-
1Academic Journal
Authors: L. A. Chipiga, A. V. Likhacheva, I. A. Zvonova, A. V. Vodovatov, O. Yu. Toskin, A. A. Sapelnikov, K. S. Velichkina, A. S. Terenteva, A. A. Stanzhevsky, Л. А. Чипига, А. В. Лихачева, И. А. Звонова, А. В. Водоватов, О. Ю. Тоскин, А. А. Сапельников, К. С. Величкина, А. С. Терентьева, А. А. Станжевский
Contributors: The work was performed as a part of the program of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing «Development and scientific justification of a set of measures to ensure radiation protection in nuclear medicine», Работа выполнена в рамках отраслевой программы Роспотребнадзора «Разработка и научное обоснование комплекса мер по обеспечению радиационной защиты в ядерной медицине»
Source: Radiatsionnaya Gygiena = Radiation Hygiene; Том 18, № 1 (2025); 59-69 ; Радиационная гигиена; Том 18, № 1 (2025); 59-69 ; 2409-9082 ; 1998-426X
Subject Terms: радиационная безопасность, radionuclide therapy, radiopharmaceutical, patient release criteria, radiation safety, радионуклидная терапия, радиофармацевтический лекарственный препарат, радиологические критерии выписки
File Description: application/pdf
Relation: https://www.radhyg.ru/jour/article/view/1110/938; Evaluation of Medical Exposure to Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2020/2021 Report Volume I. Annex A.; Scott A.M., Zeglis B.M., Lapi S.E. et al. Trends in nuclear medicine and the radiopharmaceutical sciences in oncology: workforce challenges and training in the age of theranostics // Lancet Oncology. 2024. Vol. 25, No 6. P. e250-e259. DOI:10.1016/S1470-2045(24)00037-8. Erratum in: Lancet Oncology. 2024. Vol. 25, No 8. e336 p. DOI:10.1016/S1470-2045(24)00378-4.; International Commission on Radiological Protection. Release of patients after therapy with unsealed radionuclides. ICRP Publication 94 // Annals of the ICRP. 2004. Vol. 34, No (2).; International Atomic Energy Agency. Release of Patients After Radionuclide Therapy. Safety Reports Series No. 63. IAEA. Vienna, 2009.; Балонов М.И., Голиков В.Ю., Звонова И.А. Радиологические критерии выписки пациента из клиники после радионуклидной терапии или брахитерапии с имплантацией закрытых источников // Радиационная гигиена. 2009. Т. 2, № 4. С. 5-9.; Звонова И.А., Балонов М.И., Голиков В.Ю. Критерии освобождения пациентов, прошедших радионуклидную терапию, и критерии пересечения ими государственной границы Российской Федерации // Дозиметрия радиационной защиты. 2011. Т. 147, № 1-2. С. 254-257. DOI:10.1093/rpd/ncr308.; Наркевич Б.Я., Лысак Ю.В. Обеспечение радиационной безопасности при амбулаторном режиме применения терапевтических радиофармпрепаратов // Медицинская радиология и радиационная безопасность. 2015. Т. 60, № 4. С. 27-35.; Чипига Л.А., Звонова И.А., Водоватов A.B. и др. Совершенствование подхода к определению радиологических критериев выписки пациентов после радионуклидной терапии // Радиационная гигиена. 2023. Т. 16, № 2. С. 19-31. DOI:10.21514/1998-426X-2023-16-2-19-31.; Mattsson S., Hoeschen C. Radiation Protection in Nuclear. Medicine. Springer-Verlag Berlin Heidelberg, 2013. 159 p.; Чипига Л.А., Водоватов А.В., Звонова И.А. и др. Обращение с биологическими отходами пациентов после проведения радионуклидной терапии // Радиационная гигиена. 2022. Т. 15, № 2. С. 19-30. DOI:10.21514/1998-426X-2022-15-2-19-30.; Чипига Л.А., Водоватов А.В., Петрякова А.В. и др. Обоснование дифференцированного подхода к обращению с биологическими отходами пациентов в подразделениях ядерной медицины // Радиационная гигиена. 2022. Т. 15, № 4. С. 34-44. DOI:10.21514/1998-426X-2022-15-4-34-44.; Demir M., Abuqbeitah M., Uslu-Beşli L. et al. Evaluation of radiation safety in 177Lu-PSMA therapy and development of outpatient treatment protocol // Journal of Radiological Protection. 