 39, Iss. 6. – P. 324–329. – DOI:10.1136/bjsm.2005.018341; Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? / T.J. Gabbett // British Journal of Sports Medicine. – 2016. – Vol. 50, Iss. 5. – P. 273–280. – DOI:10.1136/bjsports-2015-095788; Meeusen, R. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine / R. Meeusen, M. Duclos, C. Foster, A. Fry, M. Gleeson, D. Nieman, J. Raglin, G. Rietjens, J. Steinacker, A. Urhausen // European Journal of Sport Science. – 2013. – Vol. 45, Iss. 1. – P. 186–205. – DOI:10.1080/17461391.2012.730061; Plews, D.J. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison / D.J. Plews, P.B. Laursen, A.E. Kilding, M. Buchheit // European journal of applied physiology. – 2012. – Vol. 112. – P. 3729–3741. – DOI:10.1007/s00421-012-2354-4; Achten, J. Heart rate monitoring: Applications and limitations / J. Achten, A.E. Jeukendrup // Sports Medicine. – 2003. – Vol. 33. – С. 517–538. – DOI:10.2165/00007256-200333070-00004; Malik, M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use / M. Malik, J.T. Bigger, A.J. Camm, R.E. Kleiger, A. Malliani, A.J. Moss, P.J. Schwartz // European Heart Journal. – 1996. – Vol. 17, Iss. 3. – P. 354–381. – DOI:10.1093/oxfordjournals.eurheartj.a014868; Kiviniemi, A.M. Endurance training guided by daily heart rate variability measurements / A.M. Kiviniemi, A.J. Hautala, H. Kinnunen, M.P. Tulppo // European Journal of Applied Physiology. – 2007. – Vol. 101. – С. 743–751. – DOI:10.1007/s00421-007-0552-2; Hochreiter, S. Long short-term memory / S. Hochreiter, J. Schmidhuber // Neural Computation. – 1997. – Vol. 9 (8). – P. 1735–1780. – DOI:10.1162/neco.1997.9.8.1735; Hou, J. Application of recurrent neural network in predicting athletes' sports achievement / J. Hou, Z. Tian // The Journal of Supercomputing. – 2022. – Vol. 78. – P. 5507–5525. – DOI:10.1007/s11227-021-04082-y; https://sapi.bntu.by/jour/article/view/742

  6. 6
    Academic Journal

    Πηγή: Civil Aviation High Technologies; Том 27, № 6 (2024); 21-41 ; Научный вестник МГТУ ГА; Том 27, № 6 (2024); 21-41 ; 2542-0119 ; 2079-0619

    Περιγραφή αρχείου: application/pdf

    Relation: https://avia.mstuca.ru/jour/article/view/2465/1414; https://avia.mstuca.ru/jour/article/downloadSuppFile/2465/999; Fentaye A.D., Zaccaria V., Kyprianidis K. Aircraft engine performance monitoring and diagnostics based on deep convolutional neural networks [Электронный ресурс] // Machines. 2021. Vol. 9, iss. 12. ID: 337. DOI:10.3390/machines9120337 (дата обращения: 27.02.2024).; Al-Tekreeti W.K.F., Kashyzadeh K.R., Ghorbani S. Advancements in gas turbine fault detection: a machine learning approach based on the temporal convolutional network-autoencoder model [Электронный ресурс] // Applied Sciences. 2024. Vol. 14, iss. 11. ID: 4551. DOI:10.3390/app14114551 (дата обращения: 27.02.2024).; Berghout T. ProgNet: A transferable deep network for aircraft engine damage propagation prognosis under real flight conditions / T. Berghout, M.-D. Mouss, L.-H. Mouss, M. Benbouzid [Электронный ресурс] // Aerospace. 2023. Vol. 10, iss. 1. ID: 10. DOI:10.3390/aerospace10010010 (дата обращения: 27.02.2024).; Hochreiter S., Schmidhuber J. Long short-term memory // Neural computation. 1997. Vol. 9, iss. 8. Pp. 1735–1780. DOI:10.1162/neco.1997.9.8.1735; Zhao J., Li Y.-G., Sampath S. Convolutional neural network denoising autoencoders for intelligent aircraft engine gas path health signal noise filtering [Электронный ресурс] // Journal of Engineering for Gas Turbines and Power. 2023. Vol. 145, iss. 6. ID: 061013. DOI:10.1115/1.4056128 (дата обращения: 27.02.2024).; Garg S., Simon D. Challenges in aircraft engine gas path health management [Электронный ресурс] // Proceedings of the Tutorial on Aircraft Engine Control and Gas Path Health Management, Cleveland, OH, USA, 2012. 64 p. URL: https://ntrs.nasa.gov/api/citations/20150009565/downloads/20150009565.pdf (дата обращения: 15.02.2024).; Mohammadi R. Fault diagnosis of gas turbine engines by using dynamic neural networks / R. Mohammadi, E. Naderi, K. Khorasani, S. Hashtrudi-Zad // 2011 IEEE International Conference on Quality and Reliability. Bangkok, Thailand, 2011. Pp. 25–30. DOI:10.1109/ICQR.2011.6031675; Goodfellow I., Bengio Y. Courville A. Deep learning. The MIT Press, 2016. 800 p.; Clifton D. Condition monitoring of gasturbine engines [Электронный ресурс] // Transfer Report. Department of Engineering Science, University of Oxford, 2006. 60 p. URL: https://www.robots.ox.ac.uk/~davidc/pubs/transfer.pdf (дата обращения: 27.02.2024).; Upadhyay A. A deep-learning-based approach for aircraft engine defect detection / A. Upadhyay, J. Li, S. King, S. Addepalli [Электронный ресурс] // Machines. 2023. Vol. 11, iss. 2. ID: 192. DOI:10.3390/machines11020192 (дата обращения: 27.02.2024).; Zhou D. Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks / D. Zhou, Q. Yao, H. Wu, S. Ma, H. Zhang [Электронный ресурс] // Energy. 2020. Vol. 200. ID: 117467. DOI:10.1016/j.energy.2020.117467 (дата обращения: 27.02.2024).; Falsetti C., Sisti M., Beard P.F. Infrared thermography and calibration techniques for gas turbine applications: A review [Электронный ресурс] // Infrared Physics & Technology. 2021. Vol. 113. ID: 103574. DOI:10.1016/j.infra red.2020.103574 (дата обращения: 27.02.2024).; Zhao F. Gas turbine exhaust system health management based on recurrent neural networks / F. Zhao, L. Chen, T. Xia, Z. Ye, Y. Zheng // Procedia CIRP. 2019. Vol. 83, no. 12. Pp. 630–635. DOI:10.1016/j.procir.2019.04.122; Pitkänen J. NDT methods for revealing anomalies and defects in gas turbine blades / J. Pitkänen, T. Hakkarainen, H. Jeskanen, P. Kuusinen, K. Lahdenperä, P. Särkiniemi [Электронный ресурс] // 15th World Conference on Nondestructive Testing. Italy, Roma, 15–21 October 2000. URL: https://www.ndt.net/article/wcndt00/papers/idn629/idn629.htm (дата обращения: 27.02.2024).; Loboda I. Neural networks for gas turbine diagnosis [Электронный ресурс] // Artificial Neural Networks-Models and Applications, 2016. DOI:10.5772/63107 (дата обращения: 27.02.2024).; Pineda F.J. Generalization of backpropagation to recurrent neural networks [Электронный ресурс] // Physical Review Letters. 1987. Vol. 59, iss. 19. ID: 2229. DOI:10.1103/PhysRevLett.59.2229 (дата обращения: 27.02.2024).; Панков Е.А., Чайка Н.Ф. Возможности спектральных методов для диагностики авиационных двигателей // Интерэкспо Гео-Сибирь. 2016. № 9. С. 8–13.; https://avia.mstuca.ru/jour/article/view/2465

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Πηγή: Russian Psychological Journal; Vol. 21 No. 1 (2024); 67-86 ; Российский психологический журнал; Том 21 № 1 (2024); 67-86 ; 2411-5789 ; 1812-1853 ; 10.21702/w59f0g27

    Περιγραφή αρχείου: application/pdf

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20