-
1Academic Journal
Συγγραφείς: N. N. Abramova, I. S. Avrusin, O. P. Kozlova, L. A. Firsova, A. G. Kuleshova, G. V. Kondratyev, Yu. S. Aleksandrovich, D. O. Ivanov, M. M. Kostik, Н. Н. Абрамова, И. С. Аврусин, О. П. Козлова, Л. А. Фирсова, А. Г. Кулешова, Г. В. Кондратьев, Ю. С. Александрович, Д. О. Иванов, М. М. Костик
Πηγή: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 22, № 2 (2025); 76-87 ; Вестник анестезиологии и реаниматологии; Том 22, № 2 (2025); 76-87 ; 2541-8653 ; 2078-5658
Θεματικοί όροι: смертность, systemic inflammation, childhood rheumatic diseases, MIS-C, children, invasive mycosis, lethal outcomes, mortality, системное воспаление, детские ревматические заболевания, дети, инвазивный микоз, летальные исходы
Περιγραφή αρχείου: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/1205/791; Абрамова Н. Н., Белозеров К. Е., Кондратьев Г. В. и др. Синдромы гематофагоцитоза у пациентов педиатрических отделений реанимации и интенсивной терапии (обзор литературы) // Вестник анестезиологии и реаниматологии. – 2023. – Т. 20, № 4. – С. 77–88. https://doi.org/10.24884/2078-5658-2022-20-4-77-88.; Козлова О. П., Костик М. М., Кузнецова М. Д. и др. Тяжелые грибковые инфекции у детей с ревматическими заболеваниями // Журнал инфектологии. – 2020. – Т. 12, № 5. – С. 48–55. https://doi.org/10.22625/2072-6732-2020-12-5-48-55.; Реннебом Р. М. Анализ эпидемии COVID-19: еще одно мнение и альтернативные меры реагирования // Педиатр. – 2020. – Т. 11. – № 3. – С. 23–40. https://doi.org/10.17816/PED11323-40.; Костик М. М., Иванов Д. О., Дубко М. Ф. и др. Руководство по педиатрии. Т. 12. Ревматология детского возраста. – СПб.: СПбГПМУ, 2024. – 504 с.: ил.; Abrams J. Y., Oster M. E., Godfred-Cato S. E. et al. Factors linked to severe outcomes in multisystem inflammatory syndrome in children (MIS-C) in the USA: A retrospective surveillance study // Lancet Child Adolesc. Health. – 2021. – Vol. 5. – P. 323–331. https://doi.org/10.1016/S2352-4642(21)00050-X.; Adzic-Vukicevic T., Mladenovic M., Jovanovic S. et al. Invasive fungal disease in COVID-19 patients: a single-center prospective observational study // Front Med (Lausanne). – 2023. – Vol. 10. – 1084666. https://doi.org/10.3389/fmed.2023.1084666.; Ahmed M., Advani S., Moreira A. et al. Multisystem inflammatory syndrome in children: A systematic review // EClinicalMedicine. – 2020. – Vol. 26. – 100527. https://doi.org/10.1016/j.eclinm.2020.100527.; Al-Mayouf S. M., Fallatah R., Al-Twajery M. et al. Outcome of children with systemic rheumatic diseases admitted to pediatric intensive care unit: An experience of a tertiary hospital // Int J Pediatr Adolesc Med. – 2019. – Vol. 6, № 4. – P. 142–145. https://doi.org/10.1016/j.ijpam.2019.07.003.; Athanassiou P., Athanassiou L. Current treatment approach, emerging therapies and new horizons in systemic lupus erythematosus // Life (Basel). – 2023. – Vol. 13, № 7. – P. 1496. https://doi.org/10.3390/life13071496.; Avrusin I. S., Abramova N. N., Belozerov K. E. et al. Determination of risk factors for severe life-threatening course of multisystem inflammatory syndrome associated with COVID-19 in Children // Children. – 2023. – Vol. 10. – P. 1366. https://doi.org/10.3390/children10081366.; Bardi T., Pintado V., Gomez-Rojo M. et al. Nosocomial infections associated to COVID-19 in the intensive care unit: clinical characteristics and outcome // Eur J Clin Microbiol Infect Dis. – 2021. – Vol. 40, № 3. – P. 495–502. https://doi.org/10.1007/s10096-020-04142-w.; Beil M., Sviri S., de la Guardia V. et al. Prognosis of patients with rheumatic diseases admitted to intensive care // Anaesth Intensive Care. – 2017. – Vol. 45, № 1. – P. 67–72. https://doi.org/10.1177/0310057X1704500110.; Belot A., Cimaz R. Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis // Pediatr Rheumatol Online J. – 2012. – Vol. 10, № 1. – P. 21. https://doi.org/10.1186/1546-0096-10-21.; Bennett S. R. Sepsis in the intensive care unit // Surgery (Oxf). – 2015. – Vol. 33, № 11. – P. 565–571. https://doi.org/10.1016/j.mpsur.2015.08.002.; Berghen N., Vulsteke J. B., Westhovens R. et al. Rituximab in systemic autoimmune rheumatic diseases: indications and practical use // Acta Clin Belg. – 2019. – Vol. 74, № 4. – P. 272–279. https://doi.org/10.1080/17843286.2018.1521904.; Bernardes M., Hohl T. M. Fungal infections associated with the use of novel immunotherapeutic agents // Curr Clin Microbiol ReP. – 2020. – Vol. 7, № 4. – P. 142–149. https://doi.org/10.1007/s40588-020-00154-4.; Castillo R. D., De la Pena W., Marzan K. A. Diagnosis and management of infectious complications of childhood rheumatic diseases // Curr Rheumatol ReP. – 2013. – Vol. 15, № 4. – P. 322. https://doi.org/10.1007/s11926-013-0322-6.; Cattalini M., Taddio A., Bracaglia C. et al. Childhood multisystem inflammatory syndrome associated with COVID-19 (MIS-C): a diagnostic and treatment guidance from the Rheumatology Study Group of the Italian Society of Pediatrics // Ital J Pediatr. – 2021. – Vol. 47, № 1. – P. 24. https://doi.org/10.1186/s13052-021-00980-2.; Chang J. C., Liu J. P., Berbert L. M. et al. Racial and ethnic composition of populations served by freestanding children’s hospitals and disparities in outcomes of pediatric lupus // Arthritis Care Res (Hoboken). – 2024. – Vol. 76, № 7. – P. 926–935. https://doi.org/10.1002/acr.25314.; Charras A., Smith E., Hedrich C. M. Systemic lupus erythematosus in children and young people // Curr Rheumatol ReP. – 2021. – Vol. 23, № 3. – P. 20. https://doi.org/10.1007/s11926-021-00985-0.; Cron R. Q., Goyal G., Chatham W. W. Cytokine storm syndrome // Annu Rev Med. – 2023. – Vol. 74. – P. 321–337. https://doi.org/10.1146/annurev-med-042921-112837.; de Farias E. C. F., Pavão Junior M. J. C., de Sales S. C. D. et al. Factors associated to mortality in children with critical COVID-19 and multisystem inflammatory syndrome in a resource-poor setting // Sci ReP. – 2024. – Vol. 14, № 1. – P. 5539. https://doi.org/10.1038/s41598-024-55065-x.; Dinarello C. A. Blocking IL-1 in systemic inflammation // J Exp Med. – 2005. – Vol. 20. – P. 1355–1359. https://doi.org/10.1084/jem.20050640.; Donnelly J. P., Chen S. C., Kauffman C. A. et al. Revision and update of the consensus definitions of invasive fungal disease from the european organization for research and treatment of cancer and the mycoses study group education and research consortium // Clin Infect Dis. – 2020. – Vol. 71, № 6. – P. 1367–1376. https://doi.org/10.1093/cid/ciz1008.; Elmeazawy R., Ayoub D., Morad L. M. et al. Role of systemic immune-inflammatory index and systemic inflammatory response index in predicting the diagnosis of necrotizing pneumonia in children // BMC Pediatr. – 2024. – Vol. 24, № 1. – P. 496. https://doi.org/10.1186/s12887-024-04818-8.; Fanouriakis A., Kostopoulou M., Andersen J. et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update // Ann Rheum Dis. – 2024. – Vol. 83, № 1. – P. 15–29. https://doi.org/10.1136/ard-2023-224762.; Feldstein L. R., Rose E. B., Horwitz S. M. et al. Overcoming COVID-19 Investigators; CDC COVID-19 Response Team. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents // N. Engl. J. Med. – 2020. – Vol. 383. – P. 334–346. https://doi.org/10.1056/NEJMoa2021680.; Fisman D., Patrozou E., Carmeli Y. et al. Geographical Variability of Bacteremia Study GrouP. Geographical variability in the likelihood of bloodstream infections due to gram-negative bacteria: Correlation with proximity to the equator and health care expenditure // PLoS ONE. – 2014. – Vol. 9. – e114548. https://doi.org/10.1371/journal.pone.0114548.; Godfred-Cato S., Bryant B., Leung J. et al. California MIS-C Response Team. COVID-19-associated multisystem inflammatory syndrome in children – United States, March-July 2020 // MMWR Morb. Mortal. Wkly. ReP. – 2020. – Vol. 69. – P. 1074–1080 https://doi.org/10.15585/mmwr.mm6932e2.; Hoste L., Van Paemel R., Haerynck F. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review // Eur. J. Pediatr. – 2021. – Vol. 180. – P. 2019–2034. https://doi.org/10.1007/s00431-021-03993-5.; Hung M. L., Liao H. T., Chen W. S. et al. Invasive aspergillosis in patients with systemic lupus erythematosus: a retrospective study on clinical characteristics and risk factors for mortality // Lupus. – 2018. – Vol. 27, № 12. – P. 1944–1952. https://doi.org/10.1177/0961203318796294.; Jeon C. Y., Neidell M., Jia H. et al. On the role of length of stay in healthcare-associated bloodstream infection // Infect Control Hosp Epidemiol. – 2012. – Vol. 33, № 12. – P. 1213–1218. https://doi.org/10.1086/668422.; Jia H., Li L., Li W. et al. Impact of healthcare-associated infections on length of stay: a study in 68 hospitals in China // Biomed Res Int. – 2019. – 2590563. https://doi.org/10.1155/2019/2590563.; Karakike E., Giamarellos-Bourboulis E. J. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis // Front Immunol. – 2019. – Vol. 10. – P. 55. https://doi.org/10.3389/fimmu.2019.00055.; Kızılsoy Ö. F., Korkmaz M. F., Şenkan G. E. et al. Relationship between the systemic immune-inflammatory index and the severity of acute bronchiolitis in children // Lab Med. – 2024. – Vol. 55, № 2. – P. 169–173. https://doi.org/10.1093/labmed/lmad055.; Komori A., Abe T., Yamakawa K. et al. Characteristics and outcomes of frail patients with suspected infection in intensive care units: a descriptive analysis from a multicenter cohort study // BMC Geriatr. – 2020. – Vol. 20, № 1. – P. 485. https://doi.org/10.1186/s12877-020-01893-1.; Lee J., Levy M. M. Treatment of patients with severe sepsis and septic shock: current evidence-based practices // R I Med J. 2013. – 2019. – Vol. 102, № 10. – P. 18–21. PMID: 31795528.; Li Z., Denning D. W. The impact of corticosteroids on the outcome of fungal disease: a systematic review and meta-analysis // Curr Fungal Infect ReP. – 2023. – Vol. 17, № 1. – P. 54–70. https://doi.org/10.1007/s12281-023-00456-2.; Liu D., Ahmet A., Ward L. et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy // Allergy Asthma Clin Immunol. – 2013. – Vol. 9, № 1. – P. 30. https://doi.org/10.1186/1710-1492-9-30.; Martin C. M., Priestap F., Fisher H. et al. STAR Registry Investigators. A prospective, observational registry of patients with severe sepsis: the Canadian Sepsis Treatment and Response Registry // Crit Care Med. – 2009. – Vol. 37, № 1. – P. 81–88. https://doi.org/10.1097/CCM.0b013e31819285f0.; Mustafa M., Gladston Chelliah E., Hughes M. Patients with systemic rheumatic diseases admitted to the intensive care unit: what the rheumatologist needs to know // Rheumatol Int. – 2018. – Vol. 38, № 7. – P. 1163–1168. https://doi.org/10.1007/s00296-018-4008-2.; Otar Yener G., Paç Kısaarslan A., Ulu K. et al. Differences and similarities of multisystem inflammatory syndrome in children, Kawasaki disease and macrophage activating syndrome due to systemic juvenile idiopathic arthritis: A comparative study // Rheumatol. Int. – 2022. – Vol. 42. – P. 879–889. https://doi.org/10.1007/s00296-021-04980-7.; Parperis K., Al-Charakh M., Nzuonkwelle S. et al. Characteristics and outcomes among patients with autoimmune rheumatic diseases requiring a higher level of care // J Clin Rheumatol. 2021. – Vol. 27, № 7. – P. 286–291. https://doi.org/10.1097/RHU.0000000000001321.; Radhakrishna S. M., Reiff A. O., Marzan K. A. et al. Pediatric rheumatic disease in the intensive care unit: lessons learned from 15 years of experience in a tertiary care pediatric hospital // Pediatr Crit Care Med. – 2012. – Vol. 13, № 3. – P. e181–6. https://doi.org/10.1097/PCC.0b013e318238955c.; Radia T., Williams N., Agrawal P. et al. Multi-system inflammatory syndrome in children & adolescents (MIS-C): A systematic review of clinical features and presentation // Paediatr. Respir. Rev. – 2021. – Vol. 38. – P. 51–57. https://doi.org/10.1016/j.prrv.2020.08.001.; Sakr Y., Moreira C. L., Rhodes A. et al. Extended prevalence of infection in intensive care study investigators. The impact of hospital and ICU organizational factors on outcome in critically ill patients: Results from the Extended Prevalence of Infection in Intensive Care study // Crit. Care Med. – 2015. – Vol. 43. – P. 519–526. https://doi.org/10.1097/CCM.0000000000000754.; Schneeweiss-Gleixner M., Hillebrand C., Jaksits S. et al. Characteristics and outcome of critically ill patients with systemic rheumatic diseases referred to the intensive care unit // RMD Open. – 2023. – Vol. 9, № 4. – e003287. https://doi.org/10.1136/rmdopen-2023-003287.; Son M. B., Johnson V. M., Hersh A. O. et al. Outcomes in hospitalized pediatric patients with systemic lupus erythematosus // Pediatrics. – 2014. – Vol. 133, № 1. – e106–13. https://doi.org/10.1542/peds.2013-1640.; Vincent J. L., Sakr Y., Singer M. et al. Prevalence and outcomes of infection among patients in Intensive Care Units in 2017 // JAMA. – 2020. – Vol. 323. – P. 1478–1487. https://doi.org/10.1001/jama.2020.2717.; Wang S., Wan Y., Zhang W. The clinical value of systemic immune inflammation index (sii) in predicting the severity of hospitalized children with mycoplasma pneumoniae pneumonia: a retrospective study // Int J Gen Med. – 2024. – Vol. 17. – P. 935–942. https://doi.org/10.2147/IJGM.S451466.; Whittaker E., Bamford A., Kenny J. et al. PIMS-TS Study Group and EUCLIDS and PERFORM Consortia. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 // JAMA. – 2020. – Vol. 324. – P. 259–269. https://doi.org/10.1001/jama.2020.10369.; Yildirim-Toruner C., Diamond B. Current and novel therapeutics in the treatment of systemic lupus erythematosus // J Allergy Clin Immunol. – 2011. – Vol. 127, № 2. – P. 303–312. https://doi.org/10.1016/j.jaci.2010.12.1087.; Yuan Y., Jiao B., Qu L. et al. The development of COVID-19 treatment // Front Immunol. – 2023. – Vol. 14. – P. 1125246. https://doi.org/10.3389/fimmu.2023.1125246.; Zhou Q., Fan L., Lai X. et al. Estimating extra length of stay and risk factors of mortality attributable to healthcare-associated infection at a Chinese university hospital: a multi-state model // BMC Infect Dis. – 2019. – Vol. 19, № 1. – P. 975. https://doi.org/10.1186/s12879-019-4474-5.
-
2Academic Journal
Συγγραφείς: T. V. Beketova, E. L. Nasonov, M. A. Alekseev, E. I. Shchepikhin, Yu. N. Philippovich, A. S. Kruzhalov, A. Yu. Philippovich, V. A. Kulbak, D. A. Argunova, P. G. Shakhnovich, T. A. Prazdnichnykh, M. P. Obidin, T. N. Krasnova, N. N. Vladimirova, Т. В. Бекетова, Е. Л. Насонов, М. А. Алексеев, Е. И. Щепихин, Ю. Н. Филиппович, А. С. Кружалов, А. Ю. Филиппович, В. А. Кульбак, Д. А. Аргунова, П. Г. Шахнович, Т. А. Праздничных, М. П. Обидин, Т. Н. Краснова, Н. Н. Владимирова
Πηγή: Rheumatology Science and Practice; Vol 63, No 1 (2025); 24-36 ; Научно-практическая ревматология; Vol 63, No 1 (2025); 24-36 ; 1995-4492 ; 1995-4484
Θεματικοί όροι: цифровые технологии, systemic vasculitis, rheumatic diseases, interstitial lung disease, biomarkers of medical images, radiomic model, texture analysis, digital technologies, системные васкулиты, ревматические заболевания, интерстициальное заболевание легких, биомаркеры медицинских изображений, радиомическая модель, текстурный анализ
Περιγραφή αρχείου: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3701/2433; Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: The process and the challenges. Magn Reson Imaging. 2012;30(9):1234-1248. doi:10.1016/j.mri.2012.06.010; Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. doi:10.1038/nrclinonc.2017.141; Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT texture analysis: Definitions, applications, biologic correlates, and challenges. Radiographics. 2017;37(5):1483-1503. doi:10.1148/rg.2017170056; Shiri I, Salimi Y, Pakbin M, Hajianfar G, Avval AH, Sanaat A, et al. COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients. Comput Biol Med. 2022;145:105467. doi:10.1016/j.compbiomed.2022.105467; Song J, Yin Y, Wang H, Chang Z, Liu Z, Cui L. A review of original articles published in the emerging field of radiomics. Eur J Radiol. 2020;127:108991. doi:10.1016/j.ejrad.2020.108991; Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM. The rise of radiomics and implications for oncologic management. J Natl Cancer Inst. 2017;109(7). doi:10.1093/jnci/djx055; Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics. 2019;9(5):1303-1322. doi:10.7150/thno.30309; Galloway MM. Texture analysis using gray level run lengths. Comp Graphics Image Process. 1975;4(2):172-179. doi:10.1016/S0146-664X(75)80008-6; Kaizer H. A quantification of textures on aerial photographs. Tech Note. Boston University Research Lab. 1955;121:69484.; Hall EL, Kruger RP, Dwyer SJ, Hall DL, Mclaren RW, Lodwick GS. A survey of preprocessing and feature extraction techniques for radiographic images. IEEE Transact Comp. 1971;C-20(9):1032-1044. doi:10.1109/T-C.1971.223399; Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K, O’Connor JPB, et al. Radiomics in oncology: A practical guide. Radiographics. 2021;41(6):1717-1732. doi:10.1148/rg.2021210037; Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441-446. doi:10.1016/j.ejca.2011.11.036; Yang B, Guo L, Lu G, Shan W, Duan L, Duan S. Radiomic signature: A non-invasive biomarker for discriminating invasive and non-invasive cases of lung adenocarcinoma. Cancer Manag Res. 2019;11:7825-7834. doi:10.2147/CMAR.S217887; Литвин АА, Буркин ДА, Кропинов АА, Парамзин ФН. Радиомика и анализ текстур цифровых изображений в онкологии (обзор). Современные технологии в медицине. 2021;13(2):97-106. doi:10.17691/stm2021.13.2.11; Ye L, Miao S, Xiao Q, Liu Y, Tang H, Li B, et al. A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors. Rheumatology (Oxford). 2022;61(4):1440-1447. doi:10.1093/rheumatology/keab542; Shi Z, Yang Z, Su D, Cheng J, Shi Z, Wang M, et al. Prediction of the activity of early ankylosing spondylitis using radiomics texture analysis on short tau inversion recovery (STIR). Clin Exp Rheumatol. 2024;42(7):1427-1434. doi:10.55563/clinexprheumatol/99pc16; Jiang T, Lau SH, Zhang J, Chan LC, Wang W, Chan PK, et al. Radiomics signature of osteoarthritis: Current status and perspective. J Orthop Translat. 2024;45:100-106. doi:10.1016/j.jot.2023.10.003; Davey MS, Davey MG, Kenny P, Gheiti AJC. The use of radiomic analysis of magnetic resonance imaging findings in predicting features of early osteoarthritis of the knee – A systematic review and meta-analysis. Irish J Med Sci. 2024;193(5):2525-2530. doi:10.1007/s11845-024-03714-5; Zhang L, Chen Z, Feng L, Guo L, Liu D, Hai J, et al. Preliminary study on the application of renal ultrasonography radiomics in the classification of glomerulopathy. BMC Med Imaging. 2021;21(1):115. doi:10.1186/s12880-021-00647-8; Qin X, Xia L, Zhu C, Hu X, Xiao W, Xie X, et al. Noninvasive evaluation of lupus nephritis activity using a radiomics machine learning model based on ultrasound. J Inflamm Res. 2023;16:433-441. doi:10.2147/JIR.S398399; Choi YH, Kim JE, Lee RW, Kim B, Shin HC, Choe M, et al. Histopathological correlations of CT-based radiomics imaging biomarkers in native kidney biopsy. BMC Med Imaging. 2024;24(1):256. doi:10.1186/s12880-024-01434-x; Venerito V, Manfredi A, Lopalco G, Lavista M, Cassone G, Scardapane A, et al. Radiomics to predict the mortality of patients with rheumatoid arthritis-associated interstitial lung disease: A proof-of-concept study. Front Med (Lausanne). 2023;9:1069486. doi:10.3389/fmed.2022.1069486; Насонов ЕЛ, Ананьева ЛП, Авдеев СН. Интерстициальные заболевания легких при ревматоидном артрите: мультидисциплинарная проблема ревматологии и пульмонологии. Научно-практическая ревматология. 2022;60(6):517-534. doi:10.47360/1995-4484-2022-1; Mohammad AJ, Mortensen KH, Babar J, Smith R, Jones RB, Nakagomi D, et al. Pulmonary involvement in antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis: The influence of ANCA subtype. J Rheumatol. 2017;44(10):1458-1467. doi:10.3899/jrheum.161224; Акулкина ЛА, Бровко МЮ, Шоломова ВИ, Янакаева АШ, Буланов НМ, Новиков ПИ, и др. АНЦА-ассоциированные интерстициальные заболевания легких: актуальные вопросы диагностики и лечения. Клиническая фармакология и терапия. 2019;28(4):76-82. doi:10.32756/0869-5490-2019-4-76-82; Бекетова ТВ. Гранулематоз с полиангиитом, патогенетически связанный с антинейтрофильными цитоплазматическими антителами: особенности клинического течения. Научно-практическая ревматология. 2012;50(6):19-28. doi:10.14412/1995-4484-2012-1288; Бекетова ТВ. Микроскопический полиангиит, ассоциированный с антинейтрофильными цитоплазматическими антителами: особенности клинического течения. Терапевтический архив. 2015;87(5):33-46. doi:10.17116/terarkh201587533-46; Ronneberger O, Fischer P. Brox T. U-net: Convolutional networks for biomedical image segmentation. arXiv. 2015;1505.04597 doi:10.1007/978-3-319-24574-4_28; Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imag. 2012;3(6):573-589. doi:10.1007/s13244-012-0196-6; O’Brien H, Williams MC, Rajani R, Niederer S. Radiomics and machine learning for detecting scar tissue on CT delayed enhancement imaging. Front Cardiovasc Med. 2022;9:847825. doi:10.3389/fcvm.2022.847825; Shi L, Sheng M, Wei Z, Liu L, Zhao J. CT-based radiomics predicts the malignancy of pulmonary nodules: A systematic review and meta-analysis. Acad Radiol. 2023;30(12):3064-3075. doi:10.1016/j.acra.2023.05.026; Shang H, Li J, Jiao T, Fang C, Li K, Yin D, et al. Differentiation of lung metastases originated from different primary tumors using radiomics features based on CT imaging. Acad Radiol. 2023;30(1):40-46. doi:10.1016/j.acra.2022.04.008; Qi J, Deng Z, Sun G, Qian S, Liu L, Xu B. One-step algorithm for fast-track localization and multi-category classification of histological subtypes in lung cancer. Eur J Radiol. 2022;154:110443. doi:10.1016/j.ejrad.2022.110443; Lovinfosse P, Ferreira M, Withofs N, Jadoul A, Derwael C, Frix AN, et al. Distinction of lymphoma from sarcoidosis on 18F-FDG PET/CT: Evaluation of radiomics-feature-guided machine learning versus human reader performance. J Nucl Med. 2022;63(12):1933-1940. doi:10.2967/jnumed.121.263598; Li T, Gan T, Wang J, Long Y, Zhang K, Liao M. Application of CT radiomics in brain metastasis of lung cancer: A systematic review and meta-analysis. Clin Imaging. 2024;114:110275. doi:10.1016/j.clinimag.2024.110275; Li Y, Lyu B, Wang R, Peng Y, Ran H, Zhou B, et al. Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis. Thorac Cancer. 2024;15(6):466-476. doi:10.1111/1759-7714.15216; Dong Q, Wen Q, Li N, Tong J, Li Z, Bao X, et al. Radiomics combined with clinical features in distinguishing non-calcifying tuberculosis granuloma and lung adenocarcinoma in small pulmonary nodules. PeerJ. 2022;10:e14127. doi:10.7717/peerj.14127; Feng B, Chen X, Chen Y, Lu S, Liu K, Li K, et al. Solitary solid pulmonary nodules: A CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol. 2020;30(12):6497-6507. doi:10.1007/s00330-020-07024-z; Cui EN, Yu T, Shang SJ, Wang XY, Jin YL, Dong Y, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World J Clin Cases. 2020;8(21):5203-5212. doi:10.12998/wjcc.v8.i21.5203; Zhao W, Xiong Z, Jiang Y, Wang K, Zhao M, Lu X, et al. Radiomics based on enhanced CT for differentiating between pulmonary tuberculosis and pulmonary adenocarcinoma presenting as solid nodules or masses. J Cancer Res Clin Oncol. 2023;149(7):3395-3408. doi:10.1007/s00432-022-04256-y; Yao W, Liao Y, Li X, Zhang F, Zhang H, Hu B, et al. Noninvasive method for predicting the expression of Ki67 and prognosis in non-small-cell lung cancer patients: Radiomics. J Healthc Eng. 2022;2022:7761589. doi:10.1155/2022/7761589; Felfli M, Liu Y, Zerka F, Voyton C, Thinnes A, Jacques S, et al. Systematic review, meta-analysis and radiomics quality score assessment of CT radiomics-based models predicting tumor EGFR mutation status in patients with non-small-cell lung cancer. Int J Mol Sci. 2023;24(14):11433. doi:10.3390/ijms241411433; Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol. 2023;93:97-113. doi:10.1016/j.semcancer.2023.05.004; Hao P, Deng BY, Huang CT, Xu J, Zhou F, Liu ZX, et al. Predicting anaplastic lymphoma kinase rearrangement status in patients with non-small cell lung cancer using a machine learning algorithm that combines clinical features and CT images. Front Oncol. 2022;12:994285. doi:10.3389/fonc.2022.994285; Shao J, Ma J, Zhang S, Li J, Dai H, Liang S, et al. Radiogenomic system for non-invasive identification of multiple actionable mutations and PD-L1 expression in non-small cell lung cancer based on CT images. Cancers (Basel). 2022;14(19):4823. doi:10.3390/cancers14194823; Zhu ZC, Chen MJ, Song L, Wang JH, Hu G, Han W, et al. [CT-based weighted radiomic score predicts tumor response to immunotherapy in non-small cell lung cancer]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2023;45(5):794-802 (In Chinese). doi:10.3881/j.issn.1000-503X.15705; Chang R, Qi S, Zuo Y, Yue Y, Zhang X, Guan Y, et al. Predicting chemotherapy response in non-small-cell lung cancer via computed tomography radiomic features: Peritumoral, intratumoral, or combined? Front Oncol. 2022;12:915835. doi:10.3389/fonc.2022.915835; Luo T, Yan M, Zhou M, Dekker A, Appelt AL, Ji Y, et al. Improved prognostication of overall survival after radiotherapy in lung cancer patients by an interpretable machine learning model integrating lung and tumor radiomics and clinical parameters. Radiol Med. 2024 Nov 14. doi:10.1007/s11547-024-01919-3; Schniering J, Maciukiewicz M, Gabrys HS, Brunner M, Blüthgen C, Meier C, et al. Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis. Eur Respir J. 2022;59(5):2004503. doi:10.1183/13993003.04503-2020; Martini K, Baessler B, Bogowicz M, Blüthgen C, Mannil M, Tanadini-Lang S, et al. Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: Proof of concept. Eur Radiol. 2021;31(4):1987-1998. doi:10.1007/s00330-020-07293-8; Haga A, Iwasawa T, Misumi T, Okudela K, Oda T, Kitamura H, et al. Correlation of CT-based radiomics analysis with pathological cellular infiltration in fibrosing interstitial lung diseases. Jpn J Radiol. 2024;42(10):1157-1167. doi:10.1007/s11604-024-01607-2; Feng DY, Zhou YQ, Xing YF, Li CF, Lv Q, Dong J, et al. Selection of glucocorticoid-sensitive patients in interstitial lung disease secondary to connective tissue diseases population by radiomics. Ther Clin Risk Manag. 2018;14:1975-1986. doi:10.2147/TCRM.S181043; Chen J, Meng T, Xu J, Ooi JD, Eggenhuizen PJ, Liu W, et al. Development of a radiomics nomogram to predict the treatment resistance of Chinese MPO-AAV patients with lung involvement: A two-center study. Front Immunol. 2023;14:1084299. doi:10.3389/fimmu.2023.1084299; Falde S, Specks U, Bartholmai BJ, Rajagopalan S, Cartin-Ceba R, Peikert T. Predicting disease relapse in ANCA associated vasculitis with radiomics. Am J Respir Crit Care Med. 2024;209:A4502. doi:10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4502; Renaud A, Pautre R, Morla O, Achille A, Durant C, Espitia O, et al. Thoracic lymphadenopathies in diffuse systemic sclerosis: An observational study on 48 patients using computed tomography. BMC Pulm Med. 2022;22(1):44. doi:10.1186/s12890-022-01837-y; Rotondo C, Urso L, Praino E, Cacciapaglia F, Corrado A, Cantatore FP, et al. Thoracic lymphadenopathy as possible predictor of the onset of interstitial lung disease in systemic sclerosis patients without lung involvement at baseline visit: A retrospective analysis. J Scleroderma Relat Disord. 2020;5(3):210-218. doi:10.1177/2397198320923545; Sgalla G, Larici AR, Golfi N, Calvello M, Farchione A, Del Ciello A, et al. Mediastinal lymph node enlargement in idiopathic pulmonary fibrosis: Relationships with disease progression and pulmonary function trends. BMC Pulm Med. 2020;20(1):249. doi:10.1186/s12890-020-01289-2; Han N, Guo Z, Zhu D, Zhang Y, Qin Y, Li G, et al. A nomogram model combining computed tomography-based radiomics and Krebs von den Lungen-6 for identifying low-risk rheumatoid arthritis-associated interstitial lung disease. Front Immunol. 2024;15:1417156. doi:10.3389/fimmu.2024.1417156; He W, Cui B, Chu Z, Chen X, Liu J, Pang X, et al. Radiomics based on HRCT can predict RP-ILD and mortality in anti-MDA5+dermatomyositis patients: A multi-center retrospective study. Respir Res. 2024;25(1):252. doi:10.1186/s12931-024-02843-w; Li Y, Deng W, Zhou Y, Luo Y, Wu Y, Wen J, et al. A nomogram based on clinical factors and CT radiomics for predicting anti-MDA5+ DM complicated by RP-ILD. Rheumatology (Oxford). 2024;63(3):809-816. doi:10.1093/rheumatology/kead263; Ryan SM, Fingerlin TE, Mroz M, Barkes B, Hamzeh N, Maier LA, et al. Radiomic measures from chest high-resolution computed tomography associated with lung function in sarcoidosis. Eur Respir J. 2019;54(2):1900371. doi:10.1183/13993003.00371-2019; Węcławek M, Ziora D, Jastrzębski D. Imaging methods for pulmonary sarcoidosis. Adv Respir Med. 2020;88(1):18-27. doi:10.5603/ARM.2020.0074; Shaikh F, Abtin FG, Lau R, Saggar R, Belperio JA, Lynch JP 3rd. Radiographic and histopathologic features in sarcoidosis: A pictorial display. Semin Respir Crit Care Med. 2020;41(5):758-784. doi:10.1055/s-0040-1712534; Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol. 2017;24(1):86-99. doi:10.1007/s12350-016-0502-7; Mushari NA, Soultanidis G, Duff L, Trivieri MG, Fayad ZA, Robson P, et al. An assessment of PET and CMR radiomic features for the detection of cardiac sarcoidosis. Front Nucl Med. 2024;4:1324698. doi:10.3389/fnume.2024.1324698; Antonopoulos AS, Boutsikou M, Simantiris S, Angelopoulos A, Lazaros G, Panagiotopoulos I, et al. Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes. Sci Rep. 2021;11(1):23596. doi:10.1038/s41598-021-02971-z; Chen Q, Li H, Xie W, Abudukeremu A, Wen K, Liu W, et al. Lipid-related radiomics of low-echo carotid plaques is associated with diabetic stroke and non-diabetic coronary heart disease. Int J Cardiovasc Imaging. 2025;41(1):123-136. doi:10.1007/s10554-024-03296-4; Imamura H, Sekiguchi Y, Iwashita T, Dohgomori H, Mochizuki K, Aizawa K, et al. Painless acute aortic dissection. Diagnostic, prognostic and clinical implications. Circ J. 2011;75(1):59-66. doi:10.1253/circj.cj-10-0183; Boileau A, Lindsay M, Michel JB, Devaux Y. Epigenetics in ascending thoracic aortic aneurysm and dissection. AORTA. 2018;06(01):1-12. doi:10.1055/s-0038-1639610; Nienaber CA, Clough RE. Management of acute aortic dissection. The Lancet. 2015;385(9970):800-811. doi:10.1016/S0140-6736(14)61005-9; Zhou Z, Yang J, Wang S, Li W, Xie L, Li Y, et al. The diagnostic value of a non-contrast computed tomography scan-based radiomics model for acute aortic dissection. Medicine (Baltimore). 2021;100(22):e26212. doi:10.1097/MD.0000000000026212; Guo Y, Chen X, Lin X, Chen L, Shu J, Pang P, et al. Non-contrast CT-based radiomic signature for screening thoracic aortic dissections: A multicenter study. Eur Radiol. 2021;31(9):7067-7076. doi:10.1007/s00330-021-07768-2; Liang L, Liu M, Martin C, Elefteriades JA, Sun W. A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomech Model Mechanobiol. 2017;16(5):1519-1533. doi:10.1007/s10237-017-0903-9; Rezaeitaleshmahalleh M, Lyu Z, Mu N, Zhang X, Rasmussen TE, McBane RD 2nd, et al. Characterization of small abdominal aortic aneurysms’ growth status using spatial pattern analysis of aneurismal hemodynamics. Sci Rep. 2023;13(1):13832. doi:10.1038/s41598-023-40139-z; Rezaeitaleshmahalleh M, Mu N, Lyu Z, Zhou W, Zhang X, Rasmussen TE, et al. Radiomic-based textural analysis of intraluminal thrombus in aortic abdominal aneurysms: A demonstration of automated workflow. J Cardiovasc Transl Res. 2023;16(5):1123-1134. doi:10.1007/s12265-023-10404-7; Wang Y, Liu F, Wu S, Sun K, Gu H, Wang X. CTA-based radiomics and area change rate predict infrarenal abdominal aortic aneurysms patients events: A multicenter study. Acad Radiol. 2024;31(8):3165-3176. doi:10.1016/j.acra.2024.01.017; Ma Z, Jin L, Zhang L, Yang Y, Tang Y, Gao P, et al. Diagnosis of acute aortic syndromes on non-contrast CT images with radiomics-based machine learning. Biology (Basel). 2023;12(3):337. doi:10.3390/biology12030337; Salmasi MY, Al-Saadi N, Hartley P, Jarral OA, Raja S, Hussein M, et al. The risk of misdiagnosis in acute thoracic aortic dissection: A review of current guidelines. Heart. 2020;106(12):885-891. doi:10.1136/heartjnl-2019-316322; Huellebrand M, Jarmatz L, Manini C, Laube A, Ivantsits M, Schulz-Menger J, et al. Radiomics-based aortic flow profile characterization with 4D phase-contrast MRI. Front Cardiovasc Med. 2023;10:1102502. doi:10.3389/fcvm.2023.1102502; Aghayev A, Weber B, Lins de Carvalho T, Glaudemans AWJM, Nienhuis PH, van der Geest KSM, et al. Multimodality imaging to assess diagnosis and evaluate complications of large vessel arteritis. J Nucl Cardiol. 2024;37:101864. doi:10.1016/j.nuclcard.2024.101864; Duff L, Scarsbrook AF, Mackie SL, Frood R, Bailey M, Morgan AW, et al. A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis. J Nucl Cardiol. 2022;29(6):3315-3331. doi:10.1007/s12350-022-02927-4; Duff LM, Scarsbrook AF, Ravikumar N, Frood R, van Praagh GD, Mackie SL, et al. An automated method for artifical intelligence assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images. Biomolecules. 2023;13(2):343. doi:10.3390/biom13020343; Badesha AS, Frood R, Bailey MA, Coughlin PM, Scarsbrook AF. A scoping review of machine-learning derived radiomic analysis of CT and PET imaging to investigate atherosclerotic cardiovascular disease. Tomography. 2024;10(9):1455-1487. doi:10.3390/tomography10090108; Zaccagna F, Ganeshan B, Arca M, Rengo M, Napoli A, Rundo L, et al. CT texture-based radiomics analysis of carotid arteries identifies vulnerable patients: A preliminary outcome study. Neuroradiology. 2021;63(7):1043-1052. doi:10.1007/s00234-020-02628-0; Le EPV, Wong MYZ, Rundo L, Tarkin JM, Evans NR, Weir-McCall JR, et al. Using machine learning to predict carotid artery symptoms from CT angiography: A radiomics and deep learning approach. Eur J Radiol Open. 2024;13:100594. doi:10.1016/j.ejro.2024.100594; Liu M, Chang N, Zhang S, Du Y, Zhang X, Ren W, et al. Identification of vulnerable carotid plaque with CT-based radiomics nomogram. Clin Radiol. 2023;78(11):e856-e863. doi:10.1016/j.crad.2023.07.018; Dong Z, Zhou C, Li H, Shi J, Liu J, Liu Q, et al. Radiomics versus conventional assessment to identify symptomatic participants at carotid computed tomography angiography. Cerebrovasc Dis. 2022;51(5):647-654. doi:10.1159/000522058; Zhang R, Zhang Q, Ji A, Lv P, Zhang J, Fu C, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol. 2021;31(5):3116-3126. doi:10.1007/s00330-020-07361-z; Xia H, Yuan L, Zhao W, Zhang C, Zhao L, Hou J, et al. Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics. Front Neurol. 2023;14:1105616. doi:10.3389/fneur.2023.1105616; Chen C, Tang W, Chen Y, Xu W, Yu N, Liu C, et al. Computed tomography angiography-based radiomics model to identify high-risk carotid plaques. Quant Imaging Med Surg. 2023;13(9):6089-6104. doi:10.21037/qims-23-158; Nie JY, Chen WX, Zhu Z, Zhang MY, Zheng YJ, Wu QD. Initial experience with radiomics of carotid perivascular adipose tissue in identifying symptomatic plaque. Front Neurol. 2024;15:1340202. doi:10.3389/fneur.2024.1340202; Shan D, Wang S, Wang J, Lu J, Ren J, Chen J, et al. Computed tomography angiography-based radiomics model for predicting carotid atherosclerotic plaque vulnerability. Front Neurol. 2023;14:1151326. doi:10.3389/fneur.2023.1151326; Kafouris PP, Koutagiar IP, Georgakopoulos AT, Spyrou GM, Visvikis D, Anagnostopoulos CD. Fluorine-18 fluorodeoxyglucose positron emission tomography-based textural features for prediction of event prone carotid atherosclerotic plaques. J Nucl Cardiol. 2021;28(5):1861-1871. doi:10.1007/s12350-019-01943-1; Cilla S, Macchia G, Lenkowicz J, Tran EH, Pierro A, Petrella L, et al. CT angiography-based radiomics as a tool for carotid plaque characterization: A pilot study. Radiol Med. 2022;127(7):743-753. doi:10.1007/s11547-022-01505-5; Van der Geest KSM, Gheysens O, Gormsen LC, Glaudemans AWJM, Tsoumpas C, Brouwer E, et al. Advances in PET imaging of large vessel vasculitis: An update and future trends. Semin Nucl Med. 2024;54(5):753-760. doi:10.1053/j.semnuclmed.2024.03.001; Gu J, Jiang T. Ultrasound radiomics in personalized breast management: Current status and future prospects. Front Oncol. 2022;12:963612. doi:10.3389/fonc.2022.963612; Shi S, An X, Li Y. Ultrasound radiomics-based logistic regression model to differentiate between benign and malignant breast nodules. J Ultrasound Med. 2023;42(4):869-879. doi:10.1002/jum.16078; Wu L, Zhao Y, Lin P, Qin H, Liu Y, Wan D, et al. Preoperative ultrasound radiomics analysis for expression of multiple molecular biomarkers in mass type of breast ductal carcinoma in situ. BMC Med Imaging. 2021;21(1):84. doi:10.1186/s12880-021-00610-7; Cai L, Sidey-Gibbons C, Nees J, Riedel F, Schaefgen B, Togawa R, et al. Ultrasound radiomics features to identify patients with triple-negative breast cancer: A retrospective, single-center study. J Ultrasound Med. 2024;43(3):467-478. doi:10.1002/jum.16377; Lu G, Tian R, Yang W, Liu R, Liu D, Xiang Z, et al. Deep learning radiomics based on multimodal imaging for distinguishing benign and malignant breast tumours. Front Med (Lausanne). 2024;11:1402967. doi:10.3389/fmed.2024.1402967; Liebowitz JE. The metaverse: A new frontier for rheumatology. Rheumatology. 2024;63(2):267-268. doi:10.1093/rheumatology/kead534; Wang G, Badal A, Jia X, Maltz JS, Mueller K, Myers KJ, et al. Development of metaverse for intelligent healthcare. Nat Mach Intell. 2022;4(11):922-929. doi:10.1038/s42256-022-00549-6; Zanfardino M, Franzese M, Pane K, Cavaliere C, Monti S, Esposito G, et al. Bringing radiomics into a multi-omics frame-work for a comprehensive genotype-phenotype characterization of oncological diseases. J Transl Med. 2019;17(1):337. doi:10.1186/s12967-019-2073-2
-
3Academic Journal
Συγγραφείς: G. I. Gridneva, B. S. Belov, E. S. Aronova, Г. И. Гриднева, Б. С. Белов, Е. С. Аронова
Συνεισφορές: Статья подготовлена в рамках научно-исследовательской работы ФГБНУ «Научно-исследовательский институт ревматологии им. В. А. Насоновой», № государственного задания 1021051503137–7.
Πηγή: HIV Infection and Immunosuppressive Disorders; Том 17, № 1 (2025); 7-18 ; ВИЧ-инфекция и иммуносупрессии; Том 17, № 1 (2025); 7-18 ; 2077-9828 ; 10.22328/2077-9828-2025-17-1
Θεματικοί όροι: артрит, rheumatic diseases, autoimmune diseases, arthritis, ревматические заболевания, аутоиммунные заболевания
Περιγραφή αρχείου: application/pdf
Relation: https://hiv.bmoc-spb.ru/jour/article/view/979/622; ВИЧ-инфекция у взрослых. Клинические рекомендации 2024. https://cr.minzdrav.gov.ru/schema/79_2.; ВИЧ-инфекция в Российской Федерации на 30 июня 2023 г. Специализированный научно-исследовательский отдел по профилактике и борьбе со СПИДом ФБУН Центрального НИИ эпидемиологии Роспотребнадзора. . https://files.antispidnn.ru/uploads/docs/spec/vich2023.pdf.; Steve R.J., Alex D., Yesudhason B.L. et al. Autoantibodies Among HIV-1 Infected Individuals and the Effect of Anti-Retroviral Therapy (ART) on It // Current HIV research. 2021. Vol. 19, No. 3. Р. 277–285. https://doi.org/10.2174/1570162X19666210217120337.; Zandman-Goddard G., Shoenfeld Y. HIV and autoimmunity // Autoimmunity reviews. 2002. Vol. 1, No. 6. P. 329–337. https://doi.org/10.1016/s1568-9972(02)00086-1.; Fox C., Walker-Bone K. Evolving spectrum of HIV-associated rheumatic syndromes. Best practice research // Clinical rheumatology. 2015. Vol. 29, No. 2. P. 244–258. https://doi.org/10.1016/j.berh.2015.04.019.; Ramos-Ruperto L., Busca C., Díez-Vidal A. et al. Prevalence and Temporal Trends of Autoimmune Diseases in People Living with HIV // AIDS Res. Hum. Retroviruses. 2023 Mar; Vol. 39, No. 3. Р. 130–135. doi:10.1089/AID.2022.0090.; Ramos-Ruperto L. et al. Autoimmunity and HIV infection. Chapter 7 // Translational Autoimmunity. Vol. 3. Р. 141. https://doi.org/10.1016/B978-0-323-85415-3.00015-5.; Evans R., Gueret-Wardle A., Edwards S., Salama A. ANCA-associated vasculitis and pauci-immune glomerulonephritis in HIV disease // BMJ case reports 2014. P. 1–3. Published online 1 April 2014. https://doi.org/10.1136/bcr-2013-202423.; Mirsaeidi M., Syed F., Jaffe E.S. Antineutrophil Cytoplasmic Autoantibody Associated Systemic Vasculitis Is Associated with Epstein–Barr virus in the Setting of HIV Infection // Infectious diseases in clinical practice (Baltimore, Md.). 2013. Vol. 21, No. 1. P. 50–53. https://doi.org/10.1097/IPC.0b013e3182601ea1.; Savige J.A., Chang L., Horn S., Crowe S.M. Anti-nuclear, anti-neutrophil cytoplasmic and anti-glomerular basement membrane antibodies in HIV-infected individuals // Autoimmunity. 1994. Vol. 18, No. 3. P. 205–211. https://doi.org/10.3109/08916939409007997; Mohapatra P. R., Khanduri S., Dutt N., Sharma P., Janmeja A. K. Diagnostic dilemma of antineutrophil cytoplasmic antibody seropositivity in human immunodeficiency virus infection // The Indian journal of chest diseases allied sciences. 2011. Vol. 53, No. 1. P. 55–57.; Gherardi R., Belec L., Mhiri C. et al. The spectrum of vasculitis in human immunodeficiency virus-infected patients. A clinicopathologic evaluation // Arthritis and rheumatism. 1993. Vol. 36, No. 8. P. 1164–1174. https://doi.org/10.1002/art.1780360818.; Bottlaender L., Sève P., Cotte L., Gerfaud-Valentin M., Jamilloux Y. Successful treatment with anakinra of an HIV-associated immune reconstitution inflammatory syndrome mimicking adult-onset Still’s disease // Rheumatology (Oxford, England). 2019. Vol. 58, No. 2. P. 363–365. https://doi.org/10.1093/rheumatology/key291.; Российские клинические рекомендации. Ревматология / под ред. Е. Л. Насонова. М.: ГЭОТАР-Медиа, 2017. С. 113; Akram B., Khan M., Humphrey M.B. HIV-Associated Rheumatic Diseases: A Narrative Review // Journal of clinical rheumatology: practical reports on rheumatic musculoskeletal diseases. 2024. Vol. 30, No. 2. P. e42–e45. https://doi.org/10.1097/RHU.0000000000002028.; Lebrun D., Hentzien M., Cuzin L. et al.; the Dat’AIDS study group. Epidemiology of autoimmune and inflammatory diseases in a French nationwide HIV cohort // AIDS. 2017. Sep 24; Vol. 31, No. 15. Р. 2159–2166. doi:10.1097/QAD.0000000000001603.; Kawakita C., Kinomura M., Otaka N. et al. HIV-associated Immune Complex Kidney Disease with C3-dominant Deposition Induced by HIV Infection after Treatment of IgA Nephropathy // Internal medicine (Tokyo, Japan). 2019. Vol. 58, No. 20. P. 3001–3007. https://doi.org/10.2169/internalmedicine.2439-18.; Naovarat B.S., Reveille J.D., Salazar G.A., William F.M., Nguyen B.Y. Systemic lupus erythematosus in the setting of HIV-1 infection: a longitudinal analysis // Clinical rheumatology. 2020. Vol. 39, No. 2. P. 413–418. https://doi.org/10.1007/s10067-019-04867-w.; Torgashina A.V., Solovyev S.K. Specific features of regulatory T cells in patients with systemic lupus erythematosus // Modern Rheumatology Journal. 2018. Vol. 12, No. 4. P. 9–15. doi:10.14412/1996-7012-2018-4-9-15.; Liao H.Y., Tao C.M., Su J. Concomitant systemic lupus erythematosus and HIV infection: A rare case report and literature review // Medicine. 2017. Vol. 96, No. 51. P. e9337. https://doi.org/10.1097/MD.0000000000009337.; O’Kelly B., McNally C., McConkey S., Durcan L. HIV and systemic lupus erythematosus: where immunodeficiency meets autoimmunity // Lupus. 2020. Vol. 29, No. 9. P. 1130–1132. https://doi.org/10.1177/0961203320934851.; Российские клинические рекомендации. Ревматология / под ред. Е. Л. Насонова. М.: ГЭОТАР-Медиа, 2020. С. 17; Smolen J.S., Aletaha D., McInnes I.B. Rheumatoid arthritis // Lancet (London, England). 2016. Vol. 388, No. 10055. P. 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8.; Reveille J.D., Williams F.M. Infection and musculoskeletal conditions: Rheumatologic complications of HIV infection. Best practice and research // Clinical rheumatology. 2006. Vol. 20, No. 6. P. 1159–1179. https://doi.org/10.1016/j.berh.2006.08.015.; Буханова Д.В., Белов Б.С. Поражение суставов при ВИЧ-инфекции // Медицинский cовет. 2018. № 9. C. 82–87; Hanberg J.S., Hsieh E., Akgün K.M., Weinstein E., Fraenkel L., Justice A.C., VACS Project Team. Incident Rheumatoid Arthritis in HIV Infection: Epidemiology and Treatment // Arthritis rheumatology (Hoboken N.J.). 2021. Vol. 73, No. 12. P. 2189–2199. https://doi.org/10.1002/art.41802.; Cunha B.M., Mota L.M., Pileggi G.S., Safe I.P., Lacerda M.V. HIV/AIDS and rheumatoid arthritis // Autoimmunity reviews. 2015. Vol. 14, No. 5. P. 396–400. https://doi.org/10.1016/j.autrev.2015.01.001.; Azeroual A., Harmouche H., Benjilali L. et al. Rheumatoid arthritis associated to HIV infection // European journal of internal medicine. 2008. Vol. 19, No. 6. P. e34–e35. https://doi.org/10.1016/j.ejim.2007.09.020.; Mariette X., Criswell L.A. Primary Sjögren’s Syndrome // The New England journal of medicine. 2018. Vol. 378, No. 10. P. 931–939. https://doi.org/10.1056/NEJMcp1702514.; Ghrenassia E., Martis N., Boyer J. et al. The diffuse infiltrative lymphocytosis syndrome (DILS). A comprehensive review // Journal of autoimmunity. 2015. No. 59, P. 19–25. https://doi.org/10.1016/j.jaut.2015.01.010.; Yang J.J., Tsai M.S., Sun H.Y. et al. Autoimmune diseases-related arthritis in HIV-infected patients in the era of highly active antiretroviral therapy // Journal of microbiology, immunology, and infection=Wei mian yu gan ran za zhi. 2015. Vol. 48, No. 2. P. 130–136. https://doi.org/10.1016/j.jmii.2013.08.002.; Каневская М.З. Ревматологические синдромы при ВИЧ-инфекции // Клиническая медицина. 2014. T. 92, № 12. C. 12–19.; McArthur C.P., Africa C.W., Castellani W.J. et al. Salivary gland disease in HIV/AIDS and primary Sjögren’s syndrome: analysis of collagen I distribution and histopathology in American and African patients // Journal of oral pathology medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2003. Vol. 32, No. 9. P. 544–551. https://doi.org/10.1034/j.1600-0714.2003.00159.x.; Saigal R., Chakraborty A., Yadav R.N., Goyal L.K. Rheumatological Manifestations in HIV-Positive Patients: A Single-Center Study // Advances in therapy. 2020. Vol. 37, No. 10. P. 4336–4345. https://doi.org/10.1007/s12325-020-01470-3.; Kordossis T., Paikos S., Aroni K. et al. Prevalence of Sjögren’s-like syndrome in a cohort of HIV-1-positive patients: descriptive pathology and immunopathology // British journal of rheumatology. 1998. Vol. 37, No. 6. P. 691–695. https://doi.org/10.1093/rheumatology/37.6.691; Kuvardin E.S., Grigor’yeva I.N., Bekhtereva I.A., Maslyansky A.L., Krivolapov Yu.A., Belyakova E.A. Cellular composition of the minor salivary gland inflammatory infiltrates as an additional diagnostic criterion for primary Sjogren’s syndrome // Rheumatology Science and Practice. 2021. Vol. 59, No. 4. P. 434–441 (In Russ.)]. https://doi.org/10.47360/1995-4484-2021-434-441.; Российские клинические рекомендации. Ревматология / под ред. Е. Л. Насонова. М.: ГЭОТАР-Медиа, 2020. 182 с.; Vega L.E., Espinoza L.R. Vasculitides in HIV Infection // Current rheumatology reports. 2020. Vol. 22, No. 10. P. 60. https://doi.org/10.1007/s11926-020-00945-0.; Zhang X., Li H., Li T., Zhang F., Han Y. Distinctive rheumatic manifestations in 98 patients with human immunodeficiency virus infection in China // The Journal of rheumatology. 2007. Vol. 34, No. 8. P. 1760–1764.; Vornicu A., Obrișcă B., Sorohan B., Berechet A., Ismail G. ANCA-associated vasculitis in a HIV-infected patient:a case-based review // BMC nephrology. 2023. Vol. 24, No. 1. P. 210. https://doi.org/10.1186/s12882-023-03244-9.; De Paoli M.C., Moretti D., Scolari Pasinato C.M., Buncuga M.G. Púrpura de Schönlein-Henoch en adulto HIV positivo adicto a cocaína y ANCAp positivo . Spanish Medicina. 2016. Vol. 76, No. 4. P. 245–248.; Monteiro E.J., Caron D., Balda C.A. et al. Anti-glomerular basement membrane glomerulonephritis in an HIV positive patient: case report // The Brazilian journal of infectious diseases: an official publication of the Brazilian Society of Infectious Diseases. 2006. Vol. 10, No. 1. P. 55–58. https://doi.org/10.1590/s1413-86702006000100011.; Maharaj A.B. Rheumatoid arthritis and HIV-associated arthritis: Two sides of the same coin or different coins. Best practice research // Clinical rheumatology. 2022. Vol. 36, No. 1. P. 101739. https://doi.org/10.1016/j.berh.2021.101739.; Mody G.M., Parke F.A., Reveille, J.D. Articular manifestations of human immunodeficiency virus infection // Best practice and research // Clinical rheumatology. 2003. Vol. 17, No. 2. P. 265–287. https://doi.org/10.1016/s1521-6942(03)00003-2.; Lawson E., Walker-Bone K. The changing spectrum of rheumatic disease in HIV infection // British medical bulletin. 2012. Vol. 103, No. 1. P. 203–221. https://doi.org/10.1093/bmb/lds022.; Круглова Л.С., Переверзина Н.О. Риски инфекционных заболеваний у пациентов с псориазом кожи, принимающих генно-инженерные препараты: данные собственного исследования // Эффективная фармакотерапия. 2024. Т. 20, No. 1. С. 6–16. doi:10.33978/2307-3586-2024-20-1-6-16.; Ceccarelli M., Venanzi Rullo E., Vaccaro M. et al. HIV-associated psoriasis: Epidemiology, pathogenesis, and management // Dermatologic therapy. 2019. Vol. 32, No. 2. P. e12806. https://doi.org/10.1111/dth.12806.; Fink D.L., Hedley L., Miller R.F. Systematic review of the efficacy and safety of biological therapy for inflammatory conditions in HIV-infected individuals // International journal of STD AIDS. 2017. Vol. 28, No. 2. P. 110–119. https://doi.org/10.1177/0956462416675109.; Nakamura M., Abrouk M., Farahnik B., Zhu T. H., Bhutani T. Psoriasis treatment in HIV-positive patients: a systematic review of systemic immunosuppressive therapies // Cutis. 2018. Vol. 101, No. 1. P. 38–56.; Alpalhão M., Borges-Costa J., Filipe P. Psoriasis in HIV infection: an update // International journal of STD AIDS. 2019. Vol. 30, No. 6. P. 596– 604. https://doi.org/10.1177/0956462419827673.; Гриднева Г.И., Белов Б.С. Актуальные вопросы ведения пациентов с ВИЧ-инфекцией и ревматическими заболеваниями // Современная ревматология. 2021. Т. 15, № 6. C. 7–12. https://doi.org/10.14412/1996-7012-2021-6-7-12.; Елисеева М.Е., Елисеев М.С. Значение гиперурикемии в развитии заболеваний человека и методы ее коррекции // Доктор. Ру. 2019. Т. 2, № 157. С. 47–54. doi:10.31550/1727-2378-2019-157-2-47-54.; Creighton S., Miller R., Edwards S., Copas A., French P. Is ritonavir boosting associated with gout? // International journal of STD AIDS. 2005. Vol. 16, No. 5. P. 362–364. https://doi.org/10.1258/0956462053888907.; Nicholson P., Saunsbury E., D’Angelo S., Churchill D., Walker-Bone K. Prevalence of and risk factors for gout in HIV-positive adults: A casecontrol study // International journal of STD AIDS. 2019. Vol. 30, No. 3. P. 249–255. https://doi.org/10.1177/0956462418799803.; Afzal W., Wali O.M., Cervellione K.L., Singh B.B., Bagheri F. Coexistent Pseudogout and Mycobacterium avium-intracellulare Septic Arthritis in a Patient with HIV and ESRD // Case reports in rheumatology. 2016. 5495928. https://doi.org/10.1155/2016/5495928.; Hanberg J.S., Akgün K.M., Hsieh E., Fraenkel L., Justice A.C. Incidence and Presentation of Sarcoidosis With and Without HIV Infection // Open forum infectious diseases. 2020. Vol. 7, No. 10. ofaa441. https://doi.org/10.1093/ofid/ofaa441.; Foulon G., Wislez M., Naccache J. M. et al. Sarcoidosis in HIV-infected patients in the era of highly active antiretroviral therapy // Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2004. Vol. 38, No. 3. P. 418–425. https://doi.org/10.1086/381094.; Trevenzoli M., Cattelan A.M., Marino F., Marchioro U., Cadrobbi P. Sarcoidosis and HIV infection: a case report and a review of the literature // Postgraduate medical journal. 2003. Vol. 79, No. 935. P. 535–538. https://doi.org/10.1136/pmj.79.935.535.; Ibrahim I.A., Estaitieh O.M., Alrabee H.A., Alzahrani M. Sarcoidosis and HIV infection in a native Saudi man // BMJ case reports. 2018. bcr2018224386. https://doi.org/10.1136/bcr-2018-224386.; Adizie T., Moots R.J., Hodkinson B., French N., Adebajo A.O. Inflammatory arthritis in HIV positive patients: A practical guide // BMC infectious diseases. 2016. No. 16. Р. 100. https://doi.org/10.1186/s12879-016-1389-2.; Packham J., Arkell P., Sheeran T., Brownfield A., Cadwgan A., Ryan, S. Patient experiences, attitudes and expectations towards receiving information about anti-TNF medication: a quantitative study // Clinical rheumatology. 2017. Vol. 36, No. 11. P. 2595–2600. https://doi.org/10.1007/s10067-017-3642-5.; Pangilinan M. C. G., Sermswan P., Asawanonda P. Use of Anti-IL-17 Monoclonal Antibodies in HIV Patients with Erythrodermic Psoriasis // Case reports in dermatology. 2020. Vol. 12, No. 2. P. 132–137. https://doi.org/10.1159/000508781.; Di Lernia V., Casanova D. M., Garlassi E. Secukinumab in an HIV-positive patient with psoriasis // Journal der Deutschen Dermatologischen Gesellschaft=Journal of the German Society of Dermatology: JDDG. 2019. Vol. 17, No. 6. P. 646–648. https://doi.org/10.1111/ddg.13851.; Bartos G., Cline A., Beroukhim K., Burrall B. A., Feldman S. R. Current biological therapies for use in HIV-positive patients with psoriasis: case report of gesulkumab used and review // Dermatology online journal. 2018. Vol. 24, No. 11. 13030/qt3db748cg.; Paparizos V., Rallis E., Kirsten L., Kyriakis K. Ustekinumab for the treatment of HIV psoriasis // The Journal of dermatological treatment. 2012. Vol. 23, No. 6. P. 398–399. https://doi.org/10.3109/09546634.2011.579085.; Saeki H., Ito T., Hayashi M. et al. Successful treatment of ustekinumab in a severe psoriasis patient with human immunodeficiency virus infection // Journal of the European Academy of Dermatology and Venereology: JEADV. 2015. Vol. 29, No. 8. P. 1653–1655. https://doi.org/10.1111/jdv.12531.; Bardazzi F., Magnano M., Campanati A. et al. Biologic Therapies in HIV-infected Patients with Psoriasis: An Italian Experience // Acta dermato- venereologica. 2017. Vol. 97, No. 8. P. 989–990. https://doi.org/10.2340/00015555-2698.; Wang D.M., Fernandez A.P., Calabrese C.M., Calabrese L.H. Treatment of psoriasis with ustekinumab in a patient with HIV-related Kaposi sarcoma // Clinical and experimental dermatology. 2019. Vol. 44, No. 1. P. 113–115. https://doi.org/10.1111/ced.13630.; Cepeda E.J., Williams F.M., Ishimori M.L. et al. The use of anti-tumour necrosis factor therapy in HIV-positive individuals with rheumatic disease // Annals of the rheumatic diseases. 2008. Vol. 67, No. 5. P. 710–712. https://doi.org/10.1136/ard.2007.081513.; Wangsiricharoen S., Ligon C., Gedmintas L. et al. Rates of Serious Infections in HIV-Infected Patients Receiving Tumor Necrosis Factor Inhibitor Therapy for Concomitant Autoimmune Diseases // Arthritis care research. 2017. Vol. 69, No. 3. P. 449–452. https://doi.org/10.1002/acr.22955.; Narcisi A., Bernardini N., Orsini D. et al. Long-term safety and efficacy of adalimumab in psoriasis: a multicentric study focused on infections (connecting study) // Postepy dermatologii i alergologii. 2020. Vol. 37, No. 3. P. 428–434. https://doi.org/10.5114/ada.2020.96910.; Liang S.J., Zheng Q.Y., Yang Y. L. et al. Use of etanercept to treat rheumatoid arthritis in an HIV-positive patient: a case-based review // Rheumatology international. 2017. Vol. 37, No. 7. P. 1207–1212. https://doi.org/10.1007/s00296-017-3690-9.; Marcelin A.G., Aaron L., Mateus C. et al. Rituximab therapy for HIV-associated Castleman disease // Blood. 2003. Vol. 102, No. 8. P. 2786– 2788. https://doi.org/10.1182/blood-2003-03-0951.; Zalmanovich A., Ben-Ami R., Rahav G. et al. Rituximab identified as an independent risk factor for severe PJP: A case-control study // PloS Оne. 2020. Vol. 15, No. 9. P. e0239042. https://doi.org/10.1371/journal.pone.0239042.; Habbous S., Guo H., Beca J. et al. The effectiveness of rituximab and HIV on the survival of Ontario patients with diffuse large B-cell lymphoma // Cancer medicine. 2020. Vol. 9, No. 19. P. 7072–7082. https://doi.org/10.1002/cam4.3362.; Hoff P., Walther M., Wesselmann H. et al. Erfolgreiche Behandlung eines adulten Morbus Still mit Tofacitinib bei einer HIV-2-positiven Patientin [Successful treatment of adult Still’s disease with tofacitinib in a HIV-2 positive female patient] // Zeitschrift fur Rheumatologie. 2020. Vol. 79, No. 10. P. 1046–1049. https://doi.org/10.1007/s00393-020-00853-9.
-
4Academic Journal
Συγγραφείς: Loghin-Oprea, N., Șalaru, V.A., Stratulat, S.P., Mazur-Nicorici, L.M., Mazur, M.V.
Πηγή: Sănătate Publică, Economie şi Management în Medicină 102 (5) 39-45
Θεματικοί όροι: maladii reumatice, сахарный диабет, glucocorticoizi, diabetes, глюкокортикоиды, ревматические заболевания, diabet zaharat, hiperglicemie, rheumatic diseases, glucocorticosteroids, hyperglycemia, гипергликемия
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://ibn.idsi.md/vizualizare_articol/215757
-
5Academic Journal
Συγγραφείς: B. S. Belov, G. I. Gridneva, E. S. Aronova, N. V. Muravyeva
Πηγή: Антибиотики и Химиотерапия, Vol 68, Iss 1-2, Pp 69-76 (2023)
Θεματικοί όροι: иммуновоспалительные ревматические заболевания, рекомендации, туберкулёз, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, пневмоцистная пневмония, гепатит с, 3. Good health, 03 medical and health sciences, коморбидные инфекции, профилактика, 0302 clinical medicine, вирус иммунодефицита человека, скрининг, гепатит в, RC254-282
Σύνδεσμος πρόσβασης: https://doaj.org/article/de15e106e4634e25bdb449adc3b18a80
-
6Academic Journal
Πηγή: University Therapeutic Journal, Vol 6, Iss 1 (2024)
Θεματικοί όροι: ревматические заболевания, амбулаторный прием, противоревматическая терапия, Medicine
Σύνδεσμος πρόσβασης: https://doaj.org/article/615b73253c724fa68f65394567cc11fc
-
7Academic Journal
Πηγή: Российские биомедицинские исследования, Vol 9, Iss 1 (2024)
Θεματικοί όροι: Medicine (General), R5-920, ревматические заболевания, фибромиалгия, триптофан, 5-HTP, 5-гидрокситриптофан
Σύνδεσμος πρόσβασης: https://doaj.org/article/1be84775cfbc4a77971fd761757c02bd
-
8Academic Journal
Συγγραφείς: Petrova, Yu.V., Ivanova, R.L., Tugelbayeva, A.M., Zonova, E.V., Lobanov, Yu.F., Goremykina, М.V.
Πηγή: Наука и здравоохранение. :137-145
Θεματικοί όροι: rheumatoid arthritis, ревматические заболевания, ревматоидный артрит, gut microbiome, ревматоидты артрит, микробиота, 3. Good health, ішек микробиомы, ревматикалық аурулар, спондилоартропатиялар, microbiota, rheumatic diseases, спондилоартропатии, spondyloarthropathies, микробиом кишечника
-
9Academic Journal
Συγγραφείς: E. L. Nasonov, A. M. Lila, T. V. Dubinina, O. A. Nikininskaya, V. N. Amirdjanova
Πηγή: Научно-практическая ревматология, Vol 60, Iss 1, Pp 5-20 (2022)
Θεματικοί όροι: иммуновоспалительные ревматические заболевания, 03 medical and health sciences, 0302 clinical medicine, RC925-935, коронавирусная болезнь 2019, ревматоидный артрит, системная красная волчанка, Diseases of the musculoskeletal system
-
10Academic Journal
Συγγραφείς: T. V. Beketova, N. O. Levina, Yu. A. Uskova, I. V. Rozanova, M. V. Dubinskaia, S. A. Evdokimova, V. V. Babak, M. F. Beketova, A. V. Devyatkin, Т. В. Бекетова, Н. О. Левина, Ю. А. Ускова, И. В. Розанова, М. В. Дубинская, С. А. Евдокимова, В. В. Бабак, М. Ф. Бекетова, А. В. Девяткин
Πηγή: Rheumatology Science and Practice; Vol 62, No 5 (2024); 465-473 ; Научно-практическая ревматология; Vol 62, No 5 (2024); 465-473 ; 1995-4492 ; 1995-4484
Θεματικοί όροι: иммуновоспалительные ревматические заболевания, Cilgavimab, virus-neutralizing monoclonal antibodies, COVID-19, rituximab, ANCA-associated systemic vasculitis, inflammatory rheumatic diseases, цилгавимаб, вируснейтрализующие моноклональные антитела, коронавирусная болезнь 2019, ритуксимаб, АНЦА-ассоциированный системный васкулит
Περιγραφή αρχείου: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3632/2400; Keating SM, Higgins BW. New technologies in therapeutic antibody development: The next frontier for treating infectious diseases. Antiviral Res. 2024;227:105902. doi:10.1016/j.antiviral.2024.105902; Насонов ЕЛ. Пандемия коронавирусной болезни 2019 (COVID-19) и аутоиммунные ревматические заболевания: итоги и перспективы. Научно-практическая ревматология. 2024;62(1):32-54.; Venkat R, Wallace ZS, Sparks JA. Considerations for pharmacologic management of rheumatoid arthritis in the COVID-19 era: A narrative review. Curr Rheumatol Rep. 2023;25(11):236-245. doi:10.1007/s11926-023-01111-y; Singson JRC, Kirley PD, Pham H, Rothrock G, Armistead I, Meek J, et al. Factors associated with severe outcomes among immunocompromised adults hospitalized for COVID-19 – COVID-NET, 10 states, March 2020–February 2022. MMWR Morb Mortal Wkly Rep. 2022;71(27):878-884. doi:10.15585/mmwr.mm7127a3; Spiera R, Jinich S, Jannat-Khah D. Rituximab, but not other antirheumatic therapies, is associated with impaired serological response to SARS- CoV-2 vaccination in patients with rheumatic diseases. Ann Rheum Dis. 2021;80(10):1357-1359. doi:10.1136/annrheumdis-2021-220604; Насонов ЕЛ, Авдеева АС. Деплеция В-клеток при иммуново-спалительных ревматических заболеваниях и коронавирусная болезнь 2019 (COVID-19). Научно-практическая ревматология. 2021;59(4):384-393.; Куликов АН, Муравьева НВ, Белов БС. Факторы риска тяжелого течения COVID-19 у больных ревматическими заболеваниями. Научно-практическая ревматология. 2024;62(1):24-31.; Spelman T, Forsberg L, McKay K, Glaser A, Hillert J. Increased rate of hospitalisation for COVID-19 among rituximab-treated multiple sclerosis patients: A study of the Swedish multiple sclerosis registry. Mult Scler. 2022;28:1051-1059. doi:10.1177/13524585211026272; Singh N, Madhira V, Hu C, Olex AL, Bergquist T, Fitzgerald KC, et al. Rituximab is associated with worse COVID-19 outcomes in patients with rheumatoid arthritis: A retrospective, nationally sampled cohort study from the U.S. National COVID Cohort Collaborative (N3C). Semin Arthritis Rheum. 2023;58:152149. doi:10.1016/j.semarthrit.2022.152149; Meijer SE, Paran Y, Belkin A, Ben-Ami R, Maor Y, Nesher L, et al. Persistent COVID-19 in immunocompromised patients-Israeli society of infectious diseases consensus statement on diagnosis and management. Clin Microbiol Infect. 2024;30(8):1012-1017. doi:10.1016/j.cmi.2024.04.009; Feng S, Reid GE, Clark NM, Harrington A, Uprichard SL, Baker SC. Evidence of SARS-CoV-2 convergent evolution in immunosuppressed patients treated with antiviral therapies. Virol J. 2024;21(1):105. doi:10.1186/s12985-024-02378-y; US Food and Drug Administration. Fact sheet for healthcare providers: Emergency use authorization for Evusheld (tixagevimab copackaged with cilgavimab). 2023. URL: https://www.fda.gov/media/154701/download (Accessed: 15th June 2024); Временные методические рекомендации по профилактике, диагностике и лечению новой коронавирусной инфекции (COVID-19), версия 17. 2021.; Loo YM, McTamney PM, Arends RH, Abram ME, Aksyuk AA, Diallo S, et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci Transl Med. 2022;14(635):eabl8124. doi:10.1126/scitranslmed.abl8124; Levin MJ, Ustianowski A, De Wit S, Launay O, Avila M, Templeton A, et al.; PROVENT Study Group. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for prevention of Covid-19. N Engl J Med. 2022;386(23):2188-2200. doi:10.1056/NEJMoa2116620; Forte-Soto P, Albayaty M, Brooks D, Arends RH, Tillinghast J, Aksyuk AA, et al. Safety, tolerability and pharmacokinetics of halflife extended severe acute respiratory syndrome coronavirus 2 neutralizing monoclonal antibodies AZD7442 (Tixagevimab-Cilgavimab) in healthy adults. J Infect Dis. 2023;227(10):1153-1163. doi:10.1093/infdis/jiad014; Cox M, Peacock TP, Harvey WT, Hughes J, Wright DW; COVID-19 Genomics UK (COG-UK) Consortium, et al. SARSCoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol. 2023;21(2):112-124. doi:10.1038/s41579-022-00809-7; Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ, Лила АМ, Ананьева ЛП, Лисицина ТА, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-367.; Бекетова ТВ, Левина НО, Дубинская МВ, Ускова ЮА, Розанова ИВ, Бабак ВВ, и др. Опыт применения тиксагевимаба и цилгавимаба (Эвушелд) у 86 ревматологических пациентов, получающих анти-В-клеточную терапию ритуксимабом. Научно-практическая ревматология. 2023;61(2):158-164.; Бекетова ТВ, Бабак ВВ, Супрун МД. Течение и исходы COVID-19 у пациентов с АНЦА-ассоциированными системными васкулитами, получающих лечение генно-инженерными биологическими препаратами (ритуксимаб, меполизумаб): итоги первых 8 месяцев пандемии. Научно-практическая ревматология. 2021;59(1):37-46.; Роппельт АА, Лебедкина МС, Чернов АА, Круглова ТС, Мухина ОА, Юхновская ЮД, и др. Доконтактная профилактика новой коронавирусной инфекции COVID-19 препаратом тиксагевимаб/цилгавимаб у взрослых московских пациентов с первичными иммунодефицитами. Терапевтический архив. 2023;95(1):78-84.; Najjar-Debbiny R, Gronich N, Weber G, Stein N, Saliba W. Effectiveness of Evusheld in immunocompromised patients: Propensity score-matched analysis. Clin Infect Dis. 2023;76(6):1067-1073. doi:10.1093/cid/ciac855; Литвинова МА, Буланов НМ, Новиков ПИ, Филатова ЕЕ, Скворцов АВ, Климкина ИС, и др. Применение тиксагевимаба и цилгавимаба (Эвушелд) для доконтактной профилактики COVID-19 у пациентов с АНЦА-ассоциированными васкулитами: проспективное исследование. Клиническая фармакология и терапия. 2023;32(4):24-29.; Sciascia S, Rilat MLA, Fenoglio R, Foddai SG, Radin M, Cecchi I, et al. Safety and efficacy of pre-exposure prophylaxis with tixagevimab/cilgavimab (Evusheld) in patients with glomerular diseases who received rituximab. Clin Kidney J. 2023;16(9):1465-1468. doi:10.1093/ckj/sfad111; Jakimovski D, Eckert SP, Mirmosayyeb O, Thapa S, Pennington P, Hojnacki D, et al. Tixagevimab and Cilgavimab (Evusheld ™) prophylaxis prevents breakthrough COVID-19 infections in immunosuppressed population: 6-month prospective study. Vaccines (Basel). 2023;11(2):350. doi:10.3390/vaccines11020350; Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. doi:10.1038/s41579-022-00846-2; Nalbandian A, Desai AD, Wan EY. Post-COVID-19 condition. Annu Rev Med. 2023;74:55-64. doi:10.1146/annurevmed-043021-030635; Бекетова МФ, Бабак ВВ, Супрун МД, Бекетова ТВ, Георгинова ОА. К вопросу поздних осложнений COVID-19 у пациентов с ревматическими заболеваниями. Научно-практическая ревматология. 2022;60(2):162-164.; McCarthy MW. Paxlovid as a potential treatment for long COVID. Expert Opin Pharmacother. 2023;24(17):1839-1843. doi:10.1080/14656566.2023.2262387; McCarthy MW. Intravenous immunoglobulin as a potential treatment for long COVID. Expert Opin Biol Ther. 2023;23(12):1211-1217. doi:10.1080/14712598.2023.2296569
-
11Academic Journal
Συγγραφείς: Е. L. Nasonov, Т. S. Panevin, Е. А. Troshina, Е. Л. Насонов, Т. С. Паневин, Е. А. Трошина
Πηγή: Rheumatology Science and Practice; Vol 62, No 2 (2024); 135-144 ; Научно-практическая ревматология; Vol 62, No 2 (2024); 135-144 ; 1995-4492 ; 1995-4484
Θεματικοί όροι: дулаглутид, immune-mediated rheumatic diseases, exenatide, liraglutide, semaglutide, dulaglutide, иммуновоспалительные ревматические заболевания, эксенатид, лираглутид, семаглутид
Περιγραφή αρχείου: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3542/2359; World Health Organization. Obesity: Preventing and managing the global epidemic: Report of a WHO consultation. World Health Organization; 2000.; Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, et al. Determinants and consequences of obesity. Am J Public Health. 2016;106(9):1656-1662. doi:10.2105/AJPH.2016.303326.7; Lobstein T, Jackson-Leach R, Powis J, Brinsden H, Gray M. World obesity atlas. 2023. URL: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023; Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol. 2020;49(3):810-823. doi:10.1093/ije/dyz273; Mogilenko DA, Sergushichev A, Artyomov MN. Systems immunology approaches to metabolism. Annu Rev Immunol. 2023;41:317-342. doi:10.1146/annurev-immunol-101220-031513; Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, et al. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med. 2023;15(723):eadf9382. doi:10.1126/scitranslmed.adf9382; Lim Y, Boster J. Obesity and comorbid conditions. Treasure Island (FL):StatPearls Publishing;2024. URL: https://www.ncbi.nlm.nih.gov/books/NBK574535; Nikiphorou E, Fragoulis GE. Inflammation, obesity and rheumatic disease: Common mechanistic links. A narrative review. Ther Adv Musculoskelet Dis. 2018;10(8):157-167. doi:10.1177/1759720X18783894; Shumnalieva R, Kotov G, Ermencheva P, Monov S. Pathogenic mechanisms and therapeutic approaches in obesity-related knee osteoarthritis. Biomedicines. 2023;12(1):9. doi:10.3390/biomedicines12010009; Wijesinghe SN, Badoume A, Nanus DE, Sharma-Oates A, Farah H, Certo M, et al. Obesity defined molecular endotypes in the synovium of patients with osteoarthritis provides a rationale for therapeutic targeting of fibroblast subsets. Clin Transl Med. 2023;13(4):e1232. doi:10.1002/ctm2.1232; Li X, Zhu J, Zhao W, Zhu Y, Zhu L, Shi R, et al. The causal effect of obesity on the risk of 15 autoimmune diseases: A Mendelian randomization study. Obes Facts. 2023;16(6):598-605. doi:10.1159/000534468; Sandberg ME, Bengtsson C, Källberg H, Wesley A, Klareskog L, Alfredsson L, et al. Overweight decreases the chance of achieving good response and low disease activity in early rheumatoid arthritis. Ann Rheum Dis. 2014;73(11):2029-2033. doi:10.1136/annrheumdis-2013-205094; Hollander NKD, Boeren AMP, van der Helm-van Mil AHM, van Steenbergen HW. Patients with obesity have more inflamed joints and higher CRP levels during the disease course in ACPApositive RA but not in ACPA-negative RA. Arthritis Res Ther. 2024;26(1):42. doi:10.1186/s13075-023-03248-8; Schulman E, Bartlett SJ, Schieir O, Andersen KM, Boire G, Pope JE, et al. Overweight, obesity, and the likelihood of achieving sustained remission in early rheumatoid arthritis: Results from a multicenter prospective cohort study. Arthritis Care Res (Hoboken). 2018;70(8):1185-1191. doi:10.1002/acr.23457; Lupoli R, Pizzicato P, Scalera A, Ambrosino P, Amato M, Peluso R, et al. Impact of body weight on the achievement of minimal disease activity in patients with rheumatic diseases: A systematic review and meta-analysis. Arthritis Res Ther. 2016;18(1):297. doi:10.1186/s13075-016-1194-8; Eder L, Thavaneswaran A, Chandran V, Cook RJ, Gladman DD. Obesity is associated with a lower probability of achieving sustained minimal disease activity state among patients with psoriatic arthritis. Ann Rheum Dis. 2015;74(5):813-817. doi:10.1136/annrheumdis-2013-204448; Liew JW, Gianfrancesco MA, Heckbert SR, Gensler LS. Relationship between body mass index, disease activity, and exercise in ankylosing spondylitis. Arthritis Care Res (Hoboken). 2022;74(8):1287-1293. doi:10.1002/acr.24565; Liew JW, Huang IJ, Louden DN, Singh N, Gensler LS. Association of body mass index on disease activity in axial spondyloarthritis: Systematic review and meta-analysis. RMD Open. 2020;6(1):e001225. doi:10.1136/rmdopen-2020-001225; Gomez A, Hani Butrus F, Johansson P, Åkerström E, Soukka S, Emamikia S, et al. Impact of overweight and obesity on patientreported health-related quality of life in systemic lupus erythematosus. Rheumatology (Oxford). 2021;60(3):1260-1272. doi:10.1093/rheumatology/keaa453; Borg A, Lindblom J, Gomez A, Soltani A, Enman Y, Heintz E, et al. Obesity is associated with pain and impaired mobility despite therapy in systemic lupus erythematosus. Front Med (Lausanne). 2023;10:1247354. doi:10.3389/fmed.2023.1247354; Choi EW, Kim HJ, Jung YC, Go HS, Seong JK. Effects of high fat diet-induced obesity on pathophysiology, immune cells, and therapeutic efficacy in systemic lupus erythematosus. Sci Rep. 2022;12(1):18532. doi:10.1038/s41598-022-21381-3; Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I. Obesity, inflammation, and immune system in osteoarthritis. Front Immunol. 2022;13:907750. doi:10.3389/fimmu.2022.907750; Zhang X, Gao L, Meng H, Zhang A, Liang Y, Lu J. Obesity alters immunopathology in cancers and inflammatory diseases. Obes Rev. 2023;24(12):e13638. doi:10.1111/obr.13638; Neumann E, Hasseli R, Ohl S, Lange U, Frommer KW, Müller-Ladner U. Adipokines and autoimmunity in inflammatory arthritis. Cells. 2021;10(2):216. doi:10.3390/cells10020216; Frasca D, Romero M, Diaz A, Blomberg BB. Obesity accelerates age defects in B cells, and weight loss improves B cell function. Immun Ageing. 2023;20(1):35. doi:10.1186/s12979-023-00361-9; Zhang X, Meng J, Shi X, Quinet RJ, Davis W, Zakem J, et al. Lupus pathogenesis and autoimmunity are exacerbated by high fat diet-induced obesity in MRL/lpr mice. Lupus Sci Med. 2023;10(1):e000898. doi:10.1136/lupus-2023-000898; Matarese G. The link between obesity and autoimmunity. Science. 2023;379(6639):1298-1300. doi:10.1126/science.ade0113; Gialouri CG, Pappa M, Evangelatos G, Nikiphorou E, Fragoulis GE. Effect of body mass index on treatment response of biologic/targetedsynthetic DMARDs in patients with rheumatoid arthritis, psoriatic arthritis or axial spondyloarthritis. A systematic review. Autoimmun Rev. 2023;22(7):103357. doi:10.1016/j.autrev.2023.103357; Buch MH, Eyre S, McGonagle D. Persistent inflammatory and noninflammatory mechanisms in refractory rheumatoid arthritis. Nat Rev Rheumatol. 2021;17(1):17-33. doi:10.1038/s41584-020-00541-7; Tan Y, Buch MH. ‘Difficult to treat’ rheumatoid arthritis: Current position and considerations for next steps. RMD Open. 2022;8(2):e002387. doi:10.1136/rmdopen-2022-002387; Singla S, Ribeiro A, Torgutalp M, Mease PJ, Proft F. Difficultto-treat psoriatic arthritis (D2T PsA): A scoping literature review informing a GRAPPA research project. RMD Open. 2024;10(1):e003809. doi:10.1136/rmdopen-2023-003809; Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-271. doi:10.14412/1995-4484-2018-263-271; Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: An endocrine society scientific statement. Endocr Rev. 2018;39(2):79-132. doi:10.1210/er.2017-00253; Kloock S, Ziegler CG, Dischinger U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacol Ther. 2023;251:108549. doi:10.1016/j.pharmthera.2023.108549; Galindo RJ, Trujillo JM, Low Wang CC, McCoy RG. Advances in the management of type 2 diabetes in adults. BMJ Med. 2023;2(1):e000372. doi:10.1136/bmjmed-2022-000372; Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab. 2022;57:101351. doi:10.1016/j.molmet.2021.101351; Tomas A, Jones B, Leech C. New insights into beta-cell GLP-1 receptor and cAMP signaling. J Mol Biol. 2020;432(5):1347-1366. doi:10.1016/j.jmb.2019.08.009; Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol Metab. 2021;46:101102. doi:10.1016/j.molmet.2020.101102; Mariam Z, Niazi SK. Glucagon-like peptide agonists: A prospective review. Endocrinol Diabetes Metab. 2024;7(1):e462. doi:10.1002/edm2.462; Галстян ГР, Каратаева ЕА, Юдович ЕА. Эволюция агонистов рецепторов глюкагоноподобного пептида-1 в терапии сахарного диабета 2 типа. Сахарный диабет. 2017;20(4):286-298. doi:10.14341/DM8804; Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, et al. Glucagon-like peptide-1: A multi-faceted anti-inflammatory agent. Front Immunol. 2023;14:1148209. doi:10.3389/fimmu.2023.1148209; Chen J, Mei A, Wei Y, Li C, Qian H, Min X, et al. GLP-1 receptor agonist as a modulator of innate immunity. Front Immunol. 2022;13:997578. doi:10.3389/fimmu.2022.997578; Bendotti G, Montefusco L, Lunati ME, Usuelli V, Pastore I, Lazzaroni E, et al. The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharmacol Res. 2022;182:106320. doi:10.1016/j.phrs.2022.106320; Kim JW, Choe JY, Park SH. Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. Korean J Intern Med. 2022;37(1):13-26. doi:10.3904/kjim.2021.363; Nojima I, Wada J. Metformin and its immune-mediated effects in various diseases. Int J Mol Sci. 2023;24(1):755. doi:10.3390/ijms24010755; Salvatore T, Pafundi PC, Galiero R, Gjeloshi K, Masini F, Acierno C, et al. Metformin: A potential therapeutic tool for rheumatologists. Pharmaceuticals (Basel). 2020;13(9):234. doi:10.3390/ph13090234; Bharath LP, Nikolajczyk BS. The intersection of metformin and inflammation. Am J Physiol Cell Physiol. 2021;320(5):C873-C879. doi:10.1152/ajpcell.00604.2020; Насонов ЕЛ. Метотрексат при ревматоидном артрите – 2015: новые факты и идеи. Научно-практическая ревматология. 2015;53(4):421-433. doi:10.14412/1995-4484-2015-421-433; Baghdadi LR. Effect of methotrexate use on the development of type 2 diabetes in rheumatoid arthritis patients: A systematic review and meta-analysis. PLoS One. 2020;15(7):e0235637. doi:10.1371/journal.pone.0235637; Kingsmore KM, Grammer AC, Lipsky PE. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol. 2020;16(1):32-52. doi:10.1038/s41584-019-0337-0; Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41-58. doi:10.1038/nrd.2018.168; Qin C, Diaz-Gallo LM, Tang B, Wang Y, Nguyen TD, Harder A, et al. Repurposing antidiabetic drugs for rheumatoid arthritis: Results from a two-sample Mendelian randomization study. Eur J Epidemiol. 2023;38(7):809-819. doi:10.1007/s10654-023-01000-9; Karpouzas GA, Husni ME. Cardiovascular comorbidities in inflammatory rheumatic diseases. Rheum Dis Clin North Am. 2023;49(1):XV-XVI. doi:10.1016/j.rdc.2022.09.001; Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745-1759. doi:10.1016/S0140-6736(19)30417-9; Weng Q, Chen Q, Jiang T, Zhang Y, Zhang W, Doherty M, et al. Global burden of early-onset osteoarthritis, 1990–2019: Results from the Global Burden of Disease Study 2019. Ann Rheum Dis. 2024:ard-2023-225324. doi:10.1136/ard-2023-225324; Alexander LAM, Ln D, Eg Z, Is D, Ay K, Ss R, et al. Pharmacological management of osteoarthritis with a focus on symptomatic slow-acting drugs: Recommendations from leading Russian experts. J Clin Rheumatol. 2021;27(8):e533-e539. doi:10.1097/RHU.0000000000001507; Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2020; 72(2):149-162. doi:10.1002/acr.24131; Bruyère O, Honvo G, Veronese N, Arden NK, Branco J, Curtis EM, et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin Arthritis Rheum. 2019;49(3):337-350. doi:10.1016/j.semarthrit.2019.04.008; Salman LA, Ahmed G, Dakin SG, Kendrick B, Price A. Osteoarthritis: A narrative review of molecular approaches to disease management. Arthritis Res Ther. 2023;25(1):27. doi:10.1186/s13075-023-03006-w; Shumnalieva R, Kotov G, Monov S. Obesity-related knee osteoarthritis – Current concepts. Life (Basel). 2023;13(8):1650. doi:10.3390/life13081650; Batushansky A, Zhu S, Komaravolu RK, South S, MehtaD’souza P, Griffin TM. Fundamentals of OA. An initiative of osteoarthritis and cartilage. Obesity and metabolic factors in OA. Osteoarthritis Cartilage. 2022;30(4):501-515. doi:10.1016/j.joca.2021.06.013; D’Apuzzo MR, Novicoff WM, Browne JA. The John Insall Award: Morbid obesity independently impacts complications, mortality, and resource use after TKA. Clin Orthop Relat Res. 2015;473(1):57- 63. doi:10.1007/s11999-014-3668-9; Lawrence KW, Sobba W, Rajahraman V, Schwarzkopf R, Rozell JC. Does body mass index influence improvement in patient reported outcomes following total knee arthroplasty? A retrospective analysis of 3918 cases. Knee Surg Relat Res. 2023;35(1):21. doi:10.1186/s43019-023-00195-1; Chen L, Jia C, Yang H. Causal effect of higher glycated hemoglobin (HbA1c) levels on knee osteoarthritis risk: A Mendelian randomization study. Rheumatol Ther. 2023;10(1):239-247. doi:10.1007/s40744-022-00510-4; Weijers JM, Müskens WD, van Riel PLCM. Effect of significant weight loss on disease activity: Reason to implement this nonpharmaceutical intervention in daily clinical practice. RMD Open. 2021;7:e001498. doi:10.1136/rmdopen-2020-001498; Mobasheri A, Saarakkala S, Finnilä M, Karsdal MA, Bay-Jensen AC, van Spil WE. Recent advances in understanding the phenotypes of osteoarthritis. F1000Res. 2019;8:F1000 Faculty Rev-2091. doi:10.12688/f1000research.20575.1; Katsoula G, Kreitmaier P, Zeggini E. Insights into the molecular landscape of osteoarthritis in human tissues. Curr Opin Rheumatol. 2022;34(1):79-90. doi:10.1097/BOR.0000000000000853; Calvet J, García-Manrique M, Berenguer-Llergo A, Orellana C, Cirera SG, Llop M, et al. Metabolic and inflammatory profiles define phenotypes with clinical relevance in female knee osteoarthritis patients with joint effusion. Rheumatology (Oxford). 2023;62(12):3875-3885. doi:10.1093/rheumatology/kead135; Schadler P, Lohberger B, Thauerer B, Faschingbauer M, Kullich W, Stradner MH, et al. The association of blood biomarkers and body mass index in knee osteoarthritis: A cross-sectional study. Cartilage. 2022;13(1):19476035211069251. doi:10.1177/19476035211069251; Angelini F, Widera P, Mobasheri A, Blair J, Struglics A, Uebelhoer M, et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann Rheum Dis. 2022;81(5):666-675. doi:10.1136/annrheumdis-2021-221763; Nanus DE, Wijesinghe SN, Pearson MJ, Hadjicharalambous MR, Rosser A, Davis ET, Lindsay MA, et al. Regulation of the inflammatory synovial fibroblast phenotype by metastasis-associated lung adenocarcinoma transcript 1 long noncoding RNA in obese patients with osteoarthritis. Arthritis Rheumatol. 2020;72(4):609- 619. doi:10.1002/art.41158; Pearson MJ, Herndler-Brandstetter D, Tariq MA, Nicholson TA, Philp AM, Smith HL, et al. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep. 2017;7(1):3451. doi:10.1038/s41598-017-03759-w; Wijesinghe SN, Nicholson T, Tsintzas K, Jones SW. Involvements of long noncoding RNAs in obesity-associated inflammatory diseases. Obes Rev. 2021;22(4):e13156. doi:10.1111/obr.13156; Zhao G, Zhu S, Zhang F, Zhang X, Zhang X, Li T, et al. Global burden of osteoarthritis associated with high body mass index in 204 countries and territories, 1990–2019: Findings from the Global Burden of Disease Study 2019. Endocrine. 2023;79(1):60-71. doi:10.1007/s12020-022-03201-w; Liu M, Jin F, Yao X, Zhu Z. Disease burden of osteoarthritis of the knee and hip due to a high body mass index in China and the USA: 1990–2019 findings from the global burden of disease study 2019. BMC Musculoskelet Disord. 2022;23(1):63. doi:10.1186/s12891-022-05027-z; Messier SP, Beavers DP, Queen K, Mihalko SL, Miller GD, Losina E, et al. Effect of diet and exercise on knee pain in patients with osteoarthritis and overweight or obesity: A randomized clinical trial. JAMA. 2022;328(22):2242-2251. doi:10.1001/jama.2022.21893; He M, Lu B, Opoku M, Zhang L, Xie W, Jin H, et al. Metformin prevents or delays the development and progression of osteoarthritis: New insight and mechanism of action. Cells. 2022;11(19):3012. doi:10.3390/cells11193012; Song Y, Wu Z, Zhao P. The effects of metformin in the treatment of osteoarthritis: Current perspectives. Front Pharmacol. 2022;13: 952560. doi:10.3389/fphar.2022.952560; Lai FTT, Yip BHK, Hunter DJ, Rabago DP, Mallen CD, Yeoh EK, et al. Metformin use and the risk of total knee replacement among diabetic patients: A propensity-score-matched retrospective cohort study. Sci Rep. 2022;12(1):11571. doi:10.1038/s41598-022-15871-7; Baker MC, Sheth K, Liu Y, Lu D, Lu R, Robinson WH. Development of osteoarthritis in adults with type 2 diabetes treated with metformin vs a sulfonylurea. JAMA Netw Open. 2023;6(3):e233646. doi:10.1001/jamanetworkopen.2023.3646; Alimoradi N, Tahami M, Firouzabadi N, Haem E, Ramezani A. Metformin attenuates symptoms of osteoarthritis: Role of genetic diversity of Bcl2 and CXCL16 in OA. Arthritis Res Ther. 2023;25(1):35. doi:10.1186/s13075-023-03025-7; Alharbi SH. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther Adv Endocrinol Metab. 2024;15:20420188231222367. doi:10.1177/20420188231222367; Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, Rittig N, et al. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 2024;36(1):130-143.e5. doi:10.1016/j.cmet.2023.11.009; Meurot C, Jacques C, Martin C, Sudre L, Breton J, Rattenbach R, et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat. 2022;32:121-129. doi:10.1016/j.jot.2022.02.001; Nauck M. Incretin therapies: Highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metabol. 2016;18:203-216. doi:10.1111/dom.12591; Kim S, Jeong J, Jung HS, Kim B, Kim YE, Lim DS, et al. Antiinflammatory effect of glucagon like peptide-1 receptor agonist, exendin-4, through modulation of IB1/JIP1 expression and JNK signaling in stroke. Exp Neurobiol. 2017;26(4):227-239. doi:10.5607/en.2017.26.4.227; Parthsarathy V, Holscher C. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur J Pharmacol. 2013;700:42-50. doi:10.1016/j.ejphar.2012.12.012; Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S, et al. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab. 2012;97(1):198-207. doi:10.1210/jc.2011-1508; Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J-I. Glucagon-like peptide-1 inhibits LPS-induced IL-1β production in cultured rat astrocytes. Neurosci Res. 2006;55:352-360. doi:10.1016/j.neures.2006.04.008; Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625-635. doi:10.1038/nrrheum.2010.159; Culemann S, Grüneboom A, Nicolás-Ávila JÁ, Weidner D, Lämmle KF, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572(7771):670-675. doi:10.1038/s41586-019-1471-1; Wang N, Liu X, Shi L, Liu Y, Guo S, Liu W, et al. Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomater Sci. 2020;8(6):1604-1614. doi:10.1039/c9bm01426h; Que Q, Guo X, Zhan L, Chen S, Zhang Z, Ni X, et al. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J Inflamm (Lond). 2019;16:13. doi:10.1186/s12950-019-0218-y; Berenbaum F, Meurot C, Breton J, Sudre L, Bougault C, Rattenbach R, et al. THU0055 Anti-degradative and pro-chondrogenic properties of liraglutide, a glucagon-like peptide 1 receptor agonist: Evidence from preclinical studies and implication for osteoarthritis. Ann Rheum Dis. 2020;79:1-239. doi:10.1136/annrheumdis2020-eular.4606; Chen J, Xie JJ, Shi KS, Gu YT, Wu CC, Xuan J, et al. Glucagonlike peptide-1 receptor regulates endoplasmic reticulum stressinduced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis. 2018;9(2):212. doi:10.1038/s41419-017-0217-y; Feng Y, Su L, Zhong X, Guohong W, Xiao H, Li Y, et al. Exendin-4 promotes proliferation and differentiation of MC3T3- E1 osteoblasts by MAPKs activation. J Mol Endocrinol. 2016;56(3):189-199. doi:10.1530/JME-15-0264; Berenbaum F, Meurot C, Martin C, Breton J, Jacques C, Favret J, et al. Beneficial structural impact of liraglutide, a GLP1 receptor agonist, in three inflammatory and post-traumatic OA animal models. Arthritis Rheumatol. 2022; 74(Suppl 9). https://acrabstracts.org/abstract/beneficial-structural-impact-of-liraglutidea-glp1-receptor-agonist-in-three-inflammatory-and-post-traumatic-oa-animal-models/.; Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12. doi:10.1186/1472-6793-11-12; Pacheco-Pantoja EL, Dillon JP, Wilson PJ, Fraser WD, Gallagher JA. c-Fos induction by gut hormones and extracellular ATP in osteoblastic-like cell lines. Purinergic Signal. 2016;12(4):647- 651. doi:10.1007/s11302-016-9526-3; Mohsin S, Baniyas MM, AlDarmaki RS, Tekes K, Kalász H, Adeghate EA. An update on therapies for the treatment of diabetes-induced osteoporosis. Expert Opin Biol Ther. 2019;19(9):937-948. doi:10.1080/14712598.2019.1618266; Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C. Regulation of adipocyte formation by GLP-1/GLP1R signaling. J Biol Chem. 2012;287(9):6421-6430. doi:10.1074/jbc.M111.310342; Sanz C, Vázquez P, Blázquez C, Barrio PA, Alvarez Mdel M, Blázquez E. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab. 2010;298(3):E634-E643. doi:10.1152/ajpendo.00460.2009; Jolivalt CG, Fineman M, Deacon CF, Carr RD, Calcutt NA. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diabetes Obes Metab. 2011;13(11):990-1000. doi:10.1111/j.1463-1326.2011.01431.x; Gong N, Xiao Q, Zhu B, Zhang CY, Wang YC, Fan H, et al. Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J Neurosci. 2014;34(15):5322- 5334. doi:10.1523/JNEUROSCI.4703-13.2014; Vincent TL. Peripheral pain mechanisms in osteoarthritis. Pain. 2020;161(Suppl 1):S138-S146. doi:10.1097/j.pain.0000000000001923; Huang XM, Zhong X, Du YJ, Guo YY, Pan TR. Effects of glucagon-like peptide-1 receptor agonists on glucose excursion and inflammation in overweight or obese type 2 diabetic patients. World J Diabetes. 2023;14(8):1280-1288. doi:10.4239/wjd.v14.i8.1280; Gudbergsen H, Overgaard A, Henriksen M, Wæhrens EE, Bliddal H, Christensen R, et al. Liraglutide after diet-induced weight loss for pain and weight control in knee osteoarthritis: A randomized controlled trial. Am J Clin Nutr. 2021;113(2):314-323. doi:10.1093/ajcn/nqaa328; Zhu H, Zhou L, Wang Q, Cai Q, Yang F, Jin H, et al. Glucagonlike peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: Findings from the Shanghai Osteoarthritis Cohort. Ann Rheum Dis. 2023;82(9):1218-1226. doi:10.1136/ard-2023-223845; Елисеев МС, Паневин ТС, Желябина ОВ, Насонов ЕЛ. Перспективы применения метформина у пациентов с нарушением уратного обмена. Терапевтический архив. 2021;93 (5):628- 634. doi:10.26442/00403660.2021.05.200795; Abdallah MS, Alarfaj SJ, Saif DS, El-Naggar ME, Elsokary MA, Elsawah HK, et al. The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: A proofof-concept, randomized, double-blind, placebo-controlled trial. Int Immunopharmacol. 2021;95:107575. doi:10.1016/j.intimp.2021.107575; Thornton CC, Al-Rashed F, Calay D, Birdsey GM, Bauer A, Mylroie H, et al. Methotrexate-mediated activation of an AMPKCREB-dependent pathway: A novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis. 2016;75(2):439-448. doi:10.1136/annrheumdis-2014-206305; Kreiner FF, von Scholten BJ, Kurtzhals P, Gough SCL. Glucagon-like peptide-1 receptor agonists to expand the healthy lifespan: Current and future potentials. Aging Cell. 2023;22(5):e13818. doi:10.1111/acel.13818; Karacabeyli D, Lacaille D. Glucagon-like peptide 1 receptor agonists in patients with inflammatory arthritis or psoriasis: A scoping review. J Clin Rheumatol. 2024;30(1):26-31. doi:10.1097/RHU.0000000000001949; Vilarrasa E, Nicolau J, de la Cueva P, Goday A, Gallardo F, Martorell A, et al. Glucagon-like peptide-1 agonists for treating obesity in patients with immune-mediated skin diseases. Actas Dermosifiliogr. 2024;115(1):56-65. doi:10.1016/j.ad.2023.06.017; Rajagopal S, Alruwaili F, Mavratsas V, Serna MK, Murthy VL, Raji M. Glucagon-like peptide-1 receptor agonists in the treatment of idiopathic inflammatory myopathy: From mechanisms of action to clinical applications. Cureus. 2023;15(12):e51352. doi:10.7759/cureus.51352; Du X, Zhang H, Zhang W, Wang Q, Wang W, Ge G, et al. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol. 2019;75:105732. doi:10.1016/j.intimp.2019.105732; Tao Y, Ge G, Wang Q, Wang W, Zhang W, Bai J, et al. Exenatide ameliorates inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. IUBMB Life. 2019;71(7):969-977. doi:10.1002/iub.2031; Zheng W, Pan H, Wei L, Gao F, Lin X. Dulaglutide mitigates inflammatory response in fibroblast-like synoviocytes. Int Immunopharmacol. 2019;74:105649. doi:10.1016/j.intimp.2019.05.034; Sullivan C, Gaoatswe G, Gibney J, Healey ML, Doran M, Kane D, et al. Treatment with the glucagon-like peptide-1 analogue liraglutide is associated with amelioration of disease activity in a prospective cohort study of patients with inflammatory arthritis. Arthritis Rheum. 2013;65(Suppl 10):S630-S631.; Hogan AE, Tobin AM, Ahern T, Corrigan MA, Gaoatswe G, Jackson R, et al. Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: Lessons from obesity, diabetes and psoriasis. Diabetologia. 2011;54(11):2745-2754. doi:10.1007/s00125-011-2232-3; Yang J, Wang Z, Zhang X. GLP-1 receptor agonist impairs keratinocytes inflammatory signals by activating AMPK. Exp Mol Pathol. 2019;107:124-128. doi:10.1016/j.yexmp.2019.01.014; Buysschaert M, Baeck M, Preumont V, Marot L, Hendrickx E, Van Belle A, et al. Improvement of psoriasis during glucagon-like peptide-1 analogue therapy in type 2 diabetes is associated with decreasing dermal γδ T-cell number: A prospective case-series study. Br J Dermatol. 2014;171(1):155-161. doi:10.1111/bjd.12886; Buysschaert M, Tennstedt D, Preumont V. Improvement of psoriasis during exenatide treatment in a patient with diabetes. Diabetes Metab. 2012;38(1):86-88. doi:10.1016/j.diabet.2011.11.004; Ahern T, Tobin AM, Corrigan M, Hogan A, Sweeney C, Kirby B, et al. Glucagon-like peptide-1 analogue therapy for psoriasis patients with obesity and type 2 diabetes: A prospective cohort study. J Eur Acad Dermatol Venereol. 2013;27(11):1440-1443. doi:10.1111/j.1468-3083.2012.04609.x; Xu X, Lin L, Chen P, Yu Y, Chen S, Chen X, et al. Treatment with liraglutide, a glucagon-like peptide-1 analogue, improves effectively the skin lesions of psoriasis patients with type 2 diabetes: A prospective cohort study. Diabetes Res Clin Pract. 2019;150:167-173. doi:10.1016/j.diabres.2019.03.002; Costanzo G, Curatolo S, Busà B, Belfiore A, Gullo D. Two birds one stone: Semaglutide is highly effective against severe psoriasis in a type 2 diabetic patient. Endocrinol Diabetes Metab Case Rep. 2021;2021:21-0007. doi:10.1530/EDM-21-0007; Malavazos AE, Meregalli C, Sorrentino F, Vignati A, Dubini C, Scravaglieri V, et al. Semaglutide therapy decreases epicardial fat inflammation and improves psoriasis severity in patients affected by abdominal obesity and type-2 diabetes. Endocrinol Diabetes Metab Case Rep. 2023;2023(3):23-0017. doi:10.1530/EDM-23-0017; Lin L, Xu X, Yu Y, Ye H, He X, Chen S, et al. Glucagon-like peptide-1 receptor agonist liraglutide therapy for psoriasis patients with type 2 diabetes: A randomized-controlled trial. J Dermatolog Treat. 2022;33(3):1428-1434. doi:10.1080/09546634.2020.1826392; Chen P, Lin L, Xu X, Zhang Z, Cai W, Shao Z, et al. Liraglutide improved inflammation via mediating IL-23/Th-17 pathway in obese diabetic mice with psoriasiform skin. J Dermatolog Treat. 2021;32(7):745-751. doi:10.1080/09546634.2019.1708853; Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021; 397(10275):754-766. doi:10.1016/S0140-6736(21)00184-7; Насонов ЕЛ. Новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний: фокус на ингибиторы интерлейкина 17. Научно-практическая ревматология. 2017;55(1):68-86. doi:10.14412/1995-4484-2017-68-86; Lund LC, Højlund M, Henriksen DP, Hallas J, Kristensen KB. Sodium-glucose cotransporter-2 inhibitors and the risk of gout: A Danish population based cohort study and symmetry analysis. Pharmacoepidemiol Drug Saf. 2021;30(10):1391-1395. doi:10.1002/pds.5252; Fralick M, Chen SK, Patorno E, Kim SC. Assessing the risk for gout with sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes: A population-based cohort study. Ann Intern Med. 2020;172(3):186-194. doi:10.7326/M19-2610; Wood DT, Waterbury NV, Lund BC. Sodium glucose cotransporter 2 inhibitors and gout risk: A sequence symmetry analysis. Clin Rheumatol. 2023;42(9):2469-2475. doi:10.1007/s10067-023-06647-z; Паневин ТС, Елисеев МС, Шестакова МВ, Насонов ЕЛ. Преимущества терапии ингибиторами натрий-глюкозного котранспортера 2 типа у пациентов с сахарным диабетом 2 типа в сочетании с гиперурикемией и подагрой. Терапевтический архив. 2020;(5):110-118. doi:10.26442/00403660.2020.05.000633; Hong Y, Lee JH, Jeong KW, Choi CS, Jun HS. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J Cachexia Sarcopenia Muscle. 2019;10(4):903- 918. doi:10.1002/jcsm.12434; Gurjar AA, Kushwaha S, Chattopadhyay S, Das N, Pal S, China SP, et al. Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism. 2020;103:154044. doi:10.1016/j.metabol.2019.154044; Kamiya M, Mizoguchi F, Yasuda S. Amelioration of inflammatory myopathies by glucagon-like peptide-1 receptor agonist via suppressing muscle fibre necroptosis. J Cachexia Sarcopenia Muscle. 2022;13(4):2118-2131. doi:10.1002/jcsm.13025; Deng F, Wu W, Fan X, Zhong X, Wang N, Wang Y, et al. Dulaglutide protects mice against diabetic sarcopenia-mediated muscle injury by inhibiting inflammation and regulating the differentiation of myoblasts. Int J Endocrinol. 2023;2023:9926462. doi:10.1155/2023/9926462; Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol. 2023;14:1191815. doi:10.3389/fimmu.2023.1191815; Xu F, Cao H, Chen Z, Gu H, Guo W, Lin B, et al. Short-term GLP-1 receptor agonist exenatide ameliorates intramyocellular lipid deposition without weight loss in ob/ob mice. Int J Obes (Lond). 2020;44(4):937-947. doi:10.1038/s41366-019-0513-y; Wang L, Guo F, Wei S, Zhao R. Divergent effects of GLP-1 analogs exendin-4 and exendin-9 on the expression of myosin heavy chain isoforms in C2C12 myotubes. Peptides. 2011;32(6):1313- 1319. doi:10.1016/j.peptides.2011.03.018; Khin PP, Hong Y, Yeon M, Lee DH, Lee JH, Jun HS. Dulaglutide improves muscle function by attenuating inflammation through OPA-1-TLR-9 signaling in aged mice. Aging (Albany NY). 2021;13(18):21962-21974. doi:10.18632/aging.203546; Yamada S, Ogura Y, Inoue K, Tanabe J, Sugaya T, Ohata K, et al. Effect of GLP-1 receptor agonist, liraglutide, on muscle in spontaneously diabetic torii fatty rats. Mol Cell Endocrinol. 2022;539:111472. doi:10.1016/j.mce.2021.111472; Abdulla H, Phillips BE, Wilkinson DJ, Limb M, Jandova T, Bass JJ, et al. Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle. Aging Cell. 2020;19(9):e13202. doi:10.1111/acel.13202; Ozeki Y, Masaki T, Kamata A, Miyamoto S, Yoshida Y, Okamoto M, et al. The effectiveness of GLP-1 receptor agonist semaglutide on body composition in elderly obese diabetic patients: A pilot study. Medicines (Basel). 2022;9(9):47. doi:10.3390/medicines9090047; Perna S, Guido D, Bologna C, Solerte SB, Guerriero F, Isu A, et al. Liraglutide and obesity in elderly: Efficacy in fat loss and safety in order to prevent sarcopenia. A perspective case series study. Aging Clin Exp Res. 2016;28(6):1251-1257. doi:10.1007/s40520-015-0525-y; Smits MM, Muskiet MH, Tonneijck L, Kramer MH, Diamant M, van Raalte DH, et al. GLP-1 receptor agonist exenatide increases capillary perfusion independent of nitric oxide in healthy overweight men. Arterioscler Thromb Vasc Biol. 2015;35(6):1538-1543. doi:10.1161/ATVBAHA.115.305447; Santo RCDE, Baker JF, Santos LPD, Silva MMMD, Xavier RM. Sarcopenia in immune-mediated rheumatic diseases-review. J Clin Rheumatol. 2023;29(7):354-362. doi:10.1097/RHU.0000000000001913; Salaffi F, Di Matteo A, Farah S, Di Carlo M. Inflammaging and frailty in immune-mediated rheumatic diseases: How to address and score the issue. Clin Rev Allergy Immunol. 2023;64(2):206-221. doi:10.1007/s12016-022-08943-z; Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi:10.14412/1995-4484-2017-409-419; Насонов ЕЛ, Соловьев СК, Аршинов АВ. Системная красная волчанка: история и современность. Научно-практическая ревматология. 2022;60(4):397-412. doi:10.47360/1995-4484-2022-397-412; Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat Rev Cardiol. 2023;20(7):463-474. doi:10.1038/s41569-023-00849-3; Agca R, Smulders Y, Nurmohamed M. Cardiovascular disease risk in immune-mediated inflammatory diseases: Recommendations for clinical practice. Heart. 2022;108(1):73-79. doi:10.1136/heartjnl-2019-316378; Mehta PK, Levit RD, Wood MJ, Aggarwal N, O’Donoghue ML, Lim SS, et al.; American College of Cardiology Cardiovascular Disease in Women Committee. Chronic rheumatologic disorders and cardiovascular disease risk in women. Am Heart J Plus. 2023;27:100267. doi:10.1016/j.ahjo.2023.100267; Kwon OC, Han K, Chun J, Kim R, Hong SW, Kim JH, et al.; Gastroenterology, Neurology and Rheumatology National Data Science Research (GUARANTEE) Group. Effects of immunemediated inflammatory diseases on cardiovascular diseases in patients with type 2 diabetes: A nationwide population-based study. Sci Rep. 2022;12(1):11548. doi:10.1038/s41598-022-15436-8
-
12Academic Journal
Συγγραφείς: E. L. Nasonov, Е. Л. Насонов
Πηγή: Rheumatology Science and Practice; Vol 62, No 1 (2024); 32-54 ; Научно-практическая ревматология; Vol 62, No 1 (2024); 32-54 ; 1995-4492 ; 1995-4484
Θεματικοί όροι: аутоантитела, immune-mediated rheumatic diseases, autoantibodies, иммуновоспалительные ревматические заболевания
Περιγραφή αρχείου: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3512/2348; Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-132. doi:10.14412/1995-4484-2020-123-132; Schett G, Sticherling M, Neurath MF. COVID-19: Risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020;20(5):271-272. doi:10.1038/s41577-020-0312-7; Schett G, Manger B, Simon D, Caporali R. COVID-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol. 2020;16(8):465-470. doi:10.1038/s41584-020-0451-z; Насонов ЕЛ. Современная концепция аутоиммунитета в ревматологии. Научно-практическая ревматология. 2023;61(4):397-420. doi:10.47360/1995-4484-2023-397-420; Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol. 2023;19(8):509-524. doi:10.1038/s41581-023-00720-1; Sher EK, Ćosović A, Džidić-Krivić A, Farhat EK, Pinjić E, Sher F. COVID-19: A triggering factor of autoimmune and multi-inflammatory diseases. Life Sci. 2023;319:121531. doi:10.1016/j.lfs.2023.121531; Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20(4):102792. doi:10.1016/j.autrev.2021.102792; Halpert G, Shoenfeld Y. SARS-CoV-2, the autoimmune virus. Autoimmun Rev. 2020;19(12):102695. doi:10.1016/j.autrev.2020.102695; Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021;33(2):155-162. doi:10.1097/BOR.0000000000000776; Knight JS, Caricchio R, Casanova JL, Combes AJ, Diamond B, Fox SE, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021;131(24):e154886. doi:10.1172/JCI154886; Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, et al. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun. 2023;139:103070. doi:10.1016/j.jaut.2023.103070; Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARSCoV-2 infection, EBV, HHV-6 and other factors may contribute to inflammation and autoimmunity in long COVID. Viruses. 2023;15(2):400. doi:10.3390/v15020400; Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ, Лила АМ, Ананьева ЛП, Лисицина ТА, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-367. doi:10.47360/1995-4484-2020-353-367; Nasonov EL, Samsonov MY, Lila AM. Coronavirus infection 2019 (COVID-19) and autoimmunity. Her Russ Acad Sci. 2022; 92(4):398-403. doi:10.1134/S1019331622040062; Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi:10.1038/s41584-021-00652-9; Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: A comprehensive update. J Intern Med. 2015;278(4):369-395. doi:10.1111/joim.12395; Nissen CB, Sciascia S, de Andrade D, Atsumi T, Bruce IN, Cron RQ, et al. The role of antirheumatics in patients with COVID-19. Lancet Rheumatol. 2021;3(6):e447-e459. doi:10.1016/S2665-9913(21)00062-X; van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. doi:10.1038/s41591-021-01643-9; Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: Progress and lessons learned. Nat Rev Drug Discov. 2023;22(6):449-475. doi:10.1038/s41573-023-00672-y; Berlin DA, Gulick RM, Martinez FJ. Severe COVID-19. N Engl J Med. 2020;383(25):2451-2460. doi:10.1056/NEJMcp2009575; Tan EH, Sena AG, Prats-Uribe A, You SC, Ahmed WU, Kostka K, et al. COVID-19 in patients with autoimmune diseases: Characteristics and outcomes in a multinational network of cohorts across three countries. Rheumatology (Oxford). 2021;60(SI):SI37-SI50. doi:10.1093/rheumatology/keab250; Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375(6585):1122-1127. doi:10.1126/science.abm8108; Mohandas S, Jagannathan P, Henrich TJ, Sherif ZA, Bime C, Quinlan E, et al.; RECOVER Mechanistic Pathways Task Force. Immune mechanisms underlying COVID-19 pathology and postacute sequelae of SARS-CoV-2 infection (PASC). Elife. 2023;12:e86014. doi:10.7554/eLife.86014; Dey A, Vaishak K, Deka D, Radhakrishnan AK, Paul S, Shanmugam P, et al. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: An updated review. Infection. 2023;51(6):1603-1618. doi:10.1007/s15010-023-02017-8; Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: Key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol. 2023;20(5):323-337. doi:10.1038/s41575-022-00698-4; Zazzara MB, Bellieni A, Calvani R, Coelho-Junior HJ, Picca A, Marzetti E. Inflammaging at the time of COVID-19. Clin Geriatr Med. 2022;38(3):473-481. doi:10.1016/j.cger.2022.03.003; Netea MG, Ziogas A, Benn CS, Giamarellos-Bourboulis EJ, Joosten LAB, Arditi M, et al. The role of trained immunity in COVID-19: Lessons for the next pandemic. Cell Host Microbe. 2023;31(6):890-901. doi:10.1016/j.chom.2023.05.004; Suárez-Reyes A, Villegas-Valverde CA. Implications of low-grade inflammation in SARS-CoV-2 immunopathology. MEDICC Rev. 2021;23(2):42. doi:10.37757/MR2021.V23.N2.4; Kim JYH, Ragusa M, Tortosa F, Torres A, Gresh L, MéndezRico JA, et al. Viral reactivations and co-infections in COVID-19 patients: A systematic review. BMC Infect Dis. 2023;23(1):259. doi:10.1186/s12879-023-08117-y; Fajgenbaum DC, June CH, Cytokine storm. N Engl J Med. 2020;383:2255-2273. doi:10.1056/NEJMra2026131; Jiang L, Tang K, Levin M, Irfan O, Morris SK, Wilson K, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis. 2020;20(11):e276-e288. doi:10.1016/S1473-3099(20)30651-4; Каледа МИ, Никишина ИП, Федоров ЕС, Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) у детей: уроки педиатрической ревматологии. Научно-практическая ревматология. 2020;58(5):469-479. doi:10.47360/1995-4484-2020-469-479; Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. doi:10.1038/s41579-022-00846-2; Nalbandian A, Desai AD, Wan EY. Post-COVID-19 condition. Annu Rev Med. 2023;74:55-64. doi:10.1146/annurevmed-043021-030635; Altmann DM, Whettlock EM, Liu S, Arachchillage DJ, Boyton RJ. The immunology of long COVID. Nat Rev Immunol. 2023;23(10):618-634. doi:10.1038/s41577-023-00904-7; Lammi V, Nakanishi T, Jones SE, Andrews SJ, Karjalainen J, Cortés B, et al. Genome-wide association study of long COVID. medRxiv. 2023.06.29.23292056. doi:10.1101/2023.06.29.23292056; Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, et al. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci Rep. 2021;11(1):16144. doi:10.1038/s41598-021-95565-8; Legler F, Meyer-Arndt L, Mödl L, Kedor C, Freitag H, Stein E, et al. Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: Results from a prospective observational cohort. EClinicalMedicine. 2023;63:102146. doi:10.1016/j.eclinm.2023.102146; Каратеев АЕ, Амирджанова ВН, Насонов ЕЛ, Лила АМ, Алексеева ЛИ, Погожева ЕЮ, и др. «Постковидный синдром»: в центре внимания скелетно-мышечная боль. Научнопрактическая ревматология. 2021;59(3):255-262. doi:10.47360/1995-4484-2021-255-262; Grainger R, Kim AHJ, Conway R, Yazdany J, Robinson PC. COVID-19 in people with rheumatic diseases: Risks, outcomes, treatment considerations. Nat Rev Rheumatol. 2022;18(4):191-204. doi:10.1038/s41584-022-00755-x; Zacharias H, Dubey S, Koduri G, D’Cruz D. Rheumatological complications of COVID-19. Autoimmun Rev. 2021;20(9):102883. doi:10.1016/j.autrev.2021.102883; Gracia-Ramos AE, Martin-Nares E, Hernández-Molina G. New onset of autoimmune diseases following COVID-19 diagnosis. Cells. 2021;10(12):3592. doi:10.3390/cells10123592; Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organspecific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021;17(6):315-332. doi:10.1038/s41584-021-00608-z; Ciaffi J, Vanni E, Mancarella L, Brusi V, Lisi L, Pignatti F, et al. Post-acute COVID-19 joint pain and new onset of rheumatic musculoskeletal diseases: A systematic review. Diagnostics (Basel). 2023;13(11):1850. doi:10.3390/diagnostics13111850; Guo M, Liu X, Chen X, Li Q. Insights into new-onset autoimmune diseases after COVID-19 vaccination. Autoimmun Rev. 2023;22(7):103340. doi:10.1016/j.autrev.2023.103340; Kouranloo K, Dey M, Elwell H, Nune A. A systematic review of the incidence, management and prognosis of new-onset autoimmune connective tissue diseases after COVID-19. Rheumatol Int. 2023;43(7):1221-1243. doi:10.1007/s00296-023-05283-9; Fedorchenko Y, Zimba O. Long COVID in autoimmune rheumatic diseases. Rheumatol Int. 2023;43(7):1197-1207. doi:10.1007/s00296-023-05319-0; Marks M, Marks JL. Viral arthritis. Clin Med (Lond). 2016;16(2):129-134. doi:10.7861/clinmedicine.16-2-129; Copley M, Kozminski B, Gentile N, Geyer R, Friedly J. Postacute sequelae of SARS-CoV-2: Musculoskeletal conditions and pain. Phys Med Rehabil Clin N Am. 2023;34(3):585-605. doi:10.1016/j.pmr.2023.04.008; Баймухамедов ЧТ, Ботабекова АК, Досыбаева ГН, Махмудов ША. Ревматоидный артрит и постковидный синдром. Научно-практическая ревматология. 2022;60(3):276-279. doi:10.47360/1995-4484-2022-276-279; Farisogullari B, Pinto AS, Machado PM. COVID-19-associated arthritis: An emerging new entity? RMD Open. 2022;8(2):e002026. doi:10.1136/rmdopen-2021-002026; Kocyigit BF, Akyol A. The relationship between COVID-19 and fibromyalgia syndrome: Prevalence, pandemic effects, symptom mechanisms, and COVID-19 vaccines. Clin Rheumatol. 2022; 41(10):3245-3252. doi:10.1007/s10067-022-06279-9; Boekel L, Atiqi S, Leeuw M, Hooijberg F, Besten YR, Wartena R, et al. Post-COVID condition in patients with inflammatory rheumatic diseases: A prospective cohort study in the Netherlands. Lancet Rheumatol. 2023;5(7):e375-e385. doi:10.1016/S2665-9913(23)00127-3; Calabrese LH. Long COVID in inflammatory rheumatic diseases – What’s in a name? Lancet Rheumatol. 2023;5(7):e364-e365. doi:10.1016/S2665-9913(23)00134-0; Sen P, Ravichandran N, Nune A, Lilleker JB, Agarwal V, Kardes S, et al.; COVAD Study Group. COVID-19 vaccinationrelated adverse events among autoimmune disease patients: Results from the COVAD study. Rheumatology (Oxford). 2022;62(1):65-76. doi:10.1093/rheumatology/keac305; Chang R, Yen-Ting Chen T, Wang SI, Hung YM, Chen HY, Wei CJ. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study. EClinicalMedicine. 2023;56:101783. doi:10.1016/j.eclinm.2022.101783; Tesch F, Ehm F, Vivirito A, Wende D, Batram M, Loser F, et al. Incident autoimmune diseases in association with SARSCoV-2 infection: A matched cohort study. Clin Rheumatol. 2023;42(10):2905-2914. doi:10.1007/s10067-023-06670-0; Syed U, Subramanian A, Wraith DC, Lord JM, McGee K, Ghokale K, et al. Incidence of immune-mediated inflammatory diseases following COVID-19: A matched cohort study in UK primary care. BMC Med. 2023;21(1):363. doi:10.1186/s12916-023-03049-5; Peng K, Li X, Yang D, Chan SCW, Zhou J, Wan EYF, et al. Risk of autoimmune diseases following COVID-19 and the potential protective effect from vaccination: A population-based cohort study. EClinicalMedicine. 2023;63:102154. doi:10.1016/j.eclinm.2023.102154; Lim SH, Ju HJ, Han JH, Lee JH, Lee WS, Bae JM, et al. Autoimmune and autoinflammatory connective tissue disorders following COVID-19. JAMA Netw Open. 2023;6(10):e2336120. doi:10.1001/jamanetworkopen.2023.36120; Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol. 2020;217:108480. doi:10.1016/j.clim.2020.108480; Насонов ЕЛ, Белов БС, Лила АМ, Аронова ЕС, Гриднева ГИ, Кудрявцева АВ, и др. Течение и исходы COVID-19 у пациентов с иммуновоспалительными ревматическими заболеваниями: предварительные данные регистра НИИР/АРР-COVID-19 и обзор литературы. Научно-практическая ревматология. 2021;59(6):666-675. doi:10.47360/1995-4484-2021-666-675; Gauckler P, Kesenheimer JS, Geetha D, Odler B, Eller K, Laboux T, et al. COVID-19 outcomes in patients with a history of immune-mediated glomerular diseases. Front Immunol. 2023;14:1228457. doi:10.3389/fimmu.2023.1228457; Conway R, Grimshaw AA, Konig MF, Putman M, Duarte-García A, Tseng LY, et al.; COVID-19 Global Rheumatology Alliance. SARS-CoV-2 infection and COVID-19 outcomes in rheumatic diseases: A systematic literature review and meta-analysis. Arthritis Rheumatol. 2022;74(5):766-775. doi:10.1002/art.42030; Мазуров ВИ, Беляева ИБ, Саранцева ЛЕ, Чудинов АЛ, Башкинов РА, Трофимов ЕА, и др. Особенности клинического течения ревматических заболеваний у пациентов, перенесших новую коронавирусную инфекцию. Терапия. 2021;7(10):42-54. doi:10.18565/therapy.2021.10.42-54; Figueroa-Parra G, Gilbert EL, Valenzuela-Almada MO, Vallejo S, Neville MR, Patel NJ, et al. Risk of severe COVID-19 outcomes associated with rheumatoid arthritis and phenotypic subgroups: A retrospective, comparative, multicentre cohort study. Lancet Rheumatol. 2022;4(11):e765-e774. doi:10.1016/S2665-9913(22)00227-2; Zaccardelli A, Wallace ZS, Sparks JA. Acute and postacute COVID-19 outcomes for patients with rheumatoid arthritis: Lessons learned and emerging directions 3 years into the pandemic. Curr Opin Rheumatol. 2023;35(3):175-184. doi:10.1097/BOR.0000000000000930; Di Iorio M, Cook CE, Vanni KMM, Patel NJ, D’Silva KM, Fu X, et al. DMARD disruption, rheumatic disease flare, and prolonged COVID-19 symptom duration after acute COVID-19 among patients with rheumatic disease: A prospective study. Semin Arthritis Rheum. 2022;55:152025. doi:10.1016/j.semarthrit.2022.152025; DiIorio M, Kennedy K, Liew JW, Putman MS, Sirotich E, Sattui SE, et al. Prolonged COVID-19 symptom duration in people with systemic autoimmune rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance Vaccine Survey. RMD Open. 2022;8(2):e002587. doi:10.1136/rmdopen-2022-002587; Куликов АН, Муравьева НВ, Белов БС. Частота и течение COVID-19 у больных ревматическими заболеваниями (по данным ФГБНУ НИИР им. В.А. Насоновой). Научно-практическая ревматология. 2023;61(5):537-544. doi:10.47360/1995-4484-2023-537-544; D’Silva KM, Serling-Boyd N, Wallwork R, Hsu T, Fu X, Gravallese EM, et al. Clinical characteristics and outcomes of patients with coronavirus disease 2019 (COVID-19) and rheumatic disease: A comparative cohort study from a US ‘hot spot’. Ann Rheum Dis. 2020;79(9):1156-1162. doi:10.1136/annrheumdis-2020-217888; Patel NJ, D’Silva KM, Li MD, Hsu TYT, DiIorio M, Fu X, et al. Assessing the severity of COVID-19 lung injury in rheumatic diseases versus the general population using deep learning-derived chest radiograph scores. Arthritis Care Res (Hoboken). 2023;75(3):657-666. doi:10.1002/acr.24883; D’Silva KM, Jorge A, Cohen A, McCormick N, Zhang Y, Wallace ZS, et al. COVID-19 outcomes in patients with systemic autoimmune rheumatic diseases compared to the general population: A US multicenter, comparative cohort study. Arthritis Rheumatol. 2021;73(6):914-920. doi:10.1002/art.41619; Jorge A, D’Silva KM, Cohen A, Wallace ZS, McCormick N, Zhang Y, et al. Temporal trends in severe COVID-19 outcomes in patients with rheumatic disease: A cohort study. Lancet Rheumatol. 2021;3(2):e131-e137. doi:10.1016/S2665-9913(20)30422-7; Strangfeld A, Schäfer M, Gianfrancesco MA, Lawson-Tovey S, Liew JW, Ljung L, et al.; COVID-19 Global Rheumatology Alliance. Factors associated with COVID-19-related death in people with rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2021;80(7):930-942. doi:10.1136/annrheumdis-2020-219498; Ge E, Li Y, Wu S, Candido E, Wei X. Association of pre-existing comorbidities with mortality and disease severity among 167,500 individuals with COVID-19 in Canada: A populationbased cohort study. PLoS One. 2021;16(10):e0258154. doi:10.1371/journal.pone.0258154; England BR, Roul P, Yang Y, Kalil AC, Michaud K, Thiele GM, et al. Risk of COVID-19 in rheumatoid arthritis: A National Veterans Affairs matched cohort study in at-risk individuals. Arthritis Rheumatol. 2021;73(12):2179-2188. doi:10.1002/art.41800; Curtis JR, Zhou X, Rubin DT, Reinisch W, Yazdany J, Robinson PC, et al. Characteristics, comorbidities, and outcomes of SARS-CoV-2 infection in patients with autoimmune conditions treated with systemic therapies: A population-based study. J Rheumatol. 2022;49(3):320-329. doi:10.3899/jrheum.210888; Raiker R, DeYoung C, Pakhchanian H, Ahmed S, Kavadichanda C, Gupta L, et al. Outcomes of COVID-19 in patients with rheumatoid arthritis: A multicenter research network study in the United States. Semin Arthritis Rheum. 2021;51(5):1057-1066. doi:10.1016/j.semarthrit.2021.08.010; Li H, Wallace ZS, Sparks JA, Lu N, Wei J, Xie D, et al. Risk of COVID-19 among unvaccinated and vaccinated patients with rheumatoid arthritis: A general population study. Arthritis Care Res (Hoboken). 2023;75(5):956-966. doi:10.1002/acr.25028; Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-436. doi:10.1038/s41586-020-2521-4; Williamson J, Black L, Black A, Koduri G, Kelly C. There are similarities between rheumatic disease with lung involvement and COVID-19 pneumonia. Ir J Med Sci. 2022;191(1):1-5. doi:10.1007/s11845-021-02545-y; Fonseca M, Summer R, Roman J. Acute exacerbation of interstitial lung disease as a sequela of COVID-19 pneumonia. Am J Med Sci. 2021;361(1):126-129. doi:10.1016/j.amjms.2020.08.017; Torun S, Karaman I. Acute exacerbation of rheumatoid arthritis misdiagnosed as COVID-19: A case report. Front Med (Lausanne). 2022;9:844609. doi:10.3389/fmed.2022.844609; Lee AR, Woo JS, Lee SY, Lee YS, Jung J, Lee CR, et al. SARSCoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis. Cell Commun Signal. 2023;21(1):44. doi:10.1186/s12964-023-01044-0; Isaacs JD, Burmester GR. Smart battles: Immunosuppression versus immunomodulation in the inflammatory RMDs. Ann Rheum Dis. 2020;79(8):991-993. doi:10.1136/annrheumdis-2020-218019; Venkat R, Wallace ZS, Sparks JA. Considerations for pharmacologic management of rheumatoid arthritis in the COVID-19 era: A narrative review. Curr Rheumatol Rep. 2023;25(11):236-245. doi:10.1007/s11926-023-01111-y; Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179-199. doi:10.1038/s41573-020-00092-2; Насонов ЕЛ, Бекетова ТВ, Ананьева ЛП, Васильев ВИ, Соловьев СК, Авдеева АС. Перспективы анти-В-клеточной терапии при иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2019;57:1-40. doi:10.14412/1995-4484-2019-3-40; Насонов ЕЛ (ред.). Анти-В-клеточная терапия в ревматологии: Фокус на ритуксимаб. М.:ИМА-ПРЕСС;2012.; Насонов ЕЛ, Авдеева АС. Деплеция В-клеток при иммуновоспалительных ревматических заболеваниях и коронавирусная болезнь 2019 (COVID-19). Научно-практическая ревматология. 2021;59(4):384-393. doi:10.47360/1995-4484-2021-384-393; Sparks JA, Wallace ZS, Seet AM, Gianfrancesco MA, Izadi Z, Hyrich KL, et al.; COVID-19 Global Rheumatology Alliance. Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: Results from the COVID-19 Global Rheumatology Alliance physician registry. Ann Rheum Dis. 2021;80(9):1137-1146. doi:10.1136/annrheumdis-2021-220418; Singh N, Madhira V, Hu C, Olex AL, Bergquist T, Fitzgerald KC, et al. Rituximab is associated with worse COVID-19 outcomes in patients with rheumatoid arthritis: A retrospective, nationally sampled cohort study from the U.S. National COVID Cohort Collaborative (N3C). Semin Arthritis Rheum. 2023;58:152149. doi:10.1016/j.semarthrit.2022.152149; Gianfrancesco M, Hyrich KL, Al-Adely S, Carmona L, Danila MI, Gossec L, et al.; COVID-19 Global Rheumatology Alliance. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physicianreported registry. Ann Rheum Dis. 2020;79(7):859-866. doi:10.1136/annrheumdis-2020-217871; Hasseli R, Mueller-Ladner U, Hoyer BF, Krause A, Lorenz HM, Pfeil A, et al. Older age, comorbidity, glucocorticoid use and disease activity are risk factors for COVID-19 hospitalisation in patients with inflammatory rheumatic and musculoskeletal diseases. RMD Open. 2021;7(1):e001464. doi:10.1136/rmdopen-2020-001464; Tsai JJ, Liu LT, Chen CH, Chen LJ, Wang SI, Wei JC. COVID-19 outcomes in patients with rheumatoid arthritis with biologic or targeted synthetic DMARDs. RMD Open. 2023;9(3):e003038. doi:10.1136/rmdopen-2023-003038; Rutter M, Lanyon PC, Grainge MJ, Hubbard R, Bythell M, Stilwell P, et al. COVID-19 infection, admission and death and the impact of corticosteroids among people with rare autoimmune rheumatic disease during the second wave of COVID-19 in England: Results from the RECORDER Project. Rheumatology (Oxford). 2023;62(12):3828-3837. doi:10.1093/rheumatology/kead150; Deepak P, Kim W, Paley MA, Yang M, Carvidi AB, Demissie EG, et al. Effect of immunosuppression on the immunogenicity of mRNA vaccines to SARS-CoV-2: A prospective cohort study. Ann Intern Med. 2021;174(11):1572-1585. doi:10.7326/M21-1757; Jyssum I, Kared H, Tran TT, Tveter AT, Provan SA, Sexton J, et al. Humoral and cellular immune responses to two and three doses of SARS-CoV-2 vaccines in rituximab-treated patients with rheumatoid arthritis: A prospective, cohort study. Lancet Rheumatol. 2022;4(3):e177-e187. doi:10.1016/S2665-9913(21)00394-5; Johnson D, Jiang W. Infectious diseases, autoantibodies, and autoimmunity. J Autoimmun. 2023;137:102962. doi:10.1016/j.jaut.2022.102962; Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses. 2023;15(3):782. doi:10.3390/v15030782; Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: Challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019;133(9):906-918. doi:10.1182/blood-2018-11-882993; Wagner DD, Heger LA. Thromboinflammation: From atherosclerosis to COVID-19. Arterioscler Thromb Vasc Biol. 2022;42(9):1103-1112. doi:10.1161/ATVBAHA.122.317162; Jenks SA, Cashman KS, Woodruff MC, Lee FE, Sanz I. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1):136-148. doi:10.1111/imr.12741; Chung MKY, Gong L, Kwong DL, Lee VH, Lee AW, Guan XY, et al. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. EMBO Mol Med. 2023;15(9):e17341. doi:10.15252/emmm.202217341; Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-1516. doi:10.1038/s41590-020-00814-z; Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, Strazzabosco G, et al. TLR3 and TLR7 RNA sensor activation during SARS-CoV-2 infection. Microorganisms. 2021;9(9):1820. doi:10.3390/microorganisms9091820; Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(2):98-108. doi:10.1038/s41584-020-00544-4; Burbelo PD, Iadarola MJ, Keller JM, Warner BM. Autoantibodies targeting intracellular and extracellular proteins in autoimmunity. Front Immunol. 2021;12:548469. doi:10.3389/fimmu.2021.548469; Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, et al. Mechanisms of autoantibody-induced pathology. Front Immunol. 2017;8:603. doi:10.3389/fimmu.2017.00603; Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med. 2022;219(4):e20211387. doi:10.1084/jem.20211387; Moritz CP, Paul S, Stoevesandt O, Tholance Y, Camdessanché JP, Antoine JC. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev. 2020;19(2):102450. doi:10.1016/j.autrev.2019.102450; Damoiseaux J, Dotan A, Fritzler MJ, Bogdanos DP, Meroni PL, Roggenbuck D, et al. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun Rev. 2022;21(3):103012. doi:10.1016/j.autrev.2021.103012; Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30. doi:10.47360/1995-4484-2021-5-30; Dobrowolska K, Zarębska-Michaluk D, Poniedziałek B, Jaroszewicz J, Flisiak R, Rzymski P. Overview of autoantibodies in COVID-19 convalescents. J Med Virol. 2023;95(6):e28864. doi:10.1002/jmv.28864; Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li QZ, et al. Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med. 2022;20(1):129. doi:10.1186/s12967-022-03328-4; Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun. 2021 ;12(1):5417. doi:10.1038/s41467-021-25509-3; Moody R, Sonda S, Johnston FH, Smith KJ, Stephens N, McPherson M, et al. Antibodies against Spike protein correlate with broad autoantigen recognition 8 months post SARS-CoV-2 exposure, and anti-calprotectin autoantibodies associated with better clinical outcomes. Front Immunol. 2022;13:945021. doi:10.3389/fimmu.2022.945021; Vojdani A, Vojdani E, Kharrazian D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: Implications for autoimmune diseases. Front Immunol. 2021;11:617089. doi:10.3389/fimmu.2020.617089; McGill JR, Lagassé HAD, Hernandez N, Hopkins L, Jankowski W, McCormick Q, et al. A structural homology approach to identify potential cross-reactive antibody responses following SARS-CoV-2 infection. Sci Rep. 2022;12(1):11388. doi:10.1038/s41598-022-15225-3; Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi:10.1126/science.abd4585; Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova JL. Type I interferons and SARS-CoV-2: From cells to organisms. Curr Opin Immunol. 2022;74:172-182. doi:10.1016/j.coi.2022.01.003; Su HC, Jing H, Zhang Y, Casanova JL. Interfering with interferons: A critical mechanism for critical COVID-19 pneumonia. Annu Rev Immunol. 2023;41:561-585. doi:10.1146/annurevimmunol-101921-050835; Zhang Q, Bastard P; COVID Human Genetic Effort; Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022;603(7902):587-598. doi:10.1038/s41586-022-04447-0; Bastard P, Vazquez SE, Liu J, Laurie MT, Wang CY, Gervais A, et al. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci Immunol. 2023;8(90):eabp8966. doi:10.1126/sciimmunol.abp8966; Gupta S, Nakabo S, Chu J, Hasni S, Kaplan MJ. Association between anti-interferon-alpha autoantibodies and COVID-19 in systemic lupus erythematosus. medRxiv. 2020:2020.10.29.20222000. doi:10.1101/2020.10.29.20222000; Beydon M, Nicaise-Roland P, Mageau A, Farkh C, Daugas E, Descamps V, et al. Autoantibodies against IFNα in patients with systemic lupus erythematosus and susceptibility for infection: A retrospective case-control study. Sci Rep. 2022;12(1):11244. doi:10.1038/s41598-022-15508-9; Peluso MJ, Mitchell A, Wang CY, Takahashi S, Hoh R, Tai V, et al. Low prevalence of interferon α autoantibodies in people experiencing symptoms of post-coronavirus disease 2019 (COVID-19) conditions, or long COVID. J Infect Dis. 2023;227(2):246-250. doi:10.1093/infdis/jiac372; Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283-288. doi:10.1038/s41586-021-03631-y; Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EMN, et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep Methods. 2022;2(2):100172. doi:10.1016/j.crmeth.2022.100172; Lichtenstein B, Zheng Y, Gjertson D, Ferbas KG, Rimoin AW, Yang OO, et al. Vascular and non-HLA autoantibody profiles in hospitalized patients with COVID-19. Front Immunol. 2023;14:1197326. doi:10.3389/fimmu.2023.1197326; Насонов ЕЛ (ред.). Антифосфолипидный синдром. М.:Литтерра;2004.; Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010-2021. doi:10.1056/NEJMra1705454; Pignatelli P, Ettorre E, Menichelli D, Pani A, Violi F, Pastori D. Seronegative antiphospholipid syndrome: Refining the value of “non-criteria” antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-572. doi:10.3324/haematol.2019.221945; Liu X, Zhu L, Liu H, Cai Q, Yun Z, Sun F, et al. Non-criteria antiphospholipid antibodies in antiphospholipid syndrome: Diagnostic value added. Front Immunol. 2022;13:972012. doi:10.3389/fimmu.2022.972012; Shi H, Zuo Y, Navaz S, Harbaugh A, Hoy CK, Gandhi AA, et al. Endothelial cell-activating antibodies in COVID-19. Arthritis Rheumatol. 2022;74(7):1132-1138. doi:10.1002/art.42094; Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876. doi:10.1126/scitranslmed.abd3876; Favaloro EJ, Pasalic L, Lippi G. Antibodies against platelet factor 4 and their associated pathologies: From HIT/HITT to spontaneous HIT-like syndrome, to COVID-19, to VITT/ TTS. Antibodies (Basel). 2022;11(1):7. doi:10.3390/antib11010007.; Hollerbach A, Müller-Calleja N, Pedrosa D, Canisius A, Sprinzl MF, Falter T, et al. Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19. J Thromb Haemost. 2021;19(9):2335-2347. doi:10.1111/jth.15455; Zuniga M, Gomes C, Carsons SE, Bender MT, Cotzia P, Miao QR, et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur Respir J. 2021;58(4):2100918. doi:10.1183/13993003.00918-2021; Taha M, Samavati L. Antiphospholipid antibodies in COVID-19: A meta-analysis and systematic review. RMD Open. 2021;7(2):e001580. doi:10.1136/rmdopen-2021-001580; Butt A, Erkan D, Lee AI. COVID-19 and antiphospholipid antibodies. Best Pract Res Clin Haematol. 2022;35(3):101402. doi:10.1016/j.beha.2022.101402; Meroni PL, Borghi MO. Antiphospholipid antibodies and COVID-19 thrombotic vasculopathy: One swallow does not make a summer. Ann Rheum Dis. 2021;80(9):1105-1107. doi:10.1136/annrheumdis-2021-220520; Favaloro EJ, Henry BM, Lippi G. COVID-19 and antiphospholipid antibodies: Time for a reality check? Semin Thromb Hemost. 2022;48(1):72-92. doi:10.1055/s-0041-1728832; Serrano M, Espinosa G, Serrano A, Cervera R. COVID-19 and the antiphospholipid syndrome. Autoimmun Rev. 2022;21(12):103206. doi:10.1016/j.autrev.2022.103206; Mendel A, Fritzler MJ, St-Pierre Y, Rauch J, Bernatsky S, Vinet É. Outcomes associated with antiphospholipid antibodies in COVID-19: A prospective cohort study. Res Pract Thromb Haemost. 2023;7(1):100041. doi:10.1016/j.rpth.2023.100041; Weiss R, Bushi D, Mindel E, Bitton A, Diesendruck Y, Gera O, et al. Autoantibodies to annexin A2 and cerebral thrombosis: Insights from a mouse model. Lupus. 2021;30(5):775-784. doi:10.1177/0961203321992117; Benjamin LA, Paterson RW, Moll R, Pericleous C, Brown R, Mehta PR, et al.; UCLH Queen Square COVID-19 Biomarker Study group. Antiphospholipid antibodies and neurological manifestations in acute COVID-19: A single-centre cross-sectional study. EClinicalMedicine. 2021;39:101070. doi:10.1016/j.eclinm.2021.101070; Alijotas-Reig J, Anunciación-Llunell A, Morales-Pérez S, Trapé J, Esteve-Valverde E, Miro-Mur F. Thrombosis and hyperinflammation in COVID-19 acute phase are related to anti-phosphatidylserine and anti-phosphatidylinositol antibody positivity. Biomedicines. 2023;11(8):2301. doi:10.3390/biomedicines11082301; Doevelaar AAN, Bachmann M, Hölzer B, Seibert FS, Rohn BJ, Witzke O, et al. Generation of inhibitory autoantibodies to ADAMTS13 in coronavirus disease 2019. medRxiv. 2021.03.18.21253869. doi:10.1101/2021.03.18.21253869; Yun J, Gu J, Kim HK. Double positivity of anti-β2-glycoprotein I domain I and anti-phosphatidylserine/prothrombin antibodies enhances both thrombosis and positivity of antiADAMTS13 antibody. J Thromb Thrombolysis. 2021;52(4):1133-1136. doi:10.1007/s11239-021-02406-6; Brodard J, Kremer Hovinga JA, Fontana P, Studt JD, Gruel Y, Greinacher A. COVID-19 patients often show high-titer nonplatelet-activating anti-PF4/heparin IgG antibodies. J Thromb Haemost. 2021;19(5):1294-1298. doi:10.1111/jth.15262; Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384(22):2092-2101. doi:10.1056/NEJMoa2104840; Woodruff MC, Ramonell RP, Haddad NS, Anam FA, Rudolph ME, Walker TA, et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature. 2022;611(7934):139-147. doi:10.1038/s41586-022-05273-0; Gomes C, Zuniga M, Crotty KA, Qian K, Lin LH, Argyropoulos KV, et al. Autoimmune anti-DNA antibodies predict disease severity in COVID-19 patients. medRxiv. 2021.01.04.20249054. doi:10.1101/2021.01.04.20249054; Cheng AP, Cheng MP, Gu W, Sesing Lenz J, Hsu E, Schurr E, et al. Cell-free DNA tissues of origin by methylation profiling reveals significant cell, tissue, and organ-specific injury related to COVID-19 severity. Med. 2021;2(4):411-422.e5. doi:10.1016/j.medj.2021.01.001; Etter MM, Martins TA, Kulsvehagen L, Pössnecker E, Duchemin W, Hogan S, et al. Severe neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: A prospective cross-sectional study. Nat Commun. 2022;13(1):6777. doi:10.1038/s41467-022-34068-0; Basic-Jukic N, Pavlisa G, Sremec NT, Juric I, Ledenko R, Rogic D, et al. Autoantibodies in COVID-19, a possible role in the pathogenesis of the disease. Ther Apher Dial. 2023;27(5):882-889. doi:10.1111/1744-9987.14004; Park SH, Suh JW, Yang KS, Kim JY, Kim SB, Sohn JW, et al. Clinical significance of antinuclear antibody positivity in patients with severe coronavirus disease 2019. Korean J Intern Med. 2023;38(3):417-426. doi:10.3904/kjim.2022.352; García-Abellán J, Fernández M, Padilla S, García JA, Agulló V, Lozano V, et al. Immunologic phenotype of patients with long-COVID syndrome of 1-year duration. Front Immunol. 2022;13:920627. doi:10.3389/fimmu.2022.920627; Richter AG, Shields AM, Karim A, Birch D, Faustini SE, Steadman L, et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol. 2021;205(2):99-105. doi:10.1111/cei.13623; Sacchi MC, Pelazza C, Bertolotti M, Agatea L, De Gaspari P, Tamiazzo S, et al. The onset of de novo autoantibodies in healthcare workers after mRNA based anti-SARS-CoV-2 vaccines: A single centre prospective follow-up study. Autoimmunity. 2023;56(1):2229072. doi:10.1080/08916934.2023.2229072; Zhang W, Tao Y, Zhu Y, Zheng Q, Hu F, Zhu W, et al. Effect of serum autoantibodies on the COVID-19 patient’s prognosis. Front Microbiol. 2023;14:1259960. doi:10.3389/fmicb.2023.1259960; Giannini M, Ohana M, Nespola B, Zanframundo G, Geny B, Meyer A. Similarities between COVID-19 and anti-MDA5 syndrome: What can we learn for better care? Eur Respir J. 2020;56(3):2001618. doi:10.1183/13993003.01618-2020; Dias Junior AG, Sampaio NG, Rehwinkel J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27(1):75-85. doi:10.1016/j.tim.2018.08.007; Wang G, Wang Q, Wang Y, Liu C, Wang L, Chen H, et al. Presence of anti-MDA5 antibody and its value for the clinical assessment in patients with COVID-19: A retrospective cohort study. Front Immunol. 2021;12:791348. doi:10.3389/fimmu.2021.791348; Gonzalez D, Gupta L, Murthy V, Gonzalez EB, Williamson KA, Makol A, et al. Anti-MDA5 dermatomyositis after COVID-19 vaccination: A case-based review. Rheumatol Int. 2022;42(9):1629-1641. doi:10.1007/s00296-022-05149-6; Woodruff MC, Bonham KS, Anam FA, Walker TA, Faliti CE, Ishii Y, et al. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun. 2023;14(1):4201. doi:10.1038/s41467-023-40012-7; Lingel H, Meltendorf S, Billing U, Thurm C, Vogel K, Majer C, et al. Unique autoantibody prevalence in long-term recovered SARS-CoV-2-infected individuals. J Autoimmun. 2021;122:102682. doi:10.1016/j.jaut.2021.102682; Su Y, Yuan D, Chen DG, Ng RH, Wang K, Choi J, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881-895.e20. doi:10.1016/j.cell.2022.01.014; Насонов ЕЛ, Попкова ТВ, Панафидина ТА. Проблемы ранней системной красной волчанки в период пандемии COVID-19. Научно-практическая ревматология. 2021;59(2):119-128. doi:10.47360/1995-4484-2021-119-128; Son K, Jamil R, Chowdhury A, Mukherjee M, Venegas C, Miyasaki K, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2023;61(1):2200970. doi:10.1183/13993003.00970-2022; Fonseca DLM, Filgueiras IS, Marques AHC, Vojdani E, Halpert G, Ostrinski Y, et al. Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: A systems biology approach. NPJ Aging. 2023;9(1):21. doi:10.1038/s41514-023-00118-0; Baiocchi GC, Vojdani A, Rosenberg AZ, Vojdani E, Halpert G, Ostrinski Y, et al. Autoantibodies linked to autoimmune diseases associate with COVID-19 outcomes. medRxiv. 2022.02.17.22271057. doi:10.1101/2022.02.17.22271057; COVID-19 Forecasting Team. Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: A systematic analysis. Lancet. 2022;399(10334):1469-1488. doi:10.1016/S0140-6736(21)02867-1; Müller L, Di Benedetto S. From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity. Front Immunol. 2023;14:1298004. doi:10.3389/fimmu.2023.1298004; Arvey A, Rowe M, Legutki JB, An G, Gollapudi A, Lei A, et al. Age-associated changes in the circulating human antibody repertoire are upregulated in autoimmunity. Immun Ageing. 2020;17:28. doi:10.1186/s12979-020-00193-x; Baiocchi GC, Vojdani A, Rosenberg AZ, Vojdani E, Halpert G, Ostrinski Y, et al. Cross-sectional analysis reveals autoantibody signatures associated with COVID-19 severity. J Med Virol. 2023;95(2):e28538. doi:10.1002/jmv.28538; Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020;507:167-173. doi:10.1016/j.cca.2020.04.027; Rodriguez-Perez AI, Labandeira CM, Pedrosa MA, Valenzuela R, Suarez-Quintanilla JA, Cortes-Ayaso M, et al. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J Autoimmun. 2021;122:102683. doi:10.1016/j.jaut.2021.102683; Casciola-Rosen L, Thiemann DR, Andrade F, Trejo-Zambrano MI, Leonard EK, Spangler JB, et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022;7(9):e158362. doi:10.1172/jci.insight.158362; Miedema J, Schreurs M, van der Sar-van der Brugge S, Paats M, Baart S, Bakker M, et al. Antibodies against angiotensin II receptor type 1 and endothelin a receptor are associated with an unfavorable COVID19 disease course. Front Immunol. 2021;12:684142. doi:10.3389/fimmu.2021.684142; Briquez PS, Rouhani SJ, Yu J, Pyzer AR, Trujillo J, Dugan HL, et al. Severe COVID-19 induces autoantibodies against angiotensin II that correlate with blood pressure dysregulation and disease severity. Sci Adv. 2022;8(40):eabn3777. doi:10.1126/sciadv.abn3777; Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Baiocchi GC, et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun. 2022;13(1):1220. doi:10.1038/s41467-022-28905-5; Sinnberg T, Lichtensteiger C, Ali OH, Pop OT, Jochum AK, Risch L, et al. Pulmonary surfactant proteins are inhibited by immunoglobulin a autoantibodies in severe COVID-19. Am J Respir Crit Care Med. 2023;207(1):38-49. doi:10.1164/rccm.202201-0011OC; Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, et al. Autoantibodies against chemokines postSARS-CoV-2 infection correlate with disease course. Nat Immunol. 2023;24(4):604-611. doi:10.1038/s41590-023-01445-w; Thurner L, Fadle N, Bewarder M, Kos I, Regitz E, Cetin O, et al. Autoantibodies against progranulin and IL-1 receptor antagonist due to immunogenic posttranslational isoforms contribute to hyperinflammation in critically ill COVID-19. bioRxiv. 2021.04.23.441188. doi:10.1101/2021.04.23.441188; Pfeifer J, Thurner B, Kessel C, Fadle N, Kheiroddin P. Autoantibodies against interleukin-1 receptor antagonist in multisystem inflammatory syndrome in children: A multicentre, retrospective, cohort study. Lancet Rheumatol. 2022;4(5):e329-e337. doi:10.1016/S2665-9913(22)00064-9; Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, et al. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res. 2023;119(11):2046-2060. doi:10.1093/cvr/cvad084; Jian J, Li G, Hettinghouse A, Liu C. Progranulin: A key player in autoimmune diseases. Cytokine. 2018;101:48-55. doi:10.1016/j.cyto.2016.08.007; Klemm P, Assmann G, Preuss KD, Fadle N, Regitz E, Martin T, et al. Progranulin autoantibodies in systemic sclerosis and autoimmune connective tissue disorders: A preliminary study. Immun Inflamm Dis. 2019;7(4):271-275. doi:10.1002/iid3.270; Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-175. doi:10.1038/nri3399; Li J, Zhang K, Zhang Y, Gu Z, Huang C. Neutrophils in COVID-19: Recent insights and advances. Virol J. 2023;20(1):169. doi:10.1186/s12985-023-02116-w; Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23(5):274-288. doi:10.1038/s41577-022-00787-0; Насонов ЕЛ, Авдеева АС, Решетняк ТМ, Алексанкин АП, Рубцов ЮП. Роль нетоза в патогенезе иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2023;61(5):513-530. doi:10.47360/1995-4484-2023-513-530; Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. doi:10.1172/jci.insight.138999; Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, et al. Complement and tissue factorenriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151-6157. doi:10.1172/JCI141374; Krinsky N, Sizikov S, Nissim S, Dror A, Sas A, Prinz H, et al. NETosis induction reflects COVID-19 severity and long COVID: Insights from a 2-center patient cohort study in Israel. J Thromb Haemost. 2023;21(9):2569-2584. doi:10.1016/j.jtha.2023.02.033; Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15):e150111. doi:10.1172/jci.insight.150111; Zuo Y, Navaz S, Tsodikov A, Kmetova K, Kluge L, Ambati A, et al.; Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking. Anti-neutrophil extracellular trap antibodies in antiphospholipid antibody-positive patients: Results from the Antiphospholipid Syndrome Alliance for clinical trials and InternatiOnal Networking Clinical Database and Repository. Arthritis Rheumatol. 2023;75(8):1407-1414. doi:10.1002/art.42489; Zuo Y, Yalavarthi S, Gockman K, Madison JA, Gudjonsson JE, Kahlenberg JM, et al. Anti-neutrophil extracellular trap antibodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis Rheumatol. 2020;72(12):2130-2135. doi:10.1002/art.41460; Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, NúñezÁlvarez C, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: A newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990-3003. doi:10.1002/art.39247; Bertin D, Brodovitch A, Lopez A, Arcani R, Thomas GM, Beziane A, et al. Anti-cardiolipin IgG autoantibodies associate with circulating extracellular DNA in severe COVID-19. Sci Rep. 2022;12(1):12523. doi:10.1038/s41598-022-15969-y; Pisareva E, Badiou S, Mihalovičová L, Mirandola A, Pastor B, Kudriavtsev A, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209. doi:10.1002/jmv.28209; Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, et al. Anti-β2 GPI/β2 GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology. 2018;138:140-150. doi:10.1016/j.neuropharm.2018.06.001; Pisetsky DS. Antibodies to neutrophil extracellular traps: Novel markers for the antiphospholipid syndrome. Arthritis Rheumatol. 2023;75(8):1331-1333. doi:10.1002/art.42548; Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don’t know, and what we ought to know. Immunobiology. 2023;228(3):152393. doi:10.1016/j.imbio.2023.152393; Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 2017;13(9):538-547. doi:10.1038/nrrheum.2017.125; Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol. 2021;178(14):2892-2904. doi:10.1111/bph.15476; Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017;31(4):213-223. doi:10.1016/j.blre.2017.02.003; Holter JC, Pischke SE, de Boer E, Lind A, Jenum S, Holten AR, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci U S A. 2020;117(40):25018-25025. doi:10.1073/pnas.2010540117; Cugno M, Meroni PL, Gualtierotti R, Griffini S, Grovetti E, Torri A, et al. Complement activation and endothelial perturbation parallel COVID-19 severity and activity. J Autoimmun. 2021;116:102560. doi:10.1016/j.jaut.2020.102560; Lo MW, Kemper C, Woodruff TM. COVID-19: Complement, coagulation, and collateral damage. J Immunol. 2020;205(6):1488-1495. doi:10.4049/jimmunol.2000644; Perez-Diez A, Liu X, Calderon S, Bennett A, Kisco A, et al. Prevalence and complement activation of anti-lymphocyte IgM antibodies in hospitalized COVID-19 patients. J Immunol. 2023;210(Suppl 1):75.26. doi:10.4049/jimmunol.210.Suppl.7526; Chaturvedi S, Braunstein EM, Yuan X, Yu J, Alexander A, Chen H, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135(4):239-251. doi:10.1182/blood.2019003863; Ghanbari EP, Jakobs K, Puccini M, Reinshagen L, Friebel J, Haghikia A, et al. The role of NETosis and complement activation in COVID-19-associated coagulopathies. Biomedicines. 2023;11(5):1371. doi:10.3390/biomedicines11051371; Kolb P, Giese S, Voll RE, Hengel H, Falcone V. Immune complexes as culprits of immunopathology in severe COVID-19. Med Microbiol Immunol. 2023;212(2):185-191. doi:10.1007/s00430-022-00743-8; Perdomo J, Leung HHL. Immune thrombosis: Exploring the significance of immune complexes and NETosis. Biology. 2023;12(10):1332. doi:10.3390/biology12101332; Ankerhold J, Giese S, Kolb P, Maul-Pavicic A, Voll RE, Göppert N, et al. Circulating multimeric immune complexes contribute to immunopathology in COVID-19. Nat Commun. 2022;13(1):5654. doi:10.1038/s41467-022-32867-z; Petrović T, Vijay A, Vučković F, Trbojević-Akmačić I, Ollivere BJ, Marjanović D, et al. IgG N-glycome changes during the course of severe COVID-19: An observational study. EBioMedicine. 2022;81:104101. doi:10.1016/j.ebiom.2022.104101; Vučković F, Krištić J, Gudelj I, Teruel M, Keser T, Pezer M, et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 2015;67(11):2978-2989. doi:10.1002/art.39273; Ramos-Martínez I, Ramos-Martínez E, Cerbón M, Pérez-Torres A, Pérez-Campos Mayoral L, Hernández-Huerta MT, et al. The role of B cell and T cell glycosylation in systemic lupus erythematosus. Int J Mol Sci. 2023;24(1):863. doi:10.3390/ijms24010863; Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi:10.1136/annrheumdis-2017-211555; Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi:10.14412/1995-4484-2017-409-419; Насонов ЕЛ, Соловьев СК, Аршинов АВ. Системная красная волчанка: история и современность. Научно-практическая ревматология. 2022;60(4):397-412. doi:10.47360/1995-4484-2022-397-412; Murakami N, Hayden R, Hills T, Al-Samkari H, Casey J, Del Sorbo L, et al. Therapeutic advances in COVID-19. Nat Rev Nephrol. 2023;19(1):38-52. doi:10.1038/s41581-022-00642-4; Zhang W, Qin C, Fei Y, Shen M, Zhou Y, Zhang Y, et al. Antiinflammatory and immune therapy in severe coronavirus disease 2019 (COVID-19) patients: An update. Clin Immunol. 2022;239:109022. doi:10.1016/j.clim.2022.109022; Chee YJ, Fan BE, Young BE, Dalan R, Lye DC. Clinical trials on the pharmacological treatment of long COVID: A systematic review. J Med Virol. 2023;95(1):e28289. doi:10.1002/jmv.28289; Lopes LA, Agrawal DK. Thromboembolism in the complications of long COVID-19. Cardiol Cardiovasc Med. 2023;7(2):123-128. doi:10.26502/fccm.92920317; Nicolai L, Kaiser R, Stark K. Thromboinflammation in long COVID – The elusive key to postinfection sequelae? J Thromb Haemost. 2023;21(8):2020-2031. doi:10.1016/j.jtha.2023.04.039; Wang C, Yu C, Jing H, Wu X, Novakovic VA, Xie R, et al. Long COVID: The nature of thrombotic sequelae determines the necessity of early anticoagulation. Front Cell Infect Microbiol. 2022;12:861703. doi:10.3389/fcimb.2022.861703; Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Persistent lung injury and prothrombotic state in long COVID. Front Immunol. 2022;13:862522. doi:10.3389/fimmu.2022.862522; Gyöngyösi M, Alcaide P, Asselbergs FW, Brundel BJJM, Camici GG, Martins PDC, et al. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: A joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc Res. 2023;119(2):336-356. doi:10.1093/cvr/cvac115; Eberhardt N, Noval MG, Kaur R, Amadori L, Gildea M, Sajja S, et al. SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels. Nat Cardiovasc Res. 2023;2(10):899-916. doi:10.1038/s44161-023-00336-5; Xiang M, Wu X, Jing H, Novakovic VA, Shi J. The intersection of obesity and (long) COVID-19: Hypoxia, thrombotic inflammation, and vascular endothelial injury. Front Cardiovasc Med. 2023;10:1062491. doi:10.3389/fcvm.2023.1062491; Baimukhamedov C, Botabekova A, Lessova Z, Abshenov B, Kurmanali N. Osteonecrosis amid the COVID-19 pandemic. Rheumatol Int. 2023;43(7):1377-1378. doi:10.1007/s00296-023-05332-3; Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. doi:10.1038/s41584-020-0372-x; Dima A, Jurcut C, Chasset F, Felten R, Arnaud L. Hydroxychloroquine in systemic lupus erythematosus: Overview of current knowledge. Ther Adv Musculoskelet Dis. 2022;14:1759720X211073001. doi:10.1177/1759720X211073001; Tripathy S, Dassarma B, Roy S, Chabalala H, Matsabisa MG. A review on possible modes of action of chloroquine/hydroxychloroquine: Repurposing against SAR-CoV-2 (COVID-19) pandemic. Int J Antimicrob Agents. 2020;56(2):106028. doi:10.1016/j.ijantimicag.2020.106028; Knight JS, Branch DW, Ortel TL. Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management. BMJ. 2023;380:e069717. doi:10.1136/bmj-2021-069717; Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 2019;78(6):736-745. doi:10.1136/annrheumdis-2019-215089; Schmidt-Tanguy A, Voswinkel J, Henrion D, Subra JF, Loufrani L, Rohmer V, et al. Antithrombotic effects of hydroxychloroquine in primary antiphospholipid syndrome patients. J Thromb Haemost. 2013;11(10):1927-1929. doi:10.1111/jth.12363. PMID: 23902281; Schreiber K, Breen K, Parmar K, Rand JH, Wu X-X, Hunt BJ. The effect of hydroxychloroquine on haemostasis, complement, inflammation and angiogenesis in patients with antiphospholipid antibodies. Rheumatology (Oxford). 2018;57(1):120-124. doi:10.1093/rheumatology/kex378; Nuri E, Taraborelli M, Andreoli L, Tonello M, Gerosa M, Calligaro A, et al. Long-term use of hydroxychloroquine reduces antiphospholipid antibodies levels in patients with primary antiphospholipid syndrome. Immunol Res. 2017;65(1):17-24. doi:10.1007/s12026-016-8812-z; Kravvariti E, Koutsogianni A, Samoli E, Sfikakis PP, Tektonidou MG. The effect of hydroxychloroquine on thrombosis prevention and antiphospholipid antibody levels in primary antiphospholipid syndrome: A pilot open label randomized prospective study. Autoimmun Rev. 2020;19(4):102491. doi:10.1016/j.autrev.2020.102491; Erkan D, Unlu O, Sciascia S, Belmont HM, Branch DW, Cuadrado MJ, et al.; APS ACTION. Hydroxychloroquine in the primary thrombosis prophylaxis of antiphospholipid antibody positive patients without systemic autoimmune disease. Lupus. 2018;27(3):399-406. doi:10.1177/0961203317724219; Chighizola CB, Willis R, Maioli G, Sciascia S, Andreoli L, Amengual O, et al. Deciphering the clinical significance of longitudinal antiphospholipid antibody titers. Autoimmun Rev. 2024;23(3):103510. doi:10.1016/j.autrev.2023.103510; Infante M, Ricordi C, Fabbri A. Antihyperglycemic properties of hydroxychloroquine in patients with diabetes: Risks and benefits at the time of COVID-19 pandemic. J Diabetes. 2020;12(9):659-667. doi:10.1111/1753-0407.13053; Wondafrash DZ, Desalegn TZ, Yimer EM, Tsige AG, Adamu BA, Zewdie KA. Potential effect of hydroxychloroquine in diabetes mellitus: A systematic review on preclinical and clinical trial studies. J Diabetes Res. 2020;2020:5214751. doi:10.1155/2020/5214751; Алекберова ЗС, Насонов ЕЛ. Перспективы применения колхицина в медицине: новые данные. Научно-практическая ревматология. 2020;58(2):183-190. doi:10.14412/1995-4484-2020-183-190; Casey A, Quinn S, McAdam B, Kennedy M, Sheahan R. Colchicine-regeneration of an old drug. Ir J Med Sci. 2023;192(1):115-123. doi:10.1007/s11845-022-02938-7; Bonaventura A, Vecchié A, Dagna L, Tangianu F, Abbate A, Dentali F. Colchicine for COVID-19: targeting NLRP3 inflammasome to blunt hyperinflammation. Inflamm Res. 2022;71(3):293-307. doi:10.1007/s00011-022-01540-y; Drosos AA, Pelechas E, Drossou V, Voulgari PV. Colchicine against SARS-CoV-2 infection: What is the evidence? Rheumatol Ther. 2022;9(2):379-389. doi:10.1007/s40744-022-00425-0; Nelson K, Fuster V, Ridker PM. Low-dose colchicine for secondary prevention of coronary artery disease: JACC review topic of the week. J Am Coll Cardiol. 2023;82(7):648-660. doi:10.1016/j.jacc.2023.05.055; Ebrahimi F, Hirt J, Schönenberger C, Ewald H, Briel M, Janiaud P, et al. Colchicine for the secondary prevention of cardiovascular events. Cochrane Database Syst Rev. 2023;2023(8):CD014808. doi:10.1002/14651858.CD014808; Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J. Colchicine promotes atherosclerotic plaque stability independently of inflammation. bioRxiv. 2023.10.03.560632. doi:10.1101/2023.10.03.560632; Deftereos SG, Beerkens FJ, Shah B, Giannopoulos G, Vrachatis DA, Giotaki SG, et al. Colchicine in cardiovascular disease: In-depth review. Circulation. 2022;145(1):61-78. doi:10.1161/CIRCULATIONAHA.121.056171; Furqan MM, Verma BR, Cremer PC, Imazio M, Klein AL. Pericardial diseases in COVID19: a contemporary review. Curr Cardiol Rep. 2021;23(7):90. doi:10.1007/s11886-021-01519-x; Насонов ЕЛ, Сукмарова ЗН, Попкова ТВ, Белов БС. Проблемы иммунопатологии и перспективы фармакотерапии идиопатического рецидивирующего перикардита: применение ингибитора интерлейкина 1 (Анакинра). Научно-практическая ревматология. 2023;61(1):47-61. doi:10.47360/1995-4484-2023-47-61; Dini FL, Baldini U, Bytyçi I, Pugliese NR, Bajraktari G, Henein MY. Acute pericarditis as a major clinical manifestation of long COVID-19 syndrome. Int J Cardiol. 2023;374:129-134. doi:10.1016/j.ijcard.2022.12.019; Di Dedda EA, Barison A, Aquaro GD, Ismail TF, Hua A, Mantini C, et al. Cardiac magnetic resonance imaging of myocarditis and pericarditis following COVID-19 vaccination: A multicenter collection of 27 cases. Eur Radiol. 2022;32(7):4352-4360. doi:10.1007/s00330-022-08566-0; Buckley BJR, Harrison SL, Fazio-Eynullayeva E, Underhill P, Lane DA, Lip GYH. Prevalence and clinical outcomes of myocarditis and pericarditis in 718,365 COVID-19 patients. Eur J Clin Invest. 2021;51(11):e13679. doi:10.1111/eci.13679; Gao J, Feng L, Li Y, Lowe S, Guo Z, Bentley R, et al. A systematic review and meta-analysis of the association between SARSCoV-2 vaccination and myocarditis or pericarditis. Am J Prev Med. 2023;64(2):275-284. doi:10.1016/j.amepre.2022.09.002; Li P, Shi A, Lu X, Li C, Cai P, Teng C, et al. Incidence and impact of acute pericarditis in hospitalized patients with COVID-19. J Am Heart Assoc. 2023;12(20):e028970. doi:10.1161/JAHA.122.028970; Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. doi:10.1001/jamacardio.2020.0950; Imazio M, Nidorf M. Colchicine and the heart. Eur Heart J. 2021;42(28):2745-2760. doi:10.1093/eurheartj/ehab221; Yeh JJ, Hung TW, Lin CL, Chen TT, Liw PX, Yu YL, et al. Colchicine is a weapon for managing the heart disease among interstitial lung disease with viral infection: Have we found the Holy Grail? Front Cardiovasc Med. 2022;9:925211. doi:10.3389/fcvm.2022.925211; Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: What have we learned? BioDrugs. 2024;38:61-71. doi:10.1007/s40259-023-00634-1; Kishimoto T, Kang S. IL-6 revisited: From rheumatoid arthritis to CAR T cell therapy and COVID-19. Annu Rev Immunol. 2022;40:323-348. doi:10.1146/annurev-immunol-101220-023458; Feist E, Nasonov E. Interleukin 6 inhibition in rheumatoid arthritis: Highlight on olokizumab. Rheumatology. 2023;2(1):17-27. doi:10.17925/RMD.2023.2.1.17; Насонов ЕЛ. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): Фокус на интерлейкин 6. Научно-практическая ревматология. 2020;58(3):245-261. doi:10.14412/1995-4484-2020-245-261; Nasonov E, Samsonov M. The role of interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020;131:110698. doi:10.1016/j.biopha.2020.110698; Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233-1244. doi:10.1016/S2213-2600(20)30404-5; Yin JX, Agbana YL, Sun ZS, Fei SW, Zhao HQ, Zhou XN, et al. Increased interleukin-6 is associated with long COVID-19: A systematic review and meta-analysis. Infect Dis Poverty. 2023;12(1):43. doi:10.1186/s40249-023-01086-z; Espín E, Yang C, Shannon CP, Assadian S, He D, Tebbutt SJ. Cellular and molecular biomarkers of long COVID: A scoping review. EBioMedicine. 2023;91:104552. doi:10.1016/j.ebiom.2023.104552; Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes SS, et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663. doi:10.1016/j.xcrm.2022.100663; Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARSCoV-2 infection. Nat Immunol. 2022;23(2):210-216. doi:10.1038/s41590-021-01113-x; Sunzini F, Schrepf A, Clauw DJ, Basu N. The biology of pain: Through the rheumatology lens. Arthritis Rheumatol. 2023;75(5):650-660. doi:10.1002/art.42429.; Лисицына ТА, Вельтищев ДЮ, Лила АМ, Насонов ЕЛ. Интерлейкин 6 как патогенетический фактор, опосредующий формирование клинических проявлений, и мишень для терапии ревматических заболеваний и депрессивных расстройств. Научно-практическая ревматология. 2019;57(3):318-327. doi:10.14412/1995-4484-2019-318-327; Atzeni F, Nucera V, Masala IF, Sarzi-Puttini P, Bonitta G. Il-6 Involvement in pain, fatigue and mood disorders in rheumatoid arthritis and the effects of Il-6 inhibitor sarilumab. Pharmacol Res. 2019;149:104402. doi:10.1016/j.phrs.2019.104402; Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, et al. Interleukin-6: An emerging regulator of pathological pain. J Neuroinflammation. 2016;13(1):141. doi:10.1186/s12974-016-0607-6; Kappelmann N, Dantzer R, Khandaker GM. Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology. 2021;131:105295. doi:10.1016/j.psyneuen.2021.105295; PHOSP-COVID Collaborative Group. Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: A prospective observational study. Lancet Respir Med. 2022;10(8):761-775. doi:10.1016/S2213-2600(22)00127-8; Visvabharathy L, Orban ZS, Koralnik IJ. Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence. Front Med (Lausanne). 2022;9:1003103. doi:10.3389/fmed.2022.1003103; Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2021;18(1):58-68. doi:10.1038/s41569-020-0431-7; Su JH, Luo MY, Liang N, Gong SX, Chen W, Huang WQ, et al. Interleukin-6: A novel target for cardio-cerebrovascular diseases. Front Pharmacol. 2021;12:745061. doi:10.3389/fphar.2021.745061; Libby P. Targeting inflammatory pathways in cardiovascular disease: The inflammasome, interleukin-1, interleukin-6 and beyond. Cells. 2021;10(4):951. doi:10.3390/cells10040951; Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res. 2021;128(11):1728-1746. doi:10.1161/CIRCRESAHA.121.319077; Ridker PM, Devalaraja M, Baeres FMM, Engelmann MDM, Hovingh GK, Ivkovic M, et al.; RESCUE Investigators. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2021;397(10289):2060-2069. doi:10.1016/S0140-6736(21)00520-1; Wada Y, Jensen C, Meyer ASP, Zonoozi AAM, Honda H. Efficacy and safety of interleukin-6 inhibition with ziltivekimab in patients at high risk of atherosclerotic events in Japan (RESCUE-2): A randomized, double-blind, placebo-controlled, phase 2 trial. J Cardiol. 2023;82(4):279-285. doi:10.1016/j.jjcc.2023.05.006; Toraldo DM, Satriano F, Rollo R, Verdastro G, Imbriani G, Rizzo E, et al. COVID-19 IgG/IgM patterns, early IL-6 elevation and long-term radiological sequelae in 75 patients hospitalized due to interstitial pneumonia followed up from 3 to 12 months. PLoS One. 2022;17(2):e0262911. doi:10.1371/journal.pone.0262911; Lee JH, Jang JH, Park JH, Jang HJ, Park CS, Lee S, et al. The role of interleukin-6 as a prognostic biomarker for predicting acute exacerbation in interstitial lung diseases. PLoS One. 2021;16(7):e0255365. doi:10.1371/journal.pone.0255365; Ma C, Meng K, Shi S, Zhao T, Chen S, Zhou X, et al. Clinical significance of interleukin-6, total bilirubin, CD3+CD4+T cells counts in the acute exacerbation of connective tissue diseaseassociated interstitial lung disease: A cross-sectional study. Eur J Med Res. 2023;28(1):393. doi:10.1186/s40001-023-01384-0; Насонов ЕЛ, Ананьева ЛП, Авдеев СН. Интерстициальные заболевания легких при ревматоидном артрите: мультидисциплинарная проблема ревматологии и пульмонологии. Научно-практическая ревматология. 2022;60(6):517-534. doi:10.47360/1995-4484-2022-1; Khanna D, Lin CJF, Furst DE, Wagner B, Zucchetto M,Raghu G, et al. Long-term safety and efficacy of tocilizumab in early systemic sclerosis-interstitial lung disease: Open-label extension of a phase 3 randomized controlled trial. Am J Respir Crit Care Med. 2022;205(6):674-684. doi:10.1164/rccm.202103-0714OC; Cutolo M, Smith V, Paolino S, Gotelli E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol. 2023;19(5):265-287. doi:10.1038/s41584-023-00944-2; Dissanayake HA, de Silva NL, Sumanatilleke M, de Silva SDN, Gamage KKK, Dematapitiya C, et al. Prognostic and therapeutic role of vitamin D in COVID-19: Systematic review and metaanalysis. J Clin Endocrinol Metab. 2022;107(5):1484-1502. doi:10.1210/clinem/dgab892; Oristrell J, Oliva JC, Subirana I, Casado E, Domínguez D, Toloba A, et al. Association of calcitriol supplementation with reduced COVID-19 mortality in patients with chronic kidney disease: A population-based study. Biomedicines. 2021;9(5):509. doi:10.3390/biomedicines9050509; Villasis-Keever MA, López-Alarcón MG, Miranda-Novales G, Zurita-Cruz JN, Barrada-Vázquez AS, González-Ibarra J, et al. Efficacy and safety of vitamin D supplementation to prevent COVID-19 in frontline healthcare workers. A randomized clinical trial. Arch Med Res. 2022;53(4):423-430. doi:10.1016/j.arcmed.2022.04.003; Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Bubes V, et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ. 2022;376:e066452. doi:10.1136/bmj-2021-066452; Achleitner M, Steenblock C, Dänhardt J, Jarzebska N, Kardashi R, Kanczkowski W, et al. Clinical improvement of Long-COVID is associated with reduction in autoantibodies, lipids, and inflammation following therapeutic apheresis. Mol Psychiatry. 2023;28(7):2872-2877. doi:10.1038/s41380-023-02084-1; Curtis JR, Johnson SR, Anthony DD, Arasaratnam RJ, Baden LR, Bass AR, et al. American College of Rheumatology guidance for COVID-19 vaccination in patients with rheumatic and musculoskeletal diseases: Version 5. Arthritis Rheumatol. 2023;75(1):E1-E16. doi:10.1002/art.42372; Насонов ЕЛ, Лила АМ, Мазуров ВИ, Белов БС, Каратеев АЕ, Дубинина ТВ, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания. Рекомендации Общероссийской общественной организации «Ассоциация ревматологов России». Научно-практическая ревматология. 2021;59(3):239-254. doi:10.47360/1995-4484-2021-239-254; van Sleen Y, van der Geest KSM, Huckriede ALW, van Baarle D, Brouwer E. Effect of DMARDs on the immunogenicity of vaccines. Nat Rev Rheumatol. 2023;19(9):560-575. doi:10.1038/s41584-023-00992-8; Hansen N. Psychiatric symptoms in acute and persisting forms of COVID-19 associated with neural autoantibodies. Antibodies (Basel). 2023;12(3):49. doi:10.3390/antib12030049; Seibert FS, Stervbo U, Wiemers L, Skrzypczyk S, Hogeweg M, Bertram S, et al. Severity of neurological long-COVID symptoms correlates with increased level of autoantibodies targeting vasoregulatory and autonomic nervous system receptors. Autoimmun Rev. 2023;22(11):103445. doi:10.1016/j.autrev.2023.103445; Feng A, Yang EY, Moore AR, Dhingra S, Chang SE, Yin X, et al. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight. 2023;8(3):e163150. doi:10.1172/jci.insight.163150; Bodansky A, Wang CY, Saxena A, Mitchell A, Kung AF, Takahashi S, et al. Autoantigen profiling reveals a shared post-COVID signature in fully recovered and long COVID patients. JCI Insight. 2023;8(11):e169515. doi:10.1172/jci.insight.169515; Jiang W, Johnson D, Adekunle R, Heather H, Xu W, Cong X, et al. COVID-19 is associated with bystander polyclonal autoreactive B cell activation as reflected by a broad autoantibody production, but none is linked to disease severity. J Med Virol. 2023;95(1):e28134. doi:10.1002/jmv.28134; Lebedin M, García CV, Spatt L, Ratswohl C, Thibeault C, Ostendorf L, et al. Discriminating promiscuous from target-specific autoantibodies in COVID-19. Eur J Immunol. 2023;53(5):e2250210. doi:10.1002/eji.202250210; Skevaki C, Wesemann DR. Antibody repertoire and autoimmunity. J Allergy Clin Immunol. 2023;151(4):898-900. doi:10.1016/j.jaci.2023.0; Carlton LH, McGregor R, Moreland NJ. Human antibody profiling technologies for autoimmune disease. Immunol Res. 2023;71(4):516-527. doi:10.1007/s12026-023-09362-8; Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, et al. Antibody validation. Biotechniques. 2010;48(3):197-209. doi:10.2144/000113382; Sack U, Bossuyt X, Andreeva H, Antal-Szalmás P, Bizzaro N, Bogdanos D, et al.; European Autoimmunity Standardisation Initiative. Quality and best practice in medical laboratories: Specific requests for autoimmunity testing. Auto Immun Highlights. 2020;11(1):12. doi:10.1186/s13317-020-00134-0; Fritzler MJ, Choi MY, Satoh M, Mahler M. Autoantibody discovery, assay development and adoption: Death valley, the sea of survival and beyond. Front Immunol. 2021;12:679613. doi:10.3389/fimmu.2021.679613; Treger RS, Fink SL. Beyond titer: Expanding the scope of clinical autoantibody testing. J Appl Lab Med. 2022;7(1):99-113. doi:10.1093/jalm/jfab123; Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: Sweet biomarker or modulator of disease activity? Nat Rev Rheumatol. 2017;13(10):621-630. doi:10.1038/nrrheum.2017.146; Simpson S, Kaufmann MC, Glozman V, Chakrabarti A. Disease X: Accelerating the development of medical countermeasures for the next pandemic. Lancet Infect Dis. 2020;20(5):e108-e115. doi:10.1016/S1473-3099(20)30123-7
-
13Academic Journal
Συγγραφείς: O. B. Ovsyannikova, O. A. Koneva, L. A. Garzanova, L. P. Ananyeva, О. Б. Овсянникова, О. А. Конева, Л. А. Гарзанова, Л. П. Ананьева
Συνεισφορές: Статья подготовлена в рамках научной темы (регистрационный номер ИКБРС 0397-2020-0006).
Πηγή: Rheumatology Science and Practice; Vol 62, No 5 (2024); 484-493 ; Научно-практическая ревматология; Vol 62, No 5 (2024); 484-493 ; 1995-4492 ; 1995-4484
Θεματικοί όροι: интерстициальное заболевание легких, rheumatic disease, interstitial lung disease, иммуновоспалительные ревматические заболевания
Περιγραφή αρχείου: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3634/2402; Насонов ЕЛ (ред.). Ревматология. Российские клинические рекомендации. М.:ГЭОТАР-Медиа;2020.; Hofmann-Vold AM, Molberg Ø. Detection, screening, and classification of interstitial lung disease in patients with systemic sclerosis. Curr Opin Rheumatol. 2020;32:497-504. doi:10.1097/BOR.0000000000000741; Castillo S, Forbes B, Chen J, Hamblin MJ. Assessment of optimal screening tests for the detection of an inflammatory myositis-associated interstitial lung disease. Cureus. 2020;12:7875. doi:10.7759/cureus.7875; Barskova T, Gargani L, Guiducci S, Randone SB, Bruni C, Carnesecchi G, et al. Lung ultrasound for the screening of interstitial lung disease in very early systemic sclerosis. Ann Rheum Dis. 2013;72(3):390-395. doi:10.1136/annrheumdis-2011-201072; Gutierrez M, Soto-Fajardo C, Pineda C, Alfaro-Rodriguez A, Terslev L, Bruyn GA, et al. Ultrasound in the assessment of interstitial lung disease in systemic sclerosis: A systematic literature review by the OMERACT Ultrasound Group. J Rheumatol. 2020;47(7):991-1000. doi:10.3899/jrheum.180940; Овсянникова ОБ, Ананьева ЛП, Корсакова ЮО, Конева ОА, Волков АВ, Глухова СИ. Оценка ультразвукового сканирования легких у больных системной склеродермией и интерстициальным поражением легких. Научно-практическая ревматология. 2013;51(3):279-284.; Овсянникова ОБ, Ананьева ЛП, Конева ОА, Десинова ОВ, Старовойтова МН. Ультразвуковое сканирование: возможности и перспективы для оценки поражения легких при системной склеродермии. Научно-практическая ревматология. 2012;50(6): 80-87.; Moazedi-Fuerst FC, Kielhauser SM, Scheidl S, Tripolt NJ, Lutfi A, Yazdani-Biuki B, et al. Ultrasound screening for interstitial lung disease in rheumatoid arthritis. Clin Exp Rheumatol. 2014;32(2):199-203.; Cogliati C, Antivalle M, Torzillo D, Birocchi S, Norsa A, Bianco R, et al. Standard and pocket-size lung ultrasound devices can detect interstitial lung disease in rheumatoid arthritis patients. Rheumatology (Oxford). 2014;53(8):1497-1503. doi:10.1093/rheumatology/keu033; Fotoh DS, Helal A, Rizk MS, Esaily HA. Serum Krebs von den Lungen-6 and lung ultrasound B lines as potential diagnostic and prognostic factors for rheumatoid arthritis-associated interstitial lung disease. Clin Rheumatol. 2021;40(7):2689-2697. doi:10.1007/s10067-021-05585-y; Doğan C, Kıral N, Parmaksız ET, Çağlayan B, Sağmen SB, Salepçi B, et al. Ultrasonographic evaluation of lung parenchyma involvement in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2019;36(2):130-140. doi:10.36141/svdld.v36i2.7312; Moazedi-Fuerst FC, Zechner PM, Tripolt NJ, Kielhauser SM, Brickmann K, Scheidl S, et al. Pulmonary echography in systemic sclerosis. Clin Rheumatol. 2012;31(11):1621-1625. doi:10.1007/s10067-012-2055-8; Mohammadi A, Oshnoei S, Ghasemi-rad M. Comparison of a new, modified lung ultrasonography technique with high resolution CT in the diagnosis of the alveolo-interstitial syndrome of systemic scleroderma. Med Ultrason. 2014;16:27-31. doi:10.11152/mu.2014.2066.161.am1so2; Ахунова РР, Ахунова ГР. Ультразвуковое исследование легких: возможности диагностики интерстициального заболевания легких, ассоциированного с ревматоидным артритом. Научно-практическая ревматология. 2023;61(1):129-137.; Gargani L, Volpicelli G. How do it: Lung ultrasound. Cardiovasc Ultrasound. 2014;12:25. doi:10.1186/1476-7120-12-25; Reyes-Long S, Gutierrez M, Clavijo-Cornejo D, Alfaro-Rodríguez A, González-Sámano K, Cortes-Altamirano JL, et al. Subclinical interstitial lung disease in patients with systemic sclerosis. A pilot study on the role of ultrasound. Reumatol Clin (Engl Ed). 2021;17(3):144-149. doi:10.1016/j.reuma.2019.05.004; Reissig A, Kroegel C. Transthoracic sonography of diffuse parenchymal lung disease: The role of comet tail artifacts. J Ultrasond Med. 2003;22:173-180.; Vizioli L, Ciccarese F, Forti P, Chiesa AM, Giovagnoli M, Mughetti M, et al. Integrated use of lung ultrasound and chest X-ray in the detection of interstitial lung disease. Respiration. 2017;93(1):15-22. doi:10.1159/000452225; Кармазановский ГГ, Нуднов НВ, Юдин АЛ, Петриков СС. COVID-19: лучевая диагностика и мониторинг лечения. М.: Крафт+; 2020.; Петров АА, Сафарова АФ, Рачина СА, Кабалова ЖБ, Сафарова НБ, Тесаков ИП, и др. Ультразвуковое исследование легких: методика выполнения и перспективы в диагностике нозокомиальной пневмонии. Практическая пульмонология. 2018;3:38-45.; Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: A clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19(3):356-363. doi:10.1016/j.echo.2005.05.019; Doveri M, Frassi F, Consensi A, Vesprini E, Gargani L, Tafuri M, et al. Le comete ultrasoniche polmonari (ULC): Un nuovo segno ecografico di fibrosi polmonare nella sclerodermia [Ultrasound lung comets: New echographic sign of lung interstitial fibrosis in systemic sclerosis. Reumatismo. 2008;60(3):180-184 (In Italian). doi:10.4081/reumatismo.2008.180; Gargani L, Doveri M, D’Errico L, Frassi F, Bazzichi ML, Delle Sedie A, et al. Ultrasound lung comets in systemic sclerosis: A chest sonography hallmark of pulmonary interstitial fibrosis. Rheumatology (Oxford). 2009;48(11):1382-1387. doi:10.1093/rheumatology/kep263; Gigante A, Rossi Fanelli F, Lucci S, Barilaro G, Quarta S, Barbano B, et al. Lung ultrasound in systemic sclerosis: Correlation with high-resolution computed tomography, pulmonary function tests and clinical variables of disease. Intern Emerg Med. 2016;11(2):213-217. doi:10.1007/s11739-015-1329-y; Çakir Edis E, Hatipoğlu ON, Pamuk ÖN, Mutlucan Eraslan R, Aktöz M, Tuncel SA. Effectiveness of thoracic ultrasonography in the evaluation of the severity of pulmonary involvement in patients with systemic sclerosis. Arch Rheumatol. 2016;31(4):364-370. doi:10.5606/ArchRheumatol.2016.5849; Tardella M, Di Carlo M, Carotti M, Filippucci E, Grassi W, Salaffi F. Ultrasound B-lines in the evaluation of interstitial lung disease in patients with systemic sclerosis: Cut-off point definition for the presence of significant pulmonary fibrosis. Medicine (Baltimore). 2018;97(18):e0566. doi:10.1097/MD.0000000000010566; Gutierrez M, Salaffi F, Carotti M, Tardella M, Pineda C, Bertolazzi C, et al. Utility of a simplified ultrasound assessment to assess interstitial pulmonary fibrosis in connective tissue disorders – Preliminary results. Arthritis Res Ther. 2011;13(4):R134. doi:10.1186/ar3446; Hassan RI, Lubertino LI, Barth MA, Quaglia MF, Montoya SF, Kerzberg E, et al. Lung Ultrasound as a screening method for interstitial lung disease in patients with systemic sclerosis. J Clin Rheumatol. 2019;25(7):304-307. doi:10.1097/RHU.0000000000000860; Fairchild R, Chung M, Yang D, Sharpless L, Li S, Chung L. Development and assessment of novel lung ultrasound interpretation criteria for the detection of interstitial lung disease in systemic sclerosis. Arthritis Care Res (Hoboken). 2021;73(9):1338-1342. doi:10.1002/acr.24338; Delle Sedie A, Doveri M, Frassi F, Gargani L, D’Errico G, Pepe P, et al. Ultrasound lung comets in systemic sclerosis: A useful tool to detect lung interstitial fibrosis. Clin Exp Rheumatol. 2010;28(5 Suppl 62):S54.; Gargani L, Bruni C, Romei C, Frumento P, Moreo A, Agoston G, et al. Prognostic value of lung ultrasound B-lines in systemic sclerosis. Chest. 2020;158(4):1515-1525. doi:10.1016/j.chest.2020.03.075; Vasco PG, de Luna Cardenal G, Garrido IM, Pinilla JM, Rodríguez GF, Mateo JJ, et al. Assessment of interstitial lung disease in Sjögren’s syndrome by lung ultrasound: A pilot study of correlation with high-resolution chest tomography. Intern Emerg Med. 2017;12(3):327-331. doi:10.1007/s11739-016-1582-8; Gasperini ML, Gigante A, Iacolare A, Pellicano C, Lucci S, Rosato E. The predictive role of lung ultrasound in progression of scleroderma interstitial lung disease. Clin Rheumatol. 2020;39(1):119-123. doi:10.1007/s10067-019-04686-z; Pinal-Fernández I, Pallisa Núñez E, Selva-O’Callaghan A, Castella-Fierro E, Martínez-Gómez X, Vilardell-Tarrés M. Correlation of ultrasound B-lines with high-resolution computed tomography in antisynthetase syndrome. Clin Exp Rheumatol. 2014;32(3):404-407.; Pinal-Fernandez I, Pallisa-Nuñez E, Selva-O’Callaghan A, Castella-Fierro E, Simeon-Aznar CP, Fonollosa-Pla V, et al. Pleural irregularity, a new ultrasound sign for the study of interstitial lung disease in systemic sclerosis and antisynthetase syndrome. Clin Exp Rheumatol. 2015;33(4 Suppl 91):S136-S141.; Wang Y, Chen S, Lin J, Xie X, Hu S, Lin Q, et al. Lung ultrasound B-lines and serum KL-6 correlate with the severity of idiopathic inflammatory myositis-associated interstitial lung disease. Rheumatology (Oxford). 2020;59(8):2024-2029. doi:10.1093/rheumatology/kez571; Buda N, Masiak A, Zdrojewski Z. Utility of lung ultrasound in ANCA-associated vasculitis with lung involvement. PLoS One. 2019;14(9):e0222189. doi:10.1371/journal.pone.0222189; Aghdashi M, Broofeh B, Mohammadi A. Diagnostic performances of high resolution trans-thoracic lung ultrasonography in pulmonary alveoli-interstitial involvement of rheumatoid lung disease. Int J Clin Exp Med. 2013;6:562-566.; Tardella M, Gutierrez M, Salaffi F, Carotti M, Ariani A, Bertolazzi C, et al. Ultrasound in the assessment of pulmonary fibrosis in connective tissue disorders: Correlation with high-resolution computed tomography. J Rheumatol. 2012;39(8):1641-1647. doi:10.3899/jrheum.120104; Moazedi-Fuerst FC, Kielhauser S, Brickmann K, Tripolt N, Meilinger M, Lufti A, et al. Sonographic assessment of interstitial lung disease in patients with rheumatoid arthritis, systemic sclerosis and systemic lupus erythematosus. Clin Exp Rheumatol. 2015;33(4 Suppl 91):S87-S91.; Buda N, Piskunowicz M, Porzezińska M, Kosiak W, Zdrojewski Z. Lung ultrasonography in the evaluation of interstitial lung disease in systemic connective tissue diseases: Criteria and severity of pulmonary fibrosis – Analysis of 52 patients. Ultraschall Med. 2016;37:379-385. doi:10.1055/s-0041-110590; Fehr A, Baghdady S, Ghaleb R, Maklad S. Transthoracic ultrasound in the detection of interstitial pulmonary fibrosis in patients with rheumatic connective tissue diseases. Bull Hosp Jt Dis. 2018;76:156-160.; Vicente-Rabaneda EF, Acebes C, Castañeda S. Usefulness of extra-articular ultrasound applied to systemic inflammatory diseases in clinical practice. Reumatol Clin. 2021;17(4):229-236. doi:10.1016/j.reuma.2020.04.005; Cappelli S, Bellando Randone S, Camiciottoli G, De Paulis A, Guiducci S, Matucci-Cerinic M. Interstitial lung disease in systemic sclerosis: Where do we stand? Eur Respir Rev. 2015;24(137):411-419. doi:10.1183/16000617.00002915
-
14Academic Journal
Συγγραφείς: I. Yu. Razumova, Z. V. Surnina, A. A. Godzenko, L. M. Agaeva, Yu. N. Yusef, И. Ю. Разумова, З. В. Сурнина, А. А. Годзенко, Л. М. Агаева, Ю. Н. Юсеф
Πηγή: Meditsinskiy sovet = Medical Council; № 13 (2024); 203-208 ; Медицинский Совет; № 13 (2024); 203-208 ; 2658-5790 ; 2079-701X
Θεματικοί όροι: системное заболевание, autoinflammation, autoimmunity, rheumatic diseases, systemic disease, аутовоспаление, аутоиммунитет, ревматические заболевания
Περιγραφή αρχείου: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8518/7489; Baquero-Ospina P, Paquentín-Jiménez R, Hubbe-Tena C, Concha-Del-Rio LE. Combined Ophthalmology and Rheumatology Evaluation in Systemic Autoimmune Diseases with Ocular Involvement: A Third Level Reference Center in Mexico. Ocul Immunol Inflamm.2023;31(5):989-995. https://doi.org/10.1080/09273948.2022.2079532.; Насонов ЕЛ (ред.). Ревматология: российские клинические рекомендации. М.: ГЕОТАР-Медиа; 2017. 456 c.; Rubartelli A. Autoinflammatory diseases. Immunol Lett. 2014;161(2):226-230. https://doi.org/10.1016Zj.imlet.2013.12.013.; Hedrich CM. Shaping the spectrum - From autoinflammation to autoimmunity. Clin Immunol. 2016;165:21-28. https://doi.org/10.1016/j.clim.2016.03.002.; Лисицына ТА, Алекберова ЗС, Давыдова ГА, Решетняк ТМ, Катаргина ЛА, Насонов ЕЛ. Современные представления о терапии увеитов при иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2020;58(4):428-436. https://doi.org/10.47360/1995-4484-2020-428-436.; Martin TM, Smith JR, Rosenbaum JT. Anterior uveitis: current concepts of pathogenesis and interactions with the spondyloarthropathies. Curr Opin Rheumatol. 2002;14(4):337-341. https://doi.org/10.1097/00002281-200207000-00001.; Guveia EB, Erman D, Morales MS. Ankylosing spondylitis and uveitis “overview”. Rev Bras Reumatol. 2012;52(5):742-756. https://doi.org/10.1590/s0482-50042012000500009.; Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol. 2021;17(7):387-404. https://doi.org/10.1038/s41584-021-00625-y.; Tang M, Inman RD. Recent advances on the role of cytotoxic T lymphocytes in the pathogenesis of spondyloarthritis. Semin Immunopathol. 2021;43(2):255-264. https://doi.org/10.1007/s00281-021-00846-z.; Разумова ИЮ, Годзенко АА. Болезнь Бехчета и увеит. Вестник офтальмологии. 2021;137(5):130-137. https://doi.org/10.17116/oftalma2021137051130.; Wilbrink R, Spoorenberg A, Verstappen GMPJ, Kroese FGM. B Cell Involvement in the Pathogenesis of Ankylosing Spondylitis. Int J Mol Sci. 2021;22(24):13325. https://doi.org/10.3390/ijms222413325.; Yu Z, Hong X, Zhang X, Zheng F, Liu F, Xu H et al. Global Proteomic Analyses Reveals Abnormal Immune Regulation in Patients With New Onset Ankylosing Spondylitis. Front Immunol. 2022;13:838891. https://doi.org/10.3389/fimmu.2022.838891.; Juanola X, Loza Santamana E, Cordero-Coma M; SENTINEL Working Group. Description and Prevalence of Spondyloarthritis in Patients with Anterior Uveitis: The SENTINEL Interdisciplinary Collaborative Project. Ophthalmology. 2016;123(8):1632-1636. https://doi.org/10.1016/j.ophtha.2016.03.010.; Chang JH, McCluskey PJ, Wakefield D. Acute anterior uveitis and HLA-B27. Surv Ophthalmol. 2005;50(4):364-388. https://doi.org/10.1016/j.survophthal.2005.04.003.; Brewerton DA, Caffrey M, Nicholls A, Walters D, James DC. HLA 27 and arthropathies associated with ulcerative colitis and psoriasis. Lancet. 1974;303(7864):956-958. https://doi.org/10.1016/s0140-6736(74)91262-8.; Kezic JM, Davey MP, Glant TT, Rosenbaum JT, Rosenzweig HL. Interferon-ү regulates discordant mechanisms of uveitis versus joint and axial disease in a murine model resembling spondylarthritis. Arthritis Rheum. 2012;64(3):762-771. https://doi.org/10.1002/art.33404.; Rosenzweig HL, Martin TM, Planck SR, Jann MM, Smith JR, Glant TT et al. Anterior uveitis accompanies joint disease in a murine model resembling ankylosing spondylitis. Ophthalmic Res. 2008;40(3-4):189-192. https://doi.org/10.1159/000119874.; Разумова ИЮ, Годзенко АА, Воробьева ОК, Гусева ИА. Проспективное исследование увеитов при системных аутоиммунных заболеваниях группы спондилоартритов и их ассоциация с антигеном гистосовместимости HLA-B27. Вестник офтальмологии. 2016;(4):4-9. https://doi.org/10.17116/oftalma201613244-9.; Годзенко АА, Разумова ИЮ, Бочкова АГ. Клиническая оценка увеита и ее значение в диагностике спондилоартритов. Научно-практическая ревматология. 2011;(6):38-42. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/657.; Smith JR, Rosenbaum JT. Management of uveitis: a rheumatologic perspective. Arthritis Rheum. 2002;46(2):309-318. https://doi.org/10.1002/art.503.; Zlatanović G, Veselinović D, Cekić S, Zivković M, Dorđević-Jocić J, Zlatanović M. Ocular manifestation of rheumatoid arthritis-different forms and frequency. Bosn J Basic Med Sci. 2010;10(4):323-327. https://doi.org/10.17305/bjbms.2010.2680.; Bhamra MS, Gondal I, Amarnani A, Betesh S, Zhyvotovska A, Scott W et al. Ocular Manifestations of Rheumatoid Arthritis: Implications of Recent Clinical Trials. Int J Clin Res Trials. 2019;4(2):139. https://doi.org/10.15344/2456-8007/2019/139.; Reddy AK, Kolfenbach JR, Palestine AG. Ocular manifestations of rheumatoid arthritis. Curr Opin Ophthalmol. 2022;33(6):551-556. https://doi.org/10.1097/ICU.00000000000000890.; Kotter I, Stubiger N, Deuter C. Ocular involvement in rheumatoid arthritis, connective tissue diseases and vasculitis. Rheumatol. 2017;76(8):673-681. https://doi.org/10.10007/300393-017-0372-7.; Ribova E, Svorilkova P, Brichova M, Klimova F, Diblik P. Ocular manifestation of granulomatosis with polyangiitis. Cesk Slov Oftalmol. 2019;74(5):167-174. https://doi.org/10.31348/2018/5/1.; Rubal AA, Perez VL. Ocular manifestations of ANCA-associated vasculitis. Rheum Dis Clin North Am. 2010;36(3):573-586. https://doi.org/10.1016/j.rdc.2010.05.005.; Greco A, Marinelli C, Fusconi M, Macri GF, Gallo A, De Virgilio A et al. Clinic manifestations in granulomatosis with polyangiitis. Int J Immunopathol Pharmacol. 2016;29(2):151-159. https://doi.org/10.1177/0394632015617063.; Thorne JE, Jabs DA. Ocular manifestations of vasculitis. Rheum Dis Clin North Am. 2001;27(4):761-779. https://doi.org/10.1016/s0889-857x(05)70234-9.
-
15Academic Journal
Συγγραφείς: O. N. Egorova, G. M. Tarasova, B. G. Issaeva, A. V. Datsina, D. S. Dilmanova, S. M. Issaeva, M. G. Nogaeva, A. G. Issaeva, A. S. Amanzholova, M. M. Saparbayeva, A. A. Atasheva, A. B. Kanapina, О. Н. Егорова, Г. М. Тарасова, Б. Г. Исаева, А. В. Дацина, Д. С. Дильманова, С. М. Исаева, М. Г. Ногаева, А. Г. Исаева, А. С. Аманжолова, М. М. Сапарбаева, А. А. Аташева, А. Б. Канапина
Συνεισφορές: Статья подготовлена в рамках научно-исследовательской работы (№/№ государственных заданий РК 122040400024-7) и международного научного сотрудничества ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (Россия) с Казахским Национальный Медицинским Университетом им. С.Д. Асфендиярова (Казахстан).
Πηγή: Modern Rheumatology Journal; Том 18, № 2 (2024); 7–15 ; Современная ревматология; Том 18, № 2 (2024); 7–15 ; 2310-158X ; 1996-7012
Θεματικοί όροι: лекарственные средства, diagnostics, rheumatic diseases, idiopathic lung diseases, malignant diseases, autoimmune liver pathology, drugs, диагностика, ревматические заболевания, идиопатические заболевания легких, онкологические заболевания, аутоиммунная патология печени
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1556/1452; Van Beers JJBC, Vanderlocht J, Roozendaal C, Damoiseaux J. Detection of anti-neutrophil cytoplasmic antibodies (ANCA) by indirect immunofluorescence. Methods Mol Biol. 2019:1901:47-62. doi:10.1007/978-14939-8949-2_4.; Csernok EJ, Damoiseaux N, Hellmich RB,et al. Evaluation of automated multi-parametric indirect immunofluorescence assays to detect anti-neutrophil cytoplasmic antibodies (ANCA) in granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA). Autoimmun Rev. 2016 Jul;15(7):736-41. doi:10.1016/j.autrev.2016.03.010. Epub 2016 Mar 9.; Mukhtyar C, Flossmann O, Hellmich B, et al. Outcomes from studies of antineutrophil cytoplasm antibody associated vasculitis: a systematic review by the European League Against Rheumatism systemic vasculitis task force. Ann Rheum Dis. 2008 Jul;67(7):1004-10. doi:10.1136/ard.2007.071936. Epub 2007 Oct 2; Ou CC, Wu YC, Chen JP, et al. Association of atypical anti-neutrophil cytoplasmic antibody with comorbidities and outcome in a hospital-based population. Heliyon. 2024 Jan 6;10(1):e24105. doi:10.1016/j.heliyon.2024.e24105.; Moiseev S, Cohen Tervaert JW, Arimura Y,et al. 2020 international consensus on ANCA testing beyond systemic vasculitis. Autoimmun Rev. 2020 Sep;19(9):102618. doi:10.1016/j.autrev.2020.102618. Epub 2020 Jul 12.; Li W, Chen R, Chen W, et al. Clinicopathological Features and Outcomes of IgA Nephro pathy with Serum Antineutrophil Cytoplasmic Autoantibody Positivity. Am J Nephrol. 2023; 54(9-10):416-424. doi:10.1159/000533982. Epub 2023 Sep 19.; Xiong Q, Lin W, Shen C, et al. Coexistence of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and IgA nephropathy. Immunol Res. 2023 Feb; 71(1):1-14. doi:10.1007/s12026-022-09322-8.; Sato N, Yokoi H, Imamaki H, et al. Renallimited vasculitis with elevated levels of multiple antibodies. CEN Case Rep. 2017 May; 6(1):79-84 doi:10.1007/s13730-017-0248-3. Epub 2017 Mar 3.; Palha V, Sa A, Pimentel T, et al. A rare caseof pulmonary-renal syndrome with triple-seropositive for myeloperoxidase-anti-neutrophil cytoplasm antibody (MPO-ANCA), proteinase 3 (PR3)-ANCA and anti-glomerular basement membrane (GBM) antibodies. J Med Cases. 2021 Oct;12(10):405-410. doi:10.14740/jmc3742.; Olson SW, Arbogast CB, Baker TP, et al.Asymptomatic autoantibodies associate with future anti-glomerular basement membrane disease. J Am Soc Nephrol. 2011 Oct;22(10): 1946-52. doi:10.1681/ASN.2010090928. Epub 2011 Aug 25.; Matsuno S, Itabashi M, Komatsu A, et al.Anti-glomerular basement membrane disease developing 3 years after the development of Sweet syndrome and 1 year after the development of anti-neutrophil cytoplasmic antibody-associated vasculitis: a case report. CEN Case Rep. 2023 Aug;12(3):259-264. doi:10.1007/s13730-022-00758-3.; Fogo AB, Lusco MA, Najafian B, Alpers CE. AJKD Atlas of Renal Pathology: Anti-Glomerular Basement Membrane Antibody-Mediated Glomerulonephritis. Am J Kidney Dis. 2016 Nov;68(5):e29-e30. doi:10.1053/j.ajkd.2016.09.003.; Zhao J, Yang R, Cui Z, et al. Characteristics and outcome of Chinese patients with both antineutrophil cytoplasmic antibody and antiglomerular basement membrane antibodies. Nephron Clin Pract. 2007;107(2):c56-62. doi:10.1159/000107803.; McAdoo SP, Pusey CD. Antiglomerularbasement membrane disease. Semin Respir Crit Care Med. 2018 Aug;39(4):494-503. doi:10.1055/s-0038-1669413.; McAdoo SP, Tanna A, Hruskova Z, et al. Patients double-seropositive for ANCA and anti-GBM antibodies have varied renal survival, frequency of relapse, and outcomes compared to single-seropositive patients. Kidney Int. 2017 Sep;92(3):693-702. doi:10.1016/j.kint.2017.03.014.; Van Daalen EE, Jennette JC, McAdoo SP,et al. Predicting outcome in patients with anti-GBM glomerulonephritis. Clin J Am Soc Nephrol. 2018 Jan 6;13(1):63-72. doi:10.2215/CJN.04290417.; Segelmark M, Hellmark T. Anti-glomerular basement membrane disease: an update on subgroups, pathogenesis and therapies. Nephrol Dial Transplant. 2019 Nov 1;34(11):1826-1832. doi:10.1093/ndt/gfy327.; Levy JB, Hammad T, Couthart A, et al. Clinical features and outcome of patients with both ANCA and anti-GBM antibodies. Kidney Int. 2004 Oct;66(4):1535-40. doi:10.1111/j.1523-1755.2004.00917.x.; Gluhovschi C, Gadalean F, Velciov S, et al. Three Diseases Mediated by Different Immunopathologic Mechanisms-ANCA-Associated Vasculitis, Anti-Glomerular Basement Membrane Disease, and Immune Complex-Mediated Glomerulonephritis-A Common Clinical and Histopathologic Picture: Rapidly Progressive Crescentic Glomerulonephritis. Biomedicines. 2023 Nov 6;11(11): 2978. doi:10.3390/biomedicines11112978.; Rutgers A, Slot M, van Passen P, et al.Coexistence of anti-glomerular basement membrane antibodies and myeloperoxidaseANCAs in crescentic glomerulonephritis. Am. Kidney Dis. 2005 Aug;46(2):253-62. doi:10.1053/j.ajkd.2005.05.003.; Sadeghi-Alavijeh O, Henderson S, Bass P,et al. Crescentic glomerulonephritis with antiGBM antibody but no glomerular deposition. BMC Nephrol. 2018 Sep 12;19(1):228. doi:10.1186/s12882-018-1027-x.; Petri М, Orbai AM, Alarcуn GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 2012 Aug;64(8): 2677-86. doi:10.1002/art.34473.; Tervaert JW, Mulder AH, Kallenberg CG. Perinuclear antineutrophil cytoplasmic antibodies (p-ANCA): clinical significance and relation to antibodies against myeloid lysosomal enzymes. Adv Exp Med Biol. 1993:336: 253-6. doi:10.1007/978-1-4757-9182-2_37.; Chin HJ, Ahn C, Lim CS, et al. Clinical implications of antineutrophil cytoplasmic antibody test in lupus nephritis. Am. J. Nephrol. 2000 Jan-Feb;20(1):57-63. doi:10.1159/000013557.; Wang Y, Yu Х, Xie Х, et al. Clinical features and outcomes of patients with antineutrophil cytoplasmic antibody-positive systemic lupus erythematosus. Ren Fail. 2023 Dec; 45(1):2235431. doi:10.1080/0886022X.2023.2235431.; Sen D, Isenberg DA. Antineutrophil cytoplasmic autoantibodies in systemic lupus erythematosus. Lupus. 2003;12(9):651-8. doi:10.1191/0961203303lu456rr.; Pan Y, He L. Perinuclear anti-neutrophilcytoplasmic antibody in systemic lupus erythematosus indicates more severe condition. Clin Biochem. 2021 Mar: 89:38-43. doi:10.1016/j.clinbiochem.2020.12.004; Yu F, Tan Y, Liu G, et al. Clinicopathological characteristics and outcomes of patients with crescentic lupus nephritis. Kidney Int. 2009 Aug;76(3):307-17. doi:10.1038/ki.2009.136. Epub 2009 Apr 29.; Olson SW, Lee JJ, Poirier M, et al. Antimyeloperoxidase antibodies aassociate with future proliferative lupus nephritis. Autoimmune Dis. 2017:2017:1872846. doi:10.1155/2017/1872846. Epub 2017 Dec 24.; Schnabel А, Csernok Е, Isenberg DA, et al. Antineutrophil cytoplasmic antibodies in systemic lupus erythematosus. Arthritis Rheum. 1995 May;38(5):633-7. doi:10.1002/art.1780380509.; Galeazzi M, Morozzi G, Sebastiani GD,et al. Anti-neutrophil cytoplasmic antibodies in 566 European patients with systemic lupus erythematosus: prevalence, clinical associations and correlation with other autoantibodies. European Concerted Action on the Immunogenetics of SLE. Clin Exp Rheumatol. 1998 Sep-Oct;16(5):541-6.; Gajic-Veljic М, Lekic В, Nikolic М. Level and avidity of antineutrophil cytoplasmic antibodies specific to lactoferrin are useful biomarkers in systemic lupus erythematosus. Clin Rheumatol. 2022 Mar;41(3):709-720. doi:10.1007/s10067-021-05926-x. Epub 2021 Oct 7.; Frangou E, Vassilopoulos D, Boletis J,Boumpas DT. Аn emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): Implications for the pathogenesis and treatment. Autoimmun Rev. 2019 Aug;18(8):751760. doi:10.1016/j.autrev.2019.06.011.; Brilland B, Garnier AS, Chevailler A, et al. Complement alternative pathway in ANCA-associated vasculitis: Two decades from bench to bedside. Autoimmun Rev. 2020 Jan;19(1):102424. doi:10.1016/j.autrev.2019.102424.; Senda А, Sasai R, Kato K, et al. Involvement of neutrophil extracellular traps in the pathogenesis of glomerulonephritis in a case of systemic lupus erythematosus and antineutrophil cytoplasmic antibody-associated vasculitis overlap syndrome. CEN Case Rep. 2022 Aug;11(3):339-346. doi:10.1007/s13730-021-00682-y. Epub 2022 Jan 13; Jarrot PA, Chiche L, Hervier B, et al. Systemic lupus erythematosus and antineutrophil cytoplasmic antibody-associated vasculitis overlap syndrome in patients with biopsy-proven glomerulonephritis. Medicine (Baltimore). 2016 May;95(22):e3748. doi:10.1097/MD.0000000000003748.; Derrett-Smith EC, Nihtyanova SI, Harvey J,et al. Revisiting ANCA-associated vasculitis in systemic sclerosis: clinical, serological and immunogenetic factors. Rheumatology (Oxford). 2013 Oct;52(10):1824-31. doi:10.1093/rheumatology/ket213. Epub 2013 Jul 5.; Clark КЕ. Review of systemic sclerosisand antineutrophil cytoplasmic antibody vasculitis overlap: Using autoantibodies for a personalised medicine approach. J Scleroderma Relat Disord. 2023 Feb;8(1):7-13. doi:10.1177/23971983221126850.; Ruffatti A, Sinico RA, Radice A, et al.Autoantibodies to proteinase 3 and myeloperoxidase in systemic sclerosis. J Rheumatol. 2002 May;29(5):918-23.; Moxey J, Huq M, Proudman S, et al. Significance of anti-neutrophil cytoplasmic antibodies in systemic sclerosis. Arthritis Res Ther. 2019 Feb 14;21(1):57. doi:10.1186/s13075019-1839-5.; Arad U, Balbir-Gurman A, Doenyas-Barak K, et al. Anti-neutrophil antibody associated vasculitis in systemic sclerosis. Semin Arthritis Rheum. 2011 Oct;41(2):223-9. doi:10.1016/j.semarthrit.2010.11.001. Epub 2011 Feb 1.; Quemeneur T, Mouthon L, Cacoub P, et al. Systemic vasculitis during the course of systemic sclerosis: report of 12 cases and review of the literature. Medicine. 2013 Jan;92(1): 1-9. doi:10.1097/MD.0b013e31827781fd.; Böttinger EP, Niles JL, Collins AB, et al. Antineutrophil cytoplasmic autoantibody-associated vasculitis presenting as Sjögren's syndrome. Arthritis Rheum. 1992 Nov;35(11): 1373-6. doi:10.1002/art.1780351120.; Coustal С, Guillope В, Serrand С, et al.Sjögren syndrome overlapping with ANCAassociated vasculitis: Four additional cases and systematic literature review. Autoimmun Rev. 2022 Jun;21(6):103099. doi:10.1016/j.autrev.2022.103099. Epub 2022 Apr 19.; Pillay SS, Nune A, Manzo C, et al. A caseof anti-neutrophil cytoplasmic antibody-associated vasculitis masquerading as Sjögren syndrome. Int J Rheum Dis. 2023 Dec;26(12): 2555-2558. doi:10.1111/1756-185X.14823.; Kaynar K, Güvercin B, Sengör A, Mungan S. A case of Sjögren syndrome and antineutrophil cytoplasmic antibody-associated vasculitis. Reumatismo. 2023 Jul 17;75(2). doi:10.4081/reumatismo.2023.1564; Font J, Ramos-Casals M, Cervera R, et al. Antineutrophil cytoplasmic antibodies in primary Sjögren’s syndrome: prevalence and clinical significance. Br J Rheumatol. 1998 Dec; 37(12):1287-91. doi:10.1093/rheumatology/37.12.1287.; Zhang W, Stone JH. Management of IgG4-related disease. Lancet Rheumatol. 2019 Sep;1(1):e55-e65. doi:10.1016/S26659913(19)30017-7. Epub 2019 Aug 28.; Mbengue M, Goumri N, Niang A. IgG4related kidney disease: pathogenesis, diagnosis, and treatment. Clin Nephrol. 2021 Jun; 95(6):292-302. doi:10.5414/CN110492.; Wallace ZS, Naden RP, Chari S, et al. The 2019 American College of Rheumatology/European league against rheumatism classification criteria for IgG4-related disease. Arthritis Rheumatol. 2020 Jan;72(1):7-19. doi:10.1002/art.41120. Epub 2019 Dec 2.; Danlos F, Rossi GM, Blockmans D, et al. Antineutrophil cytoplasmic antibody-associated vasculitides and IgG4-related disease: a new overlap syndrome. Autoimmun Rev. 2017 Oct;16(10):1036-1043. doi:10.1016/j.autrev.2017.07.020. Epub 2017 Aug 2.; Sekiguchi H, Horie R, Kanai M, et al. IgG4-related disease: retrospective analysis of one hundred sixty-six patients. Arthritis Rheumatology. 2016 Sep;68(9):2290-9. doi:10.1002/art.39686.; Martin-Nares E, Hernandez-Molina G. What is the mean-ing of ANCA positivity in IgG4-related disease? Rheumatology (Oxford). 2021 Aug 2;60(8):3845-3850. doi:10.1093/rheumatology/keab124.; Bello F. The uncertain meaning of ANCApositivity in IgG4-related disease. Rheumatology (Oxford). 2021 Aug 2;60(8):3492-3493. doi:10.1093/rheumatology/keab368.; Kuske L, Khalifa А, Wibisono А, et al. MPO-ANCA-positive granulomatosis with polyangiitis and concurrent IgG4-related disease with periaortitis and tubulointerstitial nephritis: A case report of a new overlap syndrome? Int J Rheum Dis. 2023 Sep;26(9):18211825. doi:10.1111/1756-185X.14680; Wu HHL, Wang CCY, Woywodt A, Ponnusamy A. Concurrent presentation of IgG4related tubulointerstitial nephritis and ANCA MPO crescentic glomerulonephritis. Clin Nephrol Case Stud. 2022 Jul 4;10:47-53. doi:10.5414/CNCS110852.eCollection 2022.; Gilani SI, Alexander MP, Nasr SH, et al. Clinicopathologic findings in mass forming ANCA-associated vasculitis. Kidney Int Rep. 2022 Sep 29;7(12):2709-2713. doi:10.1016/j.ekir.2022.09.019.eCollection 2022 Dec.; Ferry JA, Klepeis V, Sohani AR, et al. IgG4-related orbital disease and its mimics in a Western population. Am J Surg Pathol. 2015 Dec;39(12):1688-700. doi:10.1097/PAS.0000000000000497.; Kurita N, Mise N, Fujii A, et al. Myeloperoxidase-antineutrophil cytoplasmic antibody-associated crescentic glomerulonephritis with rheumatoid arthritis: a comparison of patients without rheumatoid arthritis. Clin Exp Nephrol. 2010 Aug;14(4):325-32. doi:10.1007/s10157-010-0278-z. Epub 2010 Mar 26.; Draibe J, Salama AD. Association of ANCA associated vasculitis and rheumatoid arthritis: a lesser recognized overlap syndrome. Springerplus. 2015 Feb 1;4:50. doi:10.1186/s40064-015-0835-8.eCollection 2015.; Mustila A, Korpela M, Mstonen J, et al. Perinuclear antineutrophil cytoplasmic antibody in rheumatoid arthritis: a marker of severe disease with associated nephropathy. Arthritis Rheum. 1997 Apr;40(4):710-7. doi:10.1002/art.1780400417.; Calabresi P, Edwards EA, Schilling RF. Fluorescent antiglobulin studies in leukopenic and related disorders. J Clin Invest. 1959 Nov;38(11):2091-100. doi:10.1172/JCI103987.; Kallenberg CG, Mulder AH, Tervaert JW.Antineutrophil cytoplasmic antibodies: a stillgrowing class of autoantibodies in inflammatory disorders. Am J Med. 1992 Dec;93(6): 675-82. doi:10.1016/0002-9343(92)90202-m.; Vasiliauskiene L, Wiik A, Høier-Madsen M. Prevalence and clinical significance of antikeratin antibodies and other serological markers in Lithuanian patients with rheumatoid arthritis. Ann Rheum Dis. 2001 May;60(5):459-66. doi:10.1136/ard.60.5.459.; Vittecoq O, Jouen-Beades F, Krzanowska Ket al. Prospective evaluation of the frequency and clinical significance of antineutrophil cytoplasmic and anticardiolipin antibodies in community cases of patients with rheumatoid arthritis. Rheumatology (Oxford). 2000 May; 39(5):481-9. doi:10.1093/rheumatology/39.5.481.; Kida I, Kobayashi S, Takeuchi K, et al.Antineutrophil cytoplasmic antibodies against myeloperoxidase, proteinase 3, elastase, cathepsin G and lactoferrin in Japanese patients with rheumatoid arthritis. Mod Rheumatol. 2011 Feb;21(1):43-50. doi:10.1007/s10165010-0356-9. Epub 2010 Sep 28.; Gуis M, Messias A, Carvalho D et al. MPO-ANCA-associated necrotizing glomerulonephritis in rheumatoid arthritis; a case report and review of literature. J Nephropathol. 2017 Mar;6(2):58-62. doi:10.15171/jnp.2017.10. Epub 2016 Oct 27.; Wu Н, Lu Y, Hu R, et al. Anti-neutrophilcytoplasmic antibody associated vasculitis in patients with rheumatoid arthritis. BMC Nephrol. 2022 Apr 22;23(1):155. doi:10.1186/s12882-022-02788-6.; Nada AK, Torres VE, Ryu JH, et al. Pulmonary fibrosis as an unusual clinical manifestation of a pulmonary-renal vasculitis in elderly patients. Mayo Clin Proc. 1990 Jun; 65(6):847-56. doi:10.1016/s0025-6196(12) 62575-0.; Arimura Y, Minoshima S, Tanaka U, et al.Pulmonary involvement in patients with myeloperoxidase specific-antineutrophil cytoplasmic antibody. Ryumachi Rheum. 1995 Feb; 35(1):46-55.; Pella E, Iatridi F, Sgouropoulou V, et al.Pulmonary involvement in antineutrophil cytoplasmic antibody-associated vasculitides. Int J Rheum Dis. 2024 Jan;27(1):e14933. doi:10.1111/1756-185X.14933.; Yamaguchi K, Yamaguchi A, Ito M, et al. Clinical differences among patients with myeloperoxidase-antineutrophil cytoplasmic antibody-positive interstitial lung disease. Clin Rheumatol. 2023 Feb;42(2):479-488. doi:10.1007/s10067-022-06388-5.; Steward M, Thould H, Myat Noe Khin A, Gibbons MA. Interstitial Lung Disease and Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis: A Review. Immunol Allergy Clin North Am. 2023 May;43(2):379-388. doi:10.1016/j.iac.2023.01.001.; Sebastiani M, Manfredi A, Vacchi C, et al. Epidemiology and management of interstitial lung disease in ANCA-associated vasculitis. Clin Exp Rheumatol. 2020 Mar-Apr;38 Suppl 124(2):221-231.; Matsuda S, Kotani T, Suzuka T, et al. Evaluation of poor prognostic factors of respiratory related death in microscopic polyangiitis complicated by interstitial lung disease. Sci Rep. 2021 Jan 15;11(1):1490. doi:10.1038/s41598-021-81311-7.; Шелыгин ЮА, Ивашкин ВТ, Ачкасов СИи др. Клинические рекомендации. Болезнь Крона (К50), взрослые. Колопроктология. 2023;22(3):10-49.; Drury B, Hardisty G, Gray RD, Ho GT.Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell Mol Gastroenterol Hepatol. 2021;12(1):321-333. doi:10.1016/j.jcmgh.2021.03.002. Epub 2021 Mar 6.; Calabresi P, Thayer WR Jr, Spiro HM. Demonstration of circulating antinuclear globulins in ulcerative colitis. J Clin Invest. 1961 Dec; 40(12):2126-33. doi:10.1172/JCI104438.; Prideaux L, De Cruz P, Ng SC, Kamm MA.Serological antibodies in inflammatory bowel disease: A systematic review. Inflamm Bowel Dis. 2012 Jul;18(7):1340-55. doi:10.1002/ibd.21903.; Andalucнa C, Martinez-Prat L, Bentow C,et al. Clinical Validity of Anti-Proteinase 3 Antibodies in Patients with Inflammatory Bowel Disease: A Short Meta-Analysis. Diagnostics (Basel). 2023 Dec 16;13(24):3682. doi:10.3390/diagnostics13243682.; Александрова ЕН, Новиков АА, Лукина ГВ, Парфенов АИ. Клиническое значение антител при воспалительных заболеваниях кишечника. Терапевтический архив. 2021;93(2):228-235.; Pagnoux C, Mahr A, Cohen P, Guillevin L.Presentation and outcome of gastrointestinal involvement in systemic necrotizing vasculitides: analysis of 62 patients with polyarteritis nodosa, microscopic polyangiitis, Wegener granulomatosis, Churg–Strauss syndrome, or rheumatoid arthritis-associated vasculitis. Medicine (Baltimore). 2005 Mar;84(2):115-128. doi:10.1097/01.md.0000158825.87055.0b.; Beretta-Piccoli ВТ, Mieli-Vergani G, Vergani D. Autoimmune Hepatitis: Serum Autoantibodies in Clinical Practice. Clin Rev Allergy Immunol. 2022 Oct;63(2):124-137. doi:10.1007/s12016-021-08888-9; De Riva V, Celadin M, Pittoni M, et al. What is behind the presence of antineutrophil cytoplasmatic antibodies in chronic liver disease? Liver Int. 2009 Jul;29(6):865-70. doi:10.1111/j.1478-3231.2009.01989.x.; Hutson TE, Hoffman GS. Temporal concurrence of vasculitis and cancer: a report of 12 cases. Arthritis Care Res. 2000 Dec;13(6): 417-23. doi:10.1002/1529-0131(200012)13:63.0.co;2-t.; Chiao-Chi Ou , Yen-Ching Wu , JunPeng, et al. Chen Association of atypical antineutrophil cytoplasmic antibody with comorbidities and outcome in a hospital-based population. Heliyon. 2024 Jan 6;10(1):e24105. doi:10.1016/j.heliyon.2024.e24105.; Houben E, Bax WA, van Dam B, et al. Diagnosing ANCA-associated vasculitis in ANCA positive patients: A retrospective analysis on the role of clinical symptoms and the ANCA titre. Medicine (Baltimore). 2016 Oct; 95(40):e5096. doi:10.1097/MD.0000000000005096.; Zhang CY, Miao R, Li W, et al. Lung adenocarcinoma and sequential antineutrophil cytoplasmic antibody-associated vasculitis: a case report. J Int Med Res. 2021 Feb;49(2): 300060521993319. doi:10.1177/0300060521993319.; Quack H, Erpenbeck L, Wolff HA, et al.Oxaliplatin-induced leukocytoclastic vasculitis under adjuvant chemotherapy for colorectal cancer: two cases of a rare adverse event. Case Rep Oncol. 2013 Dec 11;6(3):609-15. doi:10.1159/000357166.; Mattiassich G, Egger M, Semlitsch G,Rainer F. Occurrence of relapsing polychondritis with a rising cANCA titre in a cANCApositive systemic and cerebral vasculitis patient. BMJ Case Rep. 2013 Feb 15;2013: bcr2013008717. doi:10.1136/bcr-2013008717.; Iwuji K, Kanu A, Stroever S, et al. Clinicalsignificance of BPI-ANCA in patients with cystic fibrosis: a single center prospective study. Sci Rep. 2023 Oct 24;13(1):18138. doi:10.1038/s41598-023-45273-2.; Alqurashi AS, Aly MH, Mohammed A, et al. Dermatological Lesions of Cholesterol Syndrome and Kaposi Sarcoma Mimic Primary Systemic Vasculitis: Case report study. Sultan Qaboos Univ Med J. 2023 May;23(2): 256-258. doi:10.18295/squmj.2.2022.018.; Konstantinov KN, Ulff-Møller CJ, Tzamaloukas AH. Infections and antineutrophil cytoplasmic antibodies: triggering mechanisms. Autoimmun Rev. 2015 Mar;14(3):201-3. doi:10.1016/j.autrev.2014.10.020.; Banjongjit А, Thammathiwat Т, Townamchai N, Kanjanabuch Т. SARS-CoV-2 infection associated with antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis (ANCA-GN): a systematic review and two case reports. J Nephrol. 2024 Jan; 37(1):53-63. doi:10.1007/s40620-023-01777-8. Epub 2023 Nov 6.; Schaap CM, Krol RM, Remmelts HHF, et al. The effect of nasal Staphylococcus aureus colonization and antibiotic treatment on disease activity in ANCA-associated vasculitis: a retrospective cohort study in the Netherlands. Rheumatol Int. 2023 Mar;43(3):467-475. doi:10.1007/s00296-022-05228-8.; Van Gool IC, Kers J, Bakker JA, et al. Antineutrophil cytoplasmic antibodies in infective endocarditis: a case report and systematic review of the literature. Clin Rheumatol. 2022 Oct;41(10):2949-2960. doi:10.1007/s10067022-06240-w.; Huan G, Yang G, Xiao-Yu Q, et al. Antineutrophil cytoplasmic antibodies in Chinese patients with tuberculosis. Rev Soc Bras Med Trop. 2018 Jul-Aug;51(4):475-478. doi:10.1590/0037-8682-0400-2017.; Culerrier J, Nguyen Y, Karadag O, Bilge SY. Characteristics and outcome of ANCA-associated vasculitides induced by anti-thyroid drugs: a multicenter retrospective case-control study. Rheumatology (Oxford). 2023 Jun 24:kead319. doi:10.1093/rheumatology/kead319; Geetha D, Jefferson JA. ANCA-Associated Vasculitis: Core Curriculum 2020. Am J Kidney Dis. 2020 Jan;75(1):124-137. doi:10.1053/j.ajkd.2019.04.031.; Yaseen K, Nevares A, Tamaki H. A Spotlight on Drug-Induced Vasculitis. Curr Rheumatol Rep. 2022 Nov;24(11):323-336. doi:10.1007/s11926-022-01088-0; Seida I, Seida R, Elsalti A, Mahroum N.Vaccines and Autoimmunity-From Side Effects to ASIA Syndrome. Medicina (Kaunas). 2023 Feb 14;59(2):364. doi:10.3390/medicina59020364; Nune A, Durkowski V, Pillay SS, et al. New-Onset Rheumatic Immune-Mediated Inflammatory Diseases Following SARSCoV-2 Vaccinations until May 2023: A Systematic Review. Vaccines (Basel). 2023 Oct 8; 11(10):1571. doi:10.3390/vaccines11101571; Watad A, Quaresma M, Bragazzi NL, et al. The autoimmune/inflammatory syndrome induced by adjuvants (ASIA)/Shoenfeld’s syndrome: descriptive analysis of 300 patients from the international ASIA syndrome registry. Clin Rheumatol. 2018 Feb;37(2):483-493. doi:10.1007/s10067-017-3748-9.
-
16Academic Journal
Συγγραφείς: A. V. Santimov, S. V. Grechanyi, G. A. Novik, А. В. Сантимов, С. В. Гречаный, Г. А. Новик
Συνεισφορές: The investigation has not been sponsored, Исследование не имело спонсорской поддержки
Πηγή: Modern Rheumatology Journal; Том 18, № 3 (2024); 99-106 ; Современная ревматология; Том 18, № 3 (2024); 99-106 ; 2310-158X ; 1996-7012
Θεματικοί όροι: хроническая боль, immune-inflammatory rheumatic diseases, juvenile idiopathic arthritis, systemic lupus erythematosus with juvenile onset, chronic pain, иммуновоспалительные ревматические заболевания, ювенильный идиопатический артрит, системная красная волчанка с ювенильным дебютом
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1595/1478; https://mrj.ima-press.net/mrj/article/view/1595/1487; Tran G, Gough A. Fibromyalgia remains the elephant in the clinic room. Rheumatology (Oxford). 2023 Oct 3;62(10):3223-3224. doi:10.1093/rheumatology/kead136.; Gowers WR. A Lecture on Lumbago: Its Lessons and Analogues: Delivered at the National Hospital for the Paralysed and Epileptic. Br Med J. 1904 Jan 16;1(2246):117-21. doi:10.1136/bmj.1.2246.117.; Caven WR. Backache and fibrositis; A medical point of view. Can Med Assoc J. 1947 Jul;57(1):37-43.; Travell J, Rinzler SH. The myofascial genesis of pain. Postgrad Med. 1952 May;11(5): 425-34. doi:10.1080/00325481.1952.11694280.; Yunus M, Masi AT, Calabro JJ, et al. Primary fibromyalgia (fibrositis): Clinical study of 50 patients with matched normal controls. Semin Arthritis Rheum. 1981 Aug;11(1):151-71. doi:10.1016/0049-0172(81)90096-2.; Yunus MB, Masi AT. Juvenile primary fibromyalgia syndrome. A clinical study of thirty-three patients and matched normal controls. Arthritis Rheum. 1985 Feb;28(2):138-45. doi:10.1002/art.1780280205.; Wolfe F, Smythe HA, Yunus MB, et al. The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990 Feb;33(2):160-72. doi:10.1002/art.1780330203.; Wolfe F, Clauw DJ, Fitzcharles MA, et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res (Hoboken). 2010 May;62(5): 600-10. doi:10.1002/acr.20140.; Harth M, Nielson WR. The fibromyalgia tender points: use them or lose them? A brief review of the controversy. J Rheumatol. 2007 May;34(5):914-22.; Ting TV, Barnett K, Lynch-Jordan A, et al. 2010 American College of Rheumatology Adult Fibromyalgia Criteria for Use in an Adolescent Female Population with Juvenile Fibromyalgia. J Pediatr. 2016 Feb;169: 181-7.e1. doi:10.1016/j.jpeds.2015.10.011.; Wolfe F, Clauw DJ, Fitzcharles MA, et al. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin Arthritis Rheum. 2016 Dec;46(3):319-329. doi:10.1016/j.semarthrit.2016.08.012.; Arnold LM, Bennett RM, Crofford LJ, et al. AAPT Diagnostic Criteria for Fibromyalgia. J Pain. 2019 Jun;20(6):611-628. doi:10.1016/j.jpain.2018.10.008.; Wolfe F. Letter to the editor, "Fibromyalgia Criteria". J Pain. 2019 Jun;20(6):739-740. doi:10.1016/j.jpain.2019.02.002.; Сантимов АВ, Часнык ВГ, Гречаный СВ. Психометрическая оценка хронического болевого синдрома при ювенильном идиопатическом артрите. Педиатр. 2019;10(3):25-30.; Сантимов АВ, Часнык ВГ, Гречаный СВ. Уровень тревоги и депрессии у детей и подростков с хроническим болевым синдромом (на примере ювенильного идиопатического артрита). Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева. 2019;(4-2):78-86.; Сантимов АВ, Часнык ВГ, Гречаный СВ. Семейный аспект хронического болевого синдрома у детей и подростков с ювенильным идиопатическим артритом. Вопросы психического здоровья детей и подростков. 2020;20(3):47-57.; Сантимов АВ, Часнык ВГ, Гречаный СВ. Психотерапевтический подход к лечению хронического болевого синдрома при ювенильном идиопатическом артрите и предикторы его эффективности. Психиатрия, психотерапия и клиническая психология. 2022;13(2):138-150.; Зубарева ЕС, Генералова ДД, Сантимов АВ и др. Выявление нарушений психического здоровья при ювенильном идиопатическом артрите с хроническим болевым синдромом. Педиатрия им. Г.Н. Сперанского. 2023;102(4):147-158.; Каратеев АЕ. Не говорите и не пишите: «болевой синдром»! Говорите – «боль»! Научно-практическая ревматология. 2023;61(6):667-671.; Лисицына ТА, Абрамкин АА, Вельтищев ДЮ и др. Хроническая боль и депрессия у больных ревматоидным артритом: Результаты пятилетнего наблюдения. Терапевтический архив. 2019;91(5):8-18.; Каратеев АЕ, Насонов ЕЛ. Хроническая боль и центральная сенситизация при иммуновоспалительных ревматических заболеваниях: патогенез, клинические проявления, возможность применения таргетных базисных противовоспалительных препаратов. Научно-практическая ревматология. 2019;57(2):197-209.; Филатова ЕС, Лила АМ. Вклад нейрогенных механизмов в патогенез хронической суставной боли. Современная ревматология. 2021;15(2):43-49. doi:10.14412/1996-7012-2021-2-43-49; Олюнин ЮА. Хроническая скелетно-мышечная боль. Ведущий симптом или коморбидная патология? Современная ревматология. 2022;16(3):96-102. doi:10.14412/1996-7012-2022-3-96-102; Меликова НА, Филатова ЕГ, Лила АМ. Фибромиалгия при ревматоидном артрите: особенности болевого синдрома, влияние на активность заболевания и качество жизни пациентов. Современная ревматология. 2022;16(1):32-37. doi:10.14412/1996-7012-2022-1-32-37; Mülkoglu C, Ayhan FF. The impact of coexisting fibromyalgia syndrome on disease activity in patients with psoriatic arthritis and rheumatoid arthritis: A cross-sectional study. Mod Rheumatol. 2021 Jul;31(4):827-833. doi:10.1080/14397595.2020.1823069.; Gist AC, Guymer EK, Eades LE, et al. Fibromyalgia remains a significant burden in rheumatoid arthritis patients in Australia. Int J Rheum Dis. 2018 Mar;21(3):639-646. doi:10.1111/1756-185X.13055.; Joharatnam N, McWilliams DF, Wilson D, et al. A cross-sectional study of pain sensitivity, disease-activity assessment, mental health, and fibromyalgia status in rheumatoid arthritis. Arthritis Res Ther. 2015 Jan 20;17(1):11. doi:10.1186/s13075-015-0525-5.; Das D, Choy E. Non-inflammatory pain in inflammatory arthritis. Rheumatology (Oxford). 2023 Jul 5;62(7):2360-2365. doi:10.1093/rheumatology/keac671.; Tesher MS, Graham TB, Ting T, et al. Juvenile Fibromyalgia in Patients With Juvenile Idiopathic Arthritis: Utility of the Pain and Symptom Assessment Tool. Arthritis Care Res (Hoboken). 2022 Dec;74(12):2085-2090. doi:10.1002/acr.24739.; Сантимов АВ. Психосоматические аспекты хронического болевого синдрома при ювенильном идиопатическом артрите. Автореф. дисс. канд. мед. наук. Санкт-Петербург; 2020.; Каледа МИ, Арефьева АН, Никишина ИП. Мышечно-скелетные симптомы при системной красной волчанке с ювенильным дебютом. Современная ревматология. 2023;17(4):90-96. doi:10.14412/1996-7012-2023-4-90-96; Torrente-Segarra V, Salman Monte TC, Rua-Figueroa I, et al. Juvenile- and adult-onset systemic lupus erythematosus: a comparative study in a large cohort from the Spanish Society of Rheumatology Lupus Registry (RELESSER). Clin Exp Rheumatol. 2017 Nov-Dec;35(6):1047-1055.; Wolfe F, Clauw DJ, Fitzcharles MA, et al. Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. J Rheumatol. 2011 Jun;38(6):1113-22. doi:10.3899/jrheum.100594.; Corbitt K, Carlucci PM, Cohen B, et al. Clinical and Serologic Phenotyping and Damage Indices in Patients With Systemic Lupus Erythematosus With and Without Fibromyalgia. ACR Open Rheumatol. 2024 Apr;6(4): 172-178. doi:10.1002/acr2.11641. Epub 2024 Jan 9.; Elefante E, Tani C, Stagnaro C, et al. Articular involvement, steroid treatment and fibromyalgia are the main determinants of patient-physician discordance in systemic lupus erythematosus. Arthritis Res Ther. 2020 Oct 14; 22(1):241. doi:10.1186/s13075-020-02334-5.; Donnelly C, Cunningham N, Jones JT, et al. Fatigue and depression predict reduced health-related quality of life in childhood-onset lupus. Lupus. 2018 Jan;27(1):124-133. doi:10.1177/0961203317716317.; Jones JT, Cunningham N, Kashikar-Zuck S, Brunner HI. Pain, Fatigue, and Psychological Impact on Health-Related Quality of Life in Childhood-Onset Lupus. Arthritis Care Res (Hoboken). 2016 Jan;68(1):73-80. doi:10.1002/acr.22650.; Dubost JJ, Couderc M, Pereira B, et al. Concomitant fibromyalgia in primary Sjögren's syndrome in the French ASSESS cohort: comparison of the ACR 1990 and ACR 2016 criteria, FiRST questionnaire and physician's opinion. Clin Exp Rheumatol. 2021 Nov-Dec;39 Suppl 133(6):140-145. URL: https://pubmed.ncbi.nlm.nih.gov/34919043/.; Choi BY, Oh HJ, Lee YJ, Song YW. Prevalence and clinical impact of fibromyalgia in patients with primary Sjögren's syndrome. Clin Exp Rheumatol. 2016 Mar-Apr;34 (2 Suppl 96):S9-13.; Haliloglu S, Carlioglu A, Akdeniz D, et al. Fibromyalgia in patients with other rheumatic diseases: prevalence and relationship with disease activity. Rheumatol Int. 2014 Sep;34(9): 1275-80. doi:10.1007/s00296-014-2972-8.; Ayar K, Metin Ökmen B, Altan L, et al. The Frequency of Fibromyalgia and its Relationship With Disease Activity in Female Patients With Behcet's Disease: A Cross Sectional Study. Arch Rheumatol. 2020 Jan 8;35(3): 401-408. doi:10.46497/ArchRheumatol.2020.7729.; El-Rabbat MS, Mahmoud NK, Gheita TA. Clinical significance of fibromyalgia syndrome in different rheumatic diseases: Relation to disease activity and quality of life. Reumatol Clin (Engl Ed). 2018 Sep-Oct;14(5):285-9. doi:10.1016/j.reuma.2017.02.008.; Perrot S, Peixoto M, Dieude P, et al. Patient phenotypes in fibromyalgia comorbid with systemic sclerosis or rheumatoid arthritis: influence of diagnostic and screening tests. Screening with the FiRST questionnaire, diagnosis with the ACR 1990 and revised ACR 2010 criteria. Clin Exp Rheumatol. 2017 May-Jun;35 Suppl 105(3):35-42.; Costa SP, Lage LV, da Mota LM, de Carvalho JF. Fibromyalgia in primary antiphospholipid (Hughes) syndrome. Lupus. 2011 Oct; 20(11):1182-6. doi:10.1177/0961203311411962.; Thune P. The coexistence of amyopathic dermatomyositis and fibromyalgia. Acta Derm Venereol. 2000 Nov-Dec;80(6):453-4. URL: https://pubmed.ncbi.nlm.nih.gov/11243647/.; Sambataro G, Orlandi M, Fagone E, et al. Myositis-Specific and Myositis-Associated Antibodies in Fibromyalgia Patients: A Prospective Study. Biomedicines. 2023 Feb 22;11(3):658. doi:10.3390/biomedicines11030658.; Alibaz-Oner F, Can M, lhan B, et al. Presence of fibromyalgia in patients with Takayasu's arteritis. Intern Med. 2013;52(24):2739-42. doi:10.2169/internalmedicine.52.0848.; Hajj-Ali RA, Wilke WS, Calabrese LH, et al. Pilot study to assess the frequency of fibromyalgia, depression, and sleep disorders in patients with granulomatosis with polyangiitis (Wegener's). Arthritis Care Res (Hoboken). 2011 Jun;63(6):827-33. doi:10.1002/acr.20442.; Van Eeden C, Mohazab N, Redmond D, et al. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia: PR3-versus MPO-ANCA-associated vasculitis, an exploratory cross-sectional study. Lancet Reg Health Am. 2023 Feb 27;20:100460. doi:10.1016/j.lana.2023.100460.; Alayli G, Durmus D, Ozkaya O, et al. Frequency of juvenile fibromyalgia syndrome in children with familial Mediterranean fever: effects on depression and quality of life. Clin Exp Rheumatol. 2011 Nov-Dec;29(6 Suppl 69):S127-32.; Karakus N, Yigit S, Inanir A, et al. Association between sequence variations of the Mediterranean fever gene and fibromyalgia syndrome in a cohort of Turkish patients. Clin Chim Acta. 2012 Dec 24;414:36-40. doi:10.1016/j.cca.2012.07.019.; Ovrom EA, Mostert KA, Khakhkhar S, et al. A Comprehensive Review of the Genetic and Epigenetic Contributions to the Development of Fibromyalgia. Biomedicines. 2023 Apr 7;11(4):1119. doi:10.3390/biomedicines11041119.; Polli A, Hendrix J, Ickmans K, et al. Genetic and epigenetic regulation of Catechol-O-methyltransferase in relation to inflammation in chronic fatigue syndrome and Fibromyalgia. J Transl Med. 2022 Oct 25;20(1):487. doi:10.1186/s12967-022-03662-7.; Сантимов АВ, Гречаный СВ, Новик ГА. Близнецовый метод в изучении влияния генетических и семейных факторов на коморбидность хронической мышечно-скелетной боли, тревоги и депрессии у детей и подростков. Вопросы психического здоровья детей и подростков. 2022;22(4):52-63.; Сантимов АВ, Гречаный СВ, Новик ГА. Нарушения психического здоровья у детей с ревматическими заболеваниями. Научно-практическая ревматология. 2024; 62(1):109-117.
-
17Academic Journal
Συγγραφείς: T. S. Panevin, A. A. Smetnik, T. V. Dubinina, Т. С. Паневин, А. А. Сметник, Т. В. Дубинина
Συνεισφορές: Статья подготовлена в рамках научной темы №1021051503111-9 «Совершенствование диагностики и фармакотерапии спондилоартритов на основании сравнительных результатов изучения прогностических (в том числе молекулярно-биологических, молекулярно-генетических, клинико-визуализационных) факторов прогрессирования заболевания и уровня качества жизни больных». Исслед
Πηγή: Modern Rheumatology Journal; Том 18, № 1 (2024); 95-100 ; Современная ревматология; Том 18, № 1 (2024); 95-100 ; 2310-158X ; 1996-7012
Θεματικοί όροι: ревматические заболевания, pregnancy, rheumatic diseases, беременность
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1538/1444; Sammaritano LR. Contraception in Patients with Rheumatic Disease. Rheum Dis Clin North Am. 2017 May;43(2):173-188. doi:10.1016/j.rdc.2016.12.001.; Schwarz EB, Manzi S. Risk of unintended pregnancy among women with systemic lupus erythematosus. Arthritis Rheum. 2008 Jun 15;59(6):863-6. doi:10.1002/art.23712.; Yazdany J, Trupin L, Kaiser R, et al. Contraceptive counseling and use among women with systemic lupus erythematosus: a gap in health care quality? Arthritis Care Res (Hoboken). 2011 Mar;63(3):358-65. doi:10.1002/acr.20402. Epub 2010 Nov 15.; Østensen M, von Esebeck M, Villiger PM. Therapy with immunosuppressive drugs and biological agents and use of contraception in patients with rheumatic disease. J Rheumatol. 2007 Jun;34(6):1266-9. Epub 2007 May 15.; Ferguson S, Trupin L, Yazdany J, et al. Who receives contraception counseling when starting new lupus medications? The potential roles of race, ethnicity, disease activity, and quality of communication. Lupus. 2016 Jan; 25(1):12-7. doi:10.1177/0961203315596079. Epub 2015 Jul 19.; Kestelman P, Trussell J. Efficacy of the simultaneous use of condoms and spermicides. Fam Plann Perspect. 1991 Sep-Oct;23(5): 226-7, 232.; d'Arcangues C. Worldwide use of intrauterine devices for contraception. Contraception. 2007 Jun;75(6 Suppl):S2-7. doi:10.1016/j.contraception.2006.12.024. Epub 2007 Apr 19.; Hidalgo M, Bahamondes L, Perrotti M, et al. Bleeding patterns and clinical performance of the levonorgestrel-releasing intrauterine system (Mirena) up to two years. Contraception. 2002 Feb;65(2):129-32. doi:10.1016/s0010-7824(01)00302-x.; Stringer EM, Kaseba C, Levy J, et al. A randomized trial of the intrauterine contraceptive device vs hormonal contraception in women who are infected with the human immunodeficiency virus. Am J Obstet Gynecol. 2007 Aug;197(2):144.e1-8. doi:10.1016/j.ajog.2007.03.031.; Кузнецова ИВ. Метаболические эффекты комбинированной гормональной контрацепции и риск тромботических осложнений. Акушерство и гинекология. 2016;(7):108-114.; Stam-Slob MC, Lambalk CB, van de Ree MA. Contraceptive and hormonal treatment options for women with history of venous thromboembolism. BMJ. 2015 Oct 8: 351:h4847. doi:10.1136/bmj.h4847.; Morimont L, Haguet H, Dogne JM, et al. Combined Oral Contraceptives and Venous Thromboembolism: Review and Perspective to Mitigate the Risk. Front Endocrinol (Lausanne). 2021 Dec 9:12:769187. doi:10.3389/fendo.2021.769187. eCollection 2021.; Tanis BC, Rosendaal FR. Venous and arterial thrombosis during oral contraceptive use: risks and risk factors. Semin Vasc Med. 2003 Feb;3(1):69-84. doi:10.1055/s-2003-38334.; Klipping C, Duijkers I, Mawet M, et al. Endocrine and metabolic effects of an oral contraceptive containing estetrol and drospirenone. Contraception. 2021 Apr;103(4): 213-221. doi:10.1016/j.contraception.2021.01.001. Epub 2021 Jan 9.; Оразов МР, Радзинский ВЕ, Долгов ЕД, Ермаков ВВ. Эндокринно-метаболические эффекты оральных контрацептивов, содержащих эстетрол и дроспиренон. Вопросы гинекологии, акушерства и перинатологии. 2022;21(4):146-150.; Оразов МР, Радзинский ВЕ, Долгов ЕД, Ермаков ВВ. Риски венозных тромбоэмболий при использовании гормональных контрацептивов, содержащих эстетрол и дроспиренон. Вопросы гинекологии, акушерства и перинатологии. 2022;21(6): 125-130.; American College of Obstetricians and Gynecologists Committee on Gynecologic Practice. ACOG Committee Opinion No. 415: Depot medroxyprogesterone acetate and bone effects. Obstet Gynecol. 2008 Sep;112(3): 727-30. doi:10.1097/AOG.0b013e318188d1ec.; Hennessy S, Berlin JA, Kinman JL, et al. Risk of venous thromboembolism from oral contraceptives containing gestodene and desogestrel versus levonorgestrel: a meta-analysis and formal sensitivity analysis. Contraception. 2001 Aug;64(2):125-33. doi:10.1016/s0010-7824(01)00234-7.; Petri M, Kim MY, Kalunian KC, et al. Combined oral contraceptives in women with systemic lupus erythematosus. N Engl J Med. 2005 Dec 15;353(24):2550-8. doi:10.1056/NEJMoa051135.; Sanchez-Guerrero J, Uribe AG, JimenezSantana L, et al. A trial of contraceptive methods in women with systemic lupus erythematosus. N Engl J Med. 2005 Dec 15;353(24): 2539-49. doi:10.1056/NEJMoa050817.; Chabbert-Buffet N, Amoura Z, Scarabin PY, et al. Pregnane progestin contraception in systemic lupus erythematosus: a longitudinal study of 187 patients. Contraception. 2011 Mar;83(3):229-37. doi:10.1016/j.contraception.2010.08.012. Epub 2010 Oct 30.; Jorgensen C, Picot MC, Bologna C, Sany J. Oral contraception, parity, breast feeding, and severity of rheumatoid arthritis. Ann Rheum Dis. 1996 Feb;55(2):94-8. doi:10.1136/ard.55.2.94.; Drossaers-Bakker KW, Zwinderman AH, van Zeben D, et al. Pregnancy and oral contraceptive use do not significantly influence outcome in long term rheumatoid arthritis. Ann Rheum Dis. 2002 May;61(5):405-8. doi:10.1136/ard.61.5.405.; Насонов ЕЛ, Решетняк ТМ, Алекберова ЗС. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5):4-14.; Geerts WH, Pineo GF, Heit JA, et al. Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004 Sep; 126(3 Suppl):338S-400S. doi:10.1378/chest.126.3_suppl.338S.; Danowski A, de Azevedo MN, de Souza Papi JA, Petri M. Determinants of risk for venous and arterial thrombosis in primary antiphospholipid syndrome and in antiphospholipid syndrome with systemic lupus erythematosus. J Rheumatol. 2009 Jun;36(6):1195-9. doi:10.3899/jrheum.081194. Epub 2009 May 15.; Kaiser R, Cleveland CM, Criswell LA. Risk and protective factors for thrombosis in systemic lupus erythematosus: results from a large, multi-ethnic cohort. Ann Rheum Dis. 2009 Feb;68(2):238-41. doi:10.1136/ard.2008.093013. Epub 2008 Sep 9.; Yamakami LY, de Araujo DB, Silva CA, et al. Severe hemorrhagic corpus luteum complicating anticoagulation in antiphospholipid syndrome. Lupus. 2011;20(5):523-526. doi:10.1177/0961203310383300; Rott H. Thrombotic risks of oral contraceptives. Curr Opin Obstet Gynecol. 2012 Aug; 24(4):235-40. doi:10.1097/GCO.0b013e328355871d.; Le Moigne E, Tromeur C, Delluc A, et al. Risk of recurrent venous thromboembolism on progestin-only contraception: a cohort study. Haematologica. 2016 Jan;101(1):e12-4. doi:10.3324/haematol.2015.134882. Epub 2015 Oct 9.; ACOG Committee on Practice BulletinsGynecology. ACOG practice bulletin. No. 73: Use of hormonal contraception in women with coexisting medical conditions. Obstet Gynecol. 2006 Jun;107(6):1453-72. doi:10.1097/00006250-200606000-00055.; Pisoni CN, Cuadrado MJ, Khamashta MA, Hunt BJ. Treatment of menorrhagia associated with oral anticoagulation: efficacy and safety of the levonorgestrel releasing intrauterine device (Mirena coil). Lupus. 2006;15(12): 877-80. doi:10.1177/0961203306071706.; Andreoli L, Bertsias GK, Agmon-Levin N, et al. EULAR recommendations for women's health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann Rheum Dis. 2017 Mar;76(3):476- 485. doi:10.1136/annrheumdis-2016-209770. Epub 2016 Jul 25.; Sammaritano LR, Bermas BL, Chakravarty EE, et al. 2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases. Arthritis Rheumatol. 2020 Apr;72(4):529-556. doi:10.1002/art. 41191. Epub 2020 Feb 23.
-
18Academic Journal
Συγγραφείς: O. N. Egorova, G. M. Tarasova, A. V. Datsina, E. G. Sazhina, О. Н. Егорова, Г. М. Тарасова, А. В. Дацина, Е. Г. Сажина
Συνεισφορές: The article was prepared within the framework of a research work, №/№ of state assignments РК 122040400024-7. The investigation has not been sponsored, Статья подготовлена в рамках научно-исследовательской работы, № государственного задания РК 122040400024-7. Исследование не имело спонсорской поддержки
Πηγή: Modern Rheumatology Journal; Том 18, № 3 (2024); 78-84 ; Современная ревматология; Том 18, № 3 (2024); 78-84 ; 2310-158X ; 1996-7012
Θεματικοί όροι: высокие и низкие дозы, rheumatic diseases, indications for use, high and low doses, ревматические заболевания, показания к назначению
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1592/1475; Bayry J, Misra N, Latry V et al. Mechanisms of action of intravenous immunoglobulin in autoimmune and inflammatory diseases. Transfus Clin Biol. 2003 Jun;10(3):165-9. doi:10.1016/s1246-7820(03)00035-1.; Greenberg M, Frant S, Rutstein D. «Gammaglobulin» and «placental globulin»; comparison of their effectiveness in prevention and modification of measles. JAMA. 1944;126(15): 944-47.; Ordman CW, Jennings JR, Janeway CA. Chemical, Clinical and Immunological studies on the products of human plasma fractionation. XII. The Use of Concentrated Normal Human Serum Gamma Globulin (Human Immune Serum Globulin) in the Prevention and Attenuation of Measles. J Clin Invest. 1944 Jul;23(4):541-9. doi:10.1172/JCI101519.; Stokes J, Neefe J. The prevention and attenuation of infectious hepatitis by gamma globulin. Preliminary note. JAMA.1945;127(3): 144-45.; Вruton O. Agammaglobulinemia. Pediatrics.1952;(9):722-28.; Imbach P, Barandun S, Baumgartner C, et al.High-dose intravenous gamma globulin therapy of refractory, in particular idiopathic thrombocytopenia in childhood. Helv Paediatr Acta. 1981 Feb;36(1):81-6.; Saeedian M, Randhawa I. Immunoglobulin replacement therapy: a twenty-year review and current update. Int Arch Allergy Immunol. 2014;164(2):151-66. doi:10.1159/000363445. Epub 2014 Jul 10.; Wood JG, Heywood AE, Dennington PM, et al. Trends in intravenous immunoglobulin use in New South Wales, Australia. Intern Med J. 2024 Jan;54(1):149-156. doi:10.1111/imj.16175.; Velikova T, Sekulovski M, Bogdanova S, et al. Intravenous immunoglobulins as immunomodulators in autoimmune diseases and reproductive medicine. Antibodies (Basel). 2023 Mar 2;12(1):20. doi:10.3390/antib12010020.; National Blood Authority. National report on the issue and use of immunoglobulin (IVIg). Annual report 2015–16. Canberra: Common-wealth of Australia; 2017. https://www.blood.gov.au/data-analysis-reporting.; Tavee J, Brannagan TH 3 rd , Lenihan MW, et al. Updated consensus statement: Intravenous immunoglobulin in the treatment of neuromuscular disorders report of the AANEM ad hoc committee. Muscle Nerve. 2023 Oct; 68(4):356-74. doi:10.1002/mus.27922.; Danieli MG, Antonelli E, Auria SS, et al. Low-dose intravenous immunoglobulin (IVIg) in different immune-mediated conditions. Autoimmun Rev. 2023 Nov; 22(11):103451. doi:10.1016/j.autrev.2023.103451.; Hadaschik E, Eming R, French LE, et al. European Guidelines (S1) on the use of high-dose intravenous immunoglobulin in dermatology. Hautarzt. 2020 Jul;71(7):542-52. doi:10.1007/s00105-020-04610-6.; Середавкина НВ, Решетняк ТМ, Насонов ЕЛ. Место внутривенного иммуноглобулина при ревматических заболеваниях. Современная ревматология. 2015;9(4):59-67. doi:10.14412/1996-7012-2015-4-59-67.; Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012 Nov 22;367(21):2015-25. doi:10.1056/NEJMra1009433.; Лазанович ВА, Просекова ЕВ. Внутривенные иммуноглобулины: механизмы терапевтических эффектов. Медицинская иммунология. 2014;16(4):311-22.; Shoenfeld Y, Gershwin ME. Intravenous immunoglobulin. Clinic Rev Allerg Immunol. 2005;29:165-66. doi:10.1385/CRIAI:29:3:165.; Bayry J,Fournier EM, Maddur MS, et al. Intravenous immunoglobulin induces proliferation and immunoglobulin synthesis from B cells of patients with common variable immunodeficiency: A mechanism underlying the beneficial effect of IVIg in primary immunodeficiencies. J Autoimmun. 2011 Feb;36(1): 9-15. doi:10.1016/j.jaut.2010.09.006. Epub 2010 Dec 9.; Maddur MS, Kaveri SV, Bayry J. Comparison of different IVIg preparations on IL-17 production by human Th17 cells. Autoimmun Rev. 2011 Oct;10(12):809-10. doi:10.1016/j.autrev.2011.02.007. Epub 2011 Mar 2.; Blank M, Bashi T, Shoenfeld Y. Idiotype-specific intravenous immunoglobulin (IVIG) for therapy of autoimmune diseases. Methods Mol Biol. 2014:1060:353-61. doi:10.1007/978-1-62703-586-6_18.; Hulett MD, Hogarth PM. Molecular Basis of Fc Receptor Function. Adv Immunol. 1994; 57:1-127. doi:10.1016/s0065-2776(08)60671-9.; Spahn JD, Leung DY, Chan MT, et al. Mechanisms of glucocorticoid reduction in asthmatic subjects treated with intravenous immunoglobulin. J Allergy Clin Immunol. 1999 Mar;103(3 Pt 1):421-6. doi:10.1016/s0091-6749(99)70466-5.; Zandman-Goddard G, Krauthammer A, Levy Y, et al. Long-term therapy with intravenous immunoglobulin is beneficial in patients with autoimmune diseases. Clin Rev Allergy Immunol. 2012 Apr;42(2):247-55. doi:10.1007/s12016-011-8278-7.; Dalakas MC. Update on intravenous immunoglobulin in neurology: modulating neuro-autoimmunity, evolving factors on efficacy and dosing and challenges on stopping chronic IVIg therapy. Neurotherapeutics. 2021 Oct;18(4):2397-2418. doi:10.1007/s13311-021-01108-4. Epub 2021 Nov 11.; Benavides-Villanueva F, Loricera J, Calvo-Rio V, et al, Intravenous immunoglobulin therapy in antineutrophil cytoplasmic antibody-associated vasculitis. Eur J Intern Med. 2023 Nov;117:78-84. doi:10.1016/j.ejim.2023.06.021.; Yates M, Watts AR, Bajema IM, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis. 2016 Sep;75(9):1583-94. doi:10.1136/annrheumdis-2016-209133. Epub 2016 Jun 23.; Katz U, Achiron A, Sherer Y, et al. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev. 2007 Mar;6(4):257-9. doi:10.1016/j.autrev.2006.08.011. Epub 2006 Aug 28.; Aggarwal R, Schessl J, Charles-Schoeman C, et al. Safety and tolerability of intravenous immunoglobulin in patients with active dermatomyositis: results from the randomised, placebo-controlled ProDERM study. Arthritis Res Ther. 2024 Jan 17;26(1):27. doi:10.1186/s13075-023-03232-2.; Zandman-Goddard G, Levy Y, Shoenfeld Y. Intravenous immunoglobulin therapy and systemic lupus erythematosus. Clin Rev Allergy Immunol. 2005 Dec;29(3):219-28. doi:10.1385/CRIAI:29:3:219.; Toubi E, Kessel A, Shoenfeld Y. High-dose intravenous immunoglobulins: an option in the treatment of systemic lupus erythematosus. Hum Immunol. 2005 Apr;66(4):395-402. doi:10.1016/j.humimm.2005.01.022.; Sherer Y, Kuechler S, Jose Scali J, et al. Low dose intravenous immunoglobulin in systemic lupus erythematosus: analysis of 62 cases. Isr Med Assoc J. 2008 Jan;10(1):55-7.; Binello N, Cancelli C, Passalacqua S, et al. Use of intravenous immunoglobulin therapy at unconventional doses in refractory fulminant systemic lupus erythematosus. Eur J Case Rep Intern Med. 2018 Sep 27;5(9):000934. doi:10.12890/2018_000934. eCollection 2018.; Schroeder J, Zeuner AR, Euler HH, Lцffler H. High dose intravenous immunoglobulins in systemic lupus erythematosus: Clinical and serological results of a pilot study. J Rheumatol. 1996 Jan;23(1):71-5.; Levy Y, Sherer Y, Ahmed A, et al. A study of 20 SLE patients with intravenous immunoglobulin clinical and serologic response. Lupus. 1999;8(9):705-12. doi:10.1191/096120399678841007.; Tenti S, Cheleschi S, Guidelli GM, et al. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmun Rev. 2016 Mar;15(3):226-35. doi:10.1016/j.autrev.2015.11.009. Epub 2015 Dec 1.; Sciascia S, Giachino O, Roccatello D. Prevention of thrombosis relapse in anti-phospholipid syndrome patients refractory to conventional therapy using intravenous immunoglobulin. Clin Exp Rheumatol. 2012 May-Jun;30(3):409-13. Epub 2012 Jun 26.; Ruiz-Irastorza G, Espinosa G, Frutos M, et al. Diagnosis and treatment of lupus nephritis: Consensus document from the systemic autoimmune disease group (GEAS) of the Spanish Society of Internal Medicine (SEMI) and the Spanish Society of Nephrology (S.E.N.). Nefrologia. 2012:32 Suppl 1:1-35. doi:10.3265/Nefrologia.pre2011.Dec.11298.; Caccavo D, Vaccaro F, Ferri GM, et al. Antiidiotypes against antiphospholipid anti-bodies are present in normal polyspecific immunoglobulins for therapeutic use. J Autoimmun. 1994 Aug;7(4):537-48. doi:10.1006/jaut.1994.1039.; Horn HC, Grau K, Junker P. IVIG treatment for progressive stroke in the primary antiphospholipid antibody syndrome. Lupus. 2004;13(6):478-80. doi:10.1191/0961203303lu1035cr.; Mulhearn B, Bruce IN. Indications for IVIG in rheumatic diseases. Rheumatology (Oxford). 2015 Mar;54(3):383-91. doi:10.1093/rheumatology/keu429. Epub 2014 Nov 17.; Bitsadze V, Yakubova F, Khizroeva J, et al. Catastrophic Antiphospholipid Syndrome. Int J Mol Sci. 2024 Jan 4; 25(1):668. doi:10.3390/ijms25010668.; Marie I, Menard JF, Hatron PY, et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: A series of 73 patients. Arthritis Care Res (Hoboken). 2010 Dec;62(12):1748-55. doi:10.1002/acr.20325.; Suzuki Y, Hayakawa H, Miwa S, et al. Intravenous immunoglobulin therapy for refractory interstitial lung disease associated with polymyositis/dermatomyositis. Lung. 2009 May-Jun;187(3):201-6. doi:10.1007/s00408-009-9146-6. Epub 2009 Apr 22.; Cherin P, Pelletier S, Teixeira A, et al. Results and long-term follow-up of intravenous immunoglobulin infusions in chronic, refractory polymyositis: An open study with thirty-five adult patients. Arthritis Rheum. 2002 Feb;46(2):467-74. doi:10.1002/art.10053.; Speca S, Farhat MM, Jendoubi M, et al. Intravenous immunoglobulins improve skin fibrosis in experimental models of systemic sclerosis. Sci Rep. 2023 Sep 12;13(1):15102. doi:10.1038/s41598-023-42464-9.; Tandaipan J, Guillen-Del-Castillo A, Simeуn-Aznar CP, et al. Immunoglobulins in systemic sclerosis management. A large multi-center experience. Autoimmun Rev. 2023 Nov; 22(11):103441. doi:10.1016/j.autrev.2023.103441.; Matsuda KM, Yoshizaki A, Kuzumi A, et al. Rapid improvement of systemic sclerosis-associated intestinal pseudo-obstruction with intravenous immunoglobulin administration. Rheumatology (Oxford). 2023 Sep 1; 62(9):3139-45. doi:10.1093/rheumatology/kead093.; Blank M, Levy Y, Amital H, et al. The role of intravenous immunoglobulin therapy in mediating skin fibrosis in high skin mice. Arthritis Rheum. 2002 Jun;46(6):1689-90. doi:10.1002/art.10363.; Richter C, Schnabel A, Csernok E, et al. Treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis with high-dose intravenous immunoglobulin. Clin Exp Immunol. 1995 Jul;101(1):2-7. doi:10.1111/j.1365-2249.1995.tb02268.x.; Aries PM, Hellmich B, Gross WL. Intravenous immunoglobulin therapy in vasculitis. Clin Rev Allergy Immunol. 2005 Dec;29(3): 237-45. doi:10.1385/CRIAI:29:3:237.; Kivity S, Katz U, Daniel N, et al. Evidence for the use of intravenous immunoglobulins – a review of the literature. Clin Rev Allergy Immunol. 2010 Apr;38(2-3):201-69. doi:10.1007/s12016-009-8155-9.; Chung SA, Langford CA, Maz M, et al. 2021 american college of rheumatology/vasculitis foundation guideline for the management of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Care Res (Hoboken). 2021 Aug;73(8):1088-1105. doi:10.1002/acr.24634. Epub 2021 Jul 8.; Hellmich В, Sanchez-Alamo В, Schirmer JH, et al. EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update. Ann Rheum Dis. 2024 Jan 2; 83(1):30-47. doi:10.1136/ard-2022-223764.; Jayne D, Chapel H, Adu D, et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM. 2000 Jul;93(7):433-9. doi:10.1093/qjmed/93.7.433.; Shimizu T, Morita T, Kumanogoh A. The therapeutic efficacy of intravenous immunoglobulin in anti-neutrophilic cytoplasmic antibody-associated vasculitis: A meta-analysis. Rheumatology (Oxford). 2020 May 1; 59(5):959-967. doi:10.1093/rheumatology/kez311.; Hoffman GS, Kerr GS, Leavitt RY, et al. Wegener granulomatosis: an analysis of 158 patients. Ann Intern Med. 1992 Mar 15;116(6): 488-98. doi:10.7326/0003-4819-116-6-488.; Martinez V, Cohen P, Pagnoux C, et al. Intravenous immunoglobulins for relapses of systemic vasculitides associated with antineutrophil cytoplasmic autoantibodies: Results of a multicenter, prospective, open-label study of twenty-two patients. Arthritis Rheum. 2008 Jan;58(1):308-17. doi:10.1002/art.23147.; Fortin PM, Tejani AM, Bassett K, Musini V. Intravenous immunoglobulin as adjuvant therapy for Wegener’s granulomatosis. Cochrane Database Syst Rev. 2013 Jan 31;2013(1): CD007057. doi:10.1002/14651858.CD007057.pub3.; Weishaupt C, Strölin A, Kahle B, et al. Characteristics, risk factors and treatment reality in livedoid vasculopathy - a multicentre analysis. J Eur Acad Dermatol Venereol. 2019 Sep;33(9):1784-1791. doi:10.1111/jdv.15639. Epub 2019 May 14.; Ozden MG, Ozdemir H, Senturk N. Intravenous immunoglobulin in resistant livedoid vasculopathy: analysis of a case series. Dermatol Ther. 2020 Mar;33(2):e13229. doi:10.1111/dth.13229. Epub 2020 Feb 4.; Kofler K, Strölin A, Geiger V, Kofler L. Intravenous immunoglobulin therapy in livedoid vasculopathy: retrospective observation of clinical outcome and patient's activity level. J Cutan Med Surg. 2021 Sep;25(5):504-10. doi:10.1177/12034754211003525.; Cantarini L, Stromillo ML, Vitale A, et al. Efficacy and Safety of Intravenous Immunoglobulin Treatment in Refractory Behcet's Disease with Different Organ Involvement: A Case Series. Isr Med Assoc J. 2016 Mar-Apr;18 (3-4):238-42.; Seeliger T, Prenzler NK, Gingele S, et al. Neuro-Sjцgren: Peripheral Neuropathy With Limb Weakness in Sjцgren’s Syndrome. Front Immunol. 2019 Jul 11:10:1600. doi:10.3389/fimmu.2019.01600. eCollection 2019.; Mehmood M, Jog A, Niazi M, et al. Atypical 's syndrome initially presenting as lymphocytic interstitial pneumonitis followed by immune thrombocytopenia. Case Rep Rheumatol. 2021 Mar 15;2021:6681590. doi:10.1155/2021/6681590.; Noh G, Han CW. Intravenous Immune Globulin (IVIG) Therapy After Unsuccessful Treatment with Corticosteroid and Cyclosporine A in Pfeifer-Weber-Christian Disease: A Case Report. Am J Case Rep. 2021 Jan 4; 22:e929519. doi:10.12659/AJCR.929519; Shen X, Wang F. The additional treatment value of immunoglobulin for the treatment of rheumatoid arthritis complicated with interstitial lung disease: A propensity score-matched pilot study. Int J Rheum Dis. 2023 Sep; 26(9):1745-1750. doi:10.1111/1756-185X.14808.; Katz-Agranov N, Khattri S, Zandman-Goddard G. The role of intravenous immunoglobulins in the treatment of rheumatoid arthritis. Autoimmun Rev. 2015 Aug; 14(8):651-8. doi:10.1016/j.autrev.2015.04.003. Epub 2015 Apr 12.; Muscat C, Bertotto A, Ercolani R, et al. Long term treatment of rheumatoid arthritis with high doses of intravenous immunoglobulins: effects on disease activity and serum cytokines. Ann Rheum Dis. 1995 May;54(5): 382-5. doi:10.1136/ard.54.5.382.; Kanik KS, Yarboro CH, Naparstek Y, et al. Failure of low-dose intravenous immunoglobulin therapy to suppress disease activity in patients with treatment-refractory rheumatoid arthritis. Arthritis Rheum. 1996 Jun;39(6): 1027-9. doi:10.1002/art.1780390621.; Maksymowych WP, Avina-Zubieta A, Luong M, Russell AS. High dose intravenous immunoglobulin (IVIG) in severe refractory rheumatoid arthritis: no evidence for efficacy. Clin Exp Rheumatol. 1996 Nov-Dec;14(6): 657-60.; Silverman ED, Cawkwell GD, Lovell DJ, et al. Intravenous immunoglobulin in the treatment of systemic juvenile rheumatoid arthritis: a randomized placebo controlled trial. Pediatric Rheumatology Collaborative Study Group. J Rheumatol. 1994 Dec;21(12):2353-8.
-
19Academic Journal
Συγγραφείς: B. S. Belov, N. V. Muravyova, Б. С. Белов, Н. В. Муравьева
Συνεισφορές: The article was created as part of the research work, state assignment №1021051503137-7., Статья подготовлена в рамках научно-исследовательской работы, № государственного задания 1021051503137-7.
Πηγή: Modern Rheumatology Journal; Том 18, № 6 (2024); 7-13 ; Современная ревматология; Том 18, № 6 (2024); 7-13 ; 2310-158X ; 1996-7012
Θεματικοί όροι: профилактика, immune-inflammatory rheumatic diseases, molecular mimicry, bystander activation, comorbidity, treatment, prevention, иммуновоспалительные ревматические заболевания, молекулярная мимикрия, активация в присутствии свидетеля, коморбидность, лечение
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1661/1536; Цитомегаловирусная болезнь у взрослых. Клинические рекомендации. https://medi.ru/klinicheskie-rekomendatsii/tsitomegalovirusnayabolezn-u-vzroslykh_14305/; Muryoi T, Kasturi KN, Kafina MJ, et al. Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes. J Exp Med. 1992 Apr 1;175(4):1103-9. doi:10.1084/jem.175.4.1103.; Lunardi C, Bason C, Navone R, et al. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med. 2000 Oct;6(10): 1183-6. doi:10.1038/80533.; HoHsieh A, Wang CM, Wu YJ, et al. B cell epitope of human cytomegalovirus phosphoprotein 65 (HCMV pp65) induced anti-dsDNA antibody in BALB/c mice. Arthritis Res Ther. 2017 Mar 21;19(1):65. doi:10.1186/s13075-017-1268-2.; Liu Y, Mu R, Gao YP, et al. A Cytomegalovirus Peptide-Specific Antibody Alters Natural Killer Cell Homeostasis and Is Shared in Several Autoimmune Diseases. Cell Host Microbe. 2016 Mar 9;19(3):400-8. doi:10.1016/j.chom.2016.02.005.; Hsieh AH, Jhou YJ, Liang CT, et al. Fragment of tegument protein pp65 of human cytomegalovirus induces autoantibodies in BALB/c mice. Arthritis Res Ther. 2011;13(5): R162. doi:10.1186/ar3481. Epub 2011 Oct 11.; Neo JYJ, Wee SYK, Bonne I, et al. Characterisation of a human antibody that potentially links cytomegalovirus infection with systemic lupus erythematosus. Sci Rep. 2019 Jul 10;9(1): 9998. doi:10.1038/s41598-019-46329-y.; Varani S, Cederarv M, Feld S, et al. Human cytomegalovirus differentially controls B cell and T cell responses through effects on plasmacytoid dendritic cells. J Immunol. 2007 Dec 1;179(11):7767-76. doi:10.4049/jimmunol.179.11.7767.; Xu H, Dong P, Ma X, et al B cell-activating factor regulates the survival of B lymphocytes infected with human cytomegalovirus. Immunol Lett. 2017 Jul:187:1-6. doi:10.1016/j.imlet.2017.04.013. Epub 2017 Apr 23.; Bano A, Pera A, Almoukayed A, et al. CD28 null CD4 T-cell expansions in autoimmune disease suggest a link with cytomegalovirus infection. F1000Res. 2019 Mar 25;8: F1000 Faculty Rev-327. doi:10.12688/f1000research.17119.1; Wu CS, Chyuan IT, Chiu YL, et al Preserved specific anti-viral T-cell response but associated with decreased lupus activity in SLE patients with cytomegalovirus infection. Rheumatology (Oxford). 2020 Nov 1;59(11): 3340-3349. doi:10.1093/rheumatology/keaa143.; Zabalza A, Vera A, Alari-Pahissa E, et al. Impact of cytomegalovirus infection on B cell differentiation and cytokine production in multiple sclerosis. J Neuroinflammation. 2020 May 20;17(1):161. doi:10.1186/s12974-020-01840-2.; Li TH, Su CF, Lai CC, et al. Epidemiology and risk factors for cytomegalovirus disease in autoimmune inflammatory rheumatic diseases: A nationwide population-based study in Taiwan. Int J Rheum Dis. 2024 Feb;27(2): e15067. doi:10.1111/1756-185X.15067.; Ogata H, Aoki N, Nagano K, et al. Factors associated with cytomegalovirus antigenemia in patients with rheumatic disease: A retrospective study. J Infect Chemother. 2022 Nov;28(11):1471-1477. doi:10.1016/j.jiac.2022.07.004. Epub 2022 Jul 16.; Suga K, Nishiwaki A, Nakamura T, Kagami SI. Clinical significance of cytomegalovirus (CMV) pp65 antigenemia in the prediction of CMV infection during immunosuppressive therapy for rheumatic disease. Rheumatol Int. 2023 Jun;43(6):1093-1099. doi:10.1007/s00296-022-05196-z. Epub 2022 Aug 30.; Kaneshita S, Kida T, Yokota I, et al. Risk factors for cytomegalovirus disease with cytomegalovirus re-activation in patients with rheumatic disease. Mod Rheumatol. 2020 Jan; 30(1):109-115. doi:10.1080/14397595.2018.1551264. Epub 2019 Jan 3.; Shimada T, Higashida-Konishi M, Izumi K, et al. Risk factors associated with cytomegalovirus reactivation in patients receiving immunosuppressive therapy for rheumatic diseases: a retrospective study. Sci Rep. 2022 Dec 3;12(1):20926. doi:10.1038/s41598-022-25451-4.; Tani C, Carli L, Mosca M, et al. Occurrence and risk factors for cytomegalovirus infection in hospitalized systemic lupus erythematosus patients. Ann Rheum Dis. 2010; 69 (Suppl 3):572.; Choo HMC, Cher WQ, Kwan YH, Fong WWS. Risk factors for cytomegalovirus disease in systemic lupus erythematosus (SLE): a systematic review. Adv Rheumatol. 2019 Mar 18;59(1):12. doi:10.1186/s42358-019-0055-y.; Jia J, Shi H, Liu M, et al. Cytomegalovirus Infection May Trigger Adult-Onset Still's Disease Onset or Relapses. Front Immunol. 2019 Apr 24:10:898. doi:10.3389/fimu.2019.00898. eCollection 2019.; Kronbichler A, Leierer J, Leierer G, et al. Clinical associations with venous thromboembolism in anti-neutrophil cytoplasm antibodyassociated vasculitides. Rheumatology (Oxford). 2017 May 1;56(5):704-708. doi:10.1093/rheumatology/kew465.; Henry N, Brilland B, Wacrenier S, et al Incidence and Risk Factors of Venous Thromboembolic Events in Patients with ANCA-Glomerulonephritis: A Cohort Study from the Maine-Anjou Registry. J Clin Med. 2020 Sep 30;9(10):3177. doi:10.3390/jcm9103177.; Liapi M, Jayne D, Merkel PA, et al. Venous thromboembolism in ANCA-associated vasculitis: a population-based cohort study. Rheumatology (Oxford). 2021 Oct 2;60(10): 4616-4623. doi:10.1093/rheumatology/keab057.; King C, Patel R, Mendoza C, et al Cytomegalovirus infection is a risk factor for venous thromboembolism in ANCA-associated vasculitis. Arthritis Res Ther. 2022 Aug 10; 24(1):192. doi:10.1186/s13075-022-02879-7.; Kelkar AH, Jacob KS, Yousif EB, Farrell JJ. Venous thromboembolism related to cytomegalovirus infection: A case report and literature review. Medicine (Baltimore). 2017 Dec;96(51):e9336. doi:10.1097/MD.0000000000009336.; Wolf G, Porth J, Stahl RA. Thrombosis associated with cytomegalovirus infection in patients with ANCA-positive vasculitis. Am J Kidney Dis. 2001 Nov;38(5):E27. doi:10.1053/ajkd.2001.29576.; Chanouzas D, Sagmeister M, Faustini S, et al. Subclinical Reactivation of Cytomegalovirus Drives CD4+CD28null T-Cell Expansion and Impaired Immune Response to Pneumococcal Vaccination in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. J Infect Dis. 2019 Jan 7;219(2):234-244. doi:10.1093/infdis/jiy493.; Forte E, Swaminathan S, Schroeder MW, et al. Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. mBio. 2018 Sep 11;9(5):e01560-18. doi:10.1128/mBio.01560-18.; Subclinical Cytomegalovirus Reactivation in Acute ANCA-associated Vasculitis (REACTIVAS). https://clinicaltrials.gov/study/NCT04916704?cond=%20Anca%20Vasculitides&rank=5.; Takizawa Y, Inokuma S, Tanaka Y, et al. Clinical characteristics of cytomegalovirus infection in rheumatic diseases: multicentre survey in a large patient population. Rheumatology (Oxford). 2008 Sep;47(9):1373-8. doi:10.1093/rheumatology/ken231. Epub 2008 Jun 24.; Егорова ОН, Балабанова РМ, Сажина ЕГ. Системная красная волчанка и оппортунистические инфекции: распространенность, клинические особенности. Современная ревматология. 2008;2(4):27-33. doi:10.14412/1996-7012-2008-503; Chen Y, Zhong J, Liu X, et al. Cytomegalovirus antigen-specific multi-cytokine immune responses in patients with rheumatic diseases under different cytomegalovirus infection status: A case-control study. Clin Chim Acta. 2024 Jul 15:561:119828. doi:10.1016/j.cca.2024.119828. Epub 2024 Jun 22.; Mingli H, Tsai CY. Analysis of clinical features and risk factors of in-hospital mortality in cytomegalovirus (CMV) diseases with systemic lupus erythematosus. Ann Rheum Dis. 2018:77(Suppl.):A1441.; Zhang T, Yu Z, Gao S, et al. Clinical phenotypes and prognosis of cytomegalovirus infection in the pediatric systemic lupus erythematosus: a longitudinal analysis. Pediatr Rheumatol Online J. 2023 Mar 16;21(1):25. doi:10.1186/s12969-023-00807-w.; Sebastiani GD, Iuliano A, Canofari C, Bracci M. Cytomegalovirus infection in Systemic Lupus Erythematosus: report of four cases challenging the management of the disease, and literature review. Lupus. 2019 Mar; 28(3):432-437. doi:10.1177/0961203319825570. Epub 2019 Jan 24.; Lim CC, Tan BH, Tung YT, et al. Riskstratified approach to anti-viral prophylaxis against cytomegalovirus disease in glomerulonephritis and renal vasculitis treated with potent immunosuppressants. Infect Dis (Lond). 2019 Oct;51(10):745-752. doi:10.1080/23744235.2019.1648855. Epub 2019 Aug 13.; Liu P, Tan HZ, Li H, et al. Infections in hospitalized lupus nephritis patients: characteristics, risk factors, and outcomes. Lupus. 2018 Jun;27(7):1150-1158. doi:10.1177/0961203318768881. Epub 2018 Apr 9.
-
20Academic Journal
Συγγραφείς: Massimo Imazio, Zulfiya N. Sukmarova, Evgeny L. Nasonov, М. Имазио, З. Н. Сукмарова, Е. Л. Насонов
Πηγή: Rheumatology Science and Practice; Vol 62, No 4 (2024); 365–368 ; Научно-практическая ревматология; Vol 62, No 4 (2024); 365–368 ; 1995-4492 ; 1995-4484
Θεματικοί όροι: перикардит, идиопатический рецидивирующий перикардит, иммуновоспалительные ревматические заболевания, колхицин, интерлейкин 1, анакинра, idiopathic recurrent pericarditis, immunoinflammatory rheumatic diseases, colchicine, interleukin 1, anakinra
Περιγραφή αρχείου: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3601/2385; Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC). Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921-2964. doi:10.1093/eurheartj/ehv318; Mann DL. The emerging field of cardioimmunology: Past, present and foreseeable future. Circ Res. 2024;134(12):1663-1680. doi:10.1161/CIRCRESAHA.123.323656; Abbate A, Weber B, Garschick M, Adamo L, Beavers C. Inflammation and heart diseases: Immunology, cardiology, and rheumatology. J Cardiovasc Pharmacol. 2024;83(5):361-363. doi:10.1097/FJC.0000000000001531; Imazio M. Medical therapy of pericarditis: tips and tricks for clinical practice. J Cardiovasc Med (Hagerstown). 2024;25(6):420-425. doi:10.2459/JCM.0000000000001618; Furqan MM, Verma BR, Cremer PC, Imazio M, Klein AL. Pericardial diseases in COVID19: A contemporary review. Curr Cardiol Rep. 2021;23(7):90. doi:10.1007/s11886-021-01519-x; Ghantous E, Szekely Y, Lichter Y, Levi E, Taieb P, Banai A, et al. Pericardial involvement in patients hospitalized with COVID-19: Prevalence, associates, and clinical implications. J Am Heart Assoc. 2022;11(7):e024363. doi:10.1161/JAHA.121.024363; Corrao G, Franchi M, Cereda D, Bortolan F, Leoni O, Vignati E, et al. Increased risk of myocarditis and pericarditis and reduced likelihood of severe clinical outcomes associated with COVID19 vaccination: A cohort study in Lombardy, Italy. BMC Infect Dis. 2022;22(1):844. doi:10.1186/s12879-022-07823-3; Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583-590. doi:10.1038/s41591-022-01689-3; Сукмарова ЗН, Овчинников ЮВ, Гудима ГО, Ибрагимова ФМ, Афонина ОВ, Мачкалян КЭ. Усиление эхо-сигнала от перикарда у реципиентов вакцин против SARS-CoV-2. Инфекционные болезни. 2021;19(4):43-50. doi:10.20953/1729-9225-2021-4-43-50; Насонов ЕЛ, Сукмарова ЗН, Попкова ТВ, Белов БС. Проблемы иммунопатологии и перспективы фармакотерапии идиопатического рецидивирующего перикардита: применение ингибитора интерлейкина 1 (Анакинра). Научно-практическая ревматология. 2023;61(1):47-61. doi:10.47360/1995-4484-2023-47-61; Imazio M, Brucato A, Maestroni S, Cumetti D, Dominelli A, Natale G, et al. Prevalence of C-reactive protein elevation and time course of normalization in acute pericarditis: Implications for the diagnosis, therapy, and prognosis of pericarditis. Circulation. 2011;123(10): 1092-1097. doi:10.1161/CIRCULATIONAHA.110.986372; Imazio M. Pericardial involvement in systemic inflammatory diseases. Heart. 2011;97(22):1882-1892. doi:10.1136/heartjnl-2011-300054; Imazio M, Demichelis B, Parrini I, Giuggia M, Cecchi E, Gaschino G, et al. Day-hospital treatment of acute pericarditis: A management program for outpatient therapy. J Am Coll Cardiol. 2004;43(6):1042-1046. doi:10.1016/j.jacc.2003.09.055; Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Lowdose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61(4):404-410. doi:10.1016/j.jacc.2012.10.027; Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497-2505. doi:10.1056/NEJMoa1912388; Samuel M, Tardif JC, Khairy P, Roubille F, Waters DD, Grégoire JC, et al. Cost-effectiveness of low-dose colchicine after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J Qual Care Clin Outcomes. 2021;7(5):486-495. doi:10.1093/ehjqcco/qcaa045