2016. Vol. 36, No. 2. P. 269-278. DOI:10.1088/0952-4746/36/2/269.; Wanke C., Pinkert J., Szermerski B., Geworski L. Assessment of the radiation exposure of relatives and caregivers of patients treated with Ra-223 - Results of a German multicenter study // Zeitschrift fur Medizinische Physik. 2021. Vol. 31, No 1. 58-64. DOI:10.1016/j.zemedi.2020.09.002.; Dauer L.T., Williamson M.J., Humm J. et al. Radiation safety considerations for the use of ²²³RaCl₂ DE in men with castration-resistant prostate cancer // Health Physics. 2014. Vol. 106, No 4. P. 494-504. DOI:10.1097/HP.0b013e3182a82b37.; Serencsits B., Chu B.P., Pandit-Taskar N. et al. Radiation Safety Considerations and Clinical Advantages of α-Emitting Therapy Radionuclides // Journal of Nuclear Medicine Technology. 2022. Vol. 50, No 1. P. 10-16. DOI:10.2967/jnmt.121.262294.; NCRP report № 155. Management of Radionuclide Therapy Patients. National Council on Radiation Protection and Measurements, New York, 2007.; International Commission on Radiological Protection. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116 // Annals of the ICRP. 2010. Vol. 40, No (2-5).; https://www.radhyg.ru/jour/article/view/1110
-
2Academic Journal
Authors: L. A. Chipiga, I. A. Zvonova, A. V. Vodovatov, A. V. Petryakova, A. A. Stanzhevsky, D. A. Vazhenina, M. A. Smoliarchuk, S. A. Ryzhov, Л. А. Чипига, Н. А. Звонова, A. B. Водоватов, А. В. Петрякова, А. А. Станжевский, Д. А. Важенина, М. Я. Смолярчук, С. А. Рыжов
Contributors: Работа выполнена в рамках отраслевой программы Роспотребнадзора «Разработка и научное обоснование комплекса мер по обеспечению радиационной защиты в ядерной медицине».
Source: Radiatsionnaya Gygiena = Radiation Hygiene; Том 16, № 2 (2023); 19-31 ; Радиационная гигиена; Том 16, № 2 (2023); 19-31 ; 2409-9082 ; 1998-426X ; 10.21514/1998-426X-2023-16-2
Subject Terms: эффективный период полувыведения, radionuclide therapy, radiopharmaceutical, patient release criteria, radiation safety, effective half-life, радионуклидная терапия, радиофармацевтический лекарственный препарат, радиологические критерии выписки, радиационная безопасность
File Description: application/pdf
Relation: https://www.radhyg.ru/jour/article/view/949/837; Балонов М.И., Голиков В.Ю., Звонова И.А. Радиологические критерии выписки пациента из клиники после радионуклидной терапии или брахитерапии с имплантацией закрытых источников // Радиационная гигиена. 2009. Т. 2, №4. С. 5-9.; Zvonova I., Balonov M., Golikov V. Release criteria for patients having undergone radionuclide therapy and criteria for their crossing the state border of the Russian Federation // Radiation Protection Dosimetry. 2011. Vol. 147, № 1-2. P. 254-257. doi:10.1093/rpd/ncr308.; International Atomic Energy Agency, Release of Patients After Radionuclide Therapy, Safety Reports Series No. 63, IAEA, Vienna (2009).; International Atomic Energy Agency. Radiation protection and safety of radiation sources: international basic safety standards. Interim edition. Safety Standards Series No. GSR Part 3 (interim). IAEA, Vienna (2011).; International Commission on Radiological Protection. Release of patients after therapy with unsealed radionuclides. ICRP Publication 94. Ann ICRP/ 2004. 34(2).; European Commission. Radiation protection following 131I-therapy. Exposures due to out-patients or discharged in-patients. Radiation Protection 97. Directorate General for Environment Nuclear Safety and Civil Protection, Brussels (1998).; U.S. Nuclear regulatory commission. Draft regulatory guide DG-8057. “Release of patients administered radioactive material”, Washington, DC, 2019.; Наркевич Б.Я., Лысак Ю.В. Обеспечение радиационной безопасности при амбулаторном режиме применения терапевтических радиофармпрепаратов // Медицинская радиология и радиационная безопасность. 2015. Т. 60, № 4. С. 27-35.; Воронцова М.С., Кармакова Т.А., Панкратов А.А., и др. Современные тенденции развития таргетной радионуклидной терапии // Медицинская радиология и радиационная безопасность. 2021. Т. 66, № 6. С. 63–70. https://doi.org/10.12737/1024-6177-2021-66-6-63-70.; Чернов В.И., Брагина О.Д., Синилкин И.Г., и др. Радиоиммунотерапия в лечении злокачественных образований // Сибирский онкологический журнал. 2016. Т. 15, № 2. С. 101-106. https://doi.org/10.21294/1814-4861-2016-15-2-101-106.; International Commission on Radiological Protection. Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Ann. ICRP. 2008. 38 (3).; Kurth J., Krause B.J., Schwarzenböck S.M., et al. External radiation exposure, excretion, and effective half-life in 177LuPSMA-targeted therapies // European Journal of Nuclear Medicine and Molecular Imaging research. 2018. Vol. 8, №. 1. P. 1-11. https://doi.org/10.1186/s13550-018-0386-4.; Demir M., Abuqbeitah M., Uslu-Beşli L., et al. Evaluation of radiation safety in 177Lu-PSMA therapy and development of outpatient treatment protocol // Journal of Radiological Protection. 2016. Vol. 36, No. 2. P. 269–278. doi:10.1088/0952-4746/36/2/269.; Schuchardt C., Zhang J., Kulkarni H.R., et al. ProstateSpecific Membrane Antigen Radioligand Therapy Using 177LuPSMA I&T and 177Lu-PSMA-617 in Patients with Metastatic Castration-Resistant Prostate Cancer: Comparison of Safety, Biodistribution, and Dosimetry // Journal of Nuclear Medicine. 2022. Vol. 63, P. 1199–1207. DOI: 0.2967/jnumed.121.262713.; Крылов В.В., Легкодимова Н.С., Кочетова Т.Ю., и др. Радиолигандная терапия 177Lu-ДОТА-ПСМА при метастатическом кастрационно-резистентном раке предстательной железы. Фармакокинетика, безопасность, противоопухолевая эффективность // Лучевая диагностика и терапия. 2022. Т. 13, № 4. С. 75–85, DOI: http://dx.doi.org/10.22328/2079-5343-2022-13-4-75-85.; Wehrmann C., Senftleben S., Zachert C., et al. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTANOC // Cancer Biother Radiopharm. 2007. Vol. 22, № 3. Р. 406–16.; Levart, D., Kalogianni, E., Corcoran, B. et al. Radiation precautions for inpatient and outpatient 177Lu-DOTATATE peptide receptor radionuclide therapy of neuroendocrine tumours // EJNMMI Physics. 2019. Vol. 6, P. 7. https://doi.org/10.1186/s40658-019-0243-1 .; Jacobsson L., Mattsson S., Johansson L., et al. Biokinetics and dosimetry of ‘3’I-metaiodobenzylguanidine (MIBG) // Proc. Fourth ht. Rndiophnrmuceutical Dosimetry Symposium. Oak Ridge 1985, Oak Ridge Assoc. Universities CONF-851113, Oak Ridge National Laboratories, Oak Ridge, Tennessee. 1986. P. 389-398.; International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. ICRP Publication 53. Annals of the ICRP. 1988. 18 (1-4).; Gear J., Chiesa C., Lassmann M., et al. EANM Dosimetry Committee. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours // EJNMMI Physics. 2020. Vol. 7, Nо. 1. Р. 15. doi:10.1186/s40658-020-0282-7.; Звонова И.А., Лихтаpев И.А., Николаева А.А. Облучение щитовидной железы, сопpовождающее pадиойодное обследование пациентов с тиpеоидными заболеваниями // Медицинская радиология. 1982. Т. 4, C. 42-44.; Трухин А.А. Методы и средства повышения эффективности лечебно-диагностических процессов в аппаратно-программном комплексе радиойодтерапии тиреотоксикоза человека: автореф. дисс. на соискание степени канд. техн. наук. Москва, 2022. 19 с.; IAEA-TECDOC-1608. Nuclear Medicine In Thyroid Cