Εμφανίζονται 1 - 20 Αποτελέσματα από 90 για την αναζήτηση '"резерфордовское обратное рассеяние"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 63, № 4 (2019); 430-436 ; Доклады Национальной академии наук Беларуси; Том 63, № 4 (2019); 430-436 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2019-63-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/630/635; Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes / J. E. Carey [et al.] // Opt. Lett. – 2005. – Vol. 30, N 14. – P. 1773–1775. https://doi.org/10.1364/ol.30.001773; Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting / B. Bob [et al.] // J. Appl. Phys. – 2010. – Vol. 107 – Art. 123506. https://doi.org/10.1063/1.3415544; Schibli, E. Deep impurities in silicon / E. Schibli, A. G. Milnes // Materials Science and Engineering. – 1967. – Vol. 2, N 4. – P. 173–180. https://doi.org/10.1016/0025-5416(67)90056-0; Room-temperature short-wavelength infrared Si photodetector / Y. Berencén [et al.] // Sci. Rep. – 2017. – Vol. 7, N 1. – Art. 43688. https://doi.org/10.1038/srep43688; Shockley, W. Detailed balance limit of efciency of p–n junction solar cells / W. Shockley, H. J. Queisser // J. Appl. Phys. – 1961. – Vol. 32, N 3. – P. 510–519. https://doi.org/10.1063/1.1736034; Luque, A. Increasing the efciency of ideal solar cells by photon induced transitions at intermediate levels / A. Luque, A. Martí // Phys. Rev. Lett. – 1997. – Vol. 78, N 26. – P. 5014–5017. https://doi.org/10.1103/physrevlett.78.5014; Gossmann, H. J. Junctions for deep sub-100 nm MOS: How far will ion implantation take us? / H. J. Gossmann, C. S. Rafferty, P. Keys // MRS Proceedings. – 2000. – Vol. 610. – P. B1.2.1–B1.2.10. https://doi.org/10.1557/proc-610-b1.2; Gossmann, H. J. Doping of Si thin flms by low temperature molecular beam epitaxy / H. J. Gossmann, F. C. Unterwald, H. S. Luftman // J. Appl. Phys. – 1993. – Vol. 73, N 12. – P. 8237−8241. https://doi.org/10.1063/1.353441; Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin / E. Ertekin [et al.] // Phys. Rev. Lett. – 2012. – Vol. 108, N 2. – Art. 026401. https://doi.org/10.1103/physrevlett.108.026401; Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy / S. Zhou [et al.] // Sci. Rep. – 2015. – Vol. 5, N 1. – Art. 8329. https://doi.org/10.1038/srep08329; Thermal stability of Te-hyperdoped Si: Atomic-scale correlation of the structural, electrical and optical properties / M. Wang [et al.] // Phys. Rev. Materials. – 2019. – Vol. 3, N 4. – Art. 044606. https://doi.org/10.1103/physrevmaterials.3.044606; Mayer, M. SIMNRA User’s Guide / M. Mayer. – Garching, 1997. – 62 p.; Simulation of the process of high dose ion implantation in solid targets / A. F. Komarov [et al.] // Nukleonika. – 1999. – Vol. 44, N 2. – P. 363–368.; Feldman, L. C. Materials analysis by ion channeling: Submicron crystallography / L. C. Feldman, J. W. Mayer, S. T. Picraux. – New York, 1982. – 300 p.; https://doklady.belnauka.by/jour/article/view/630

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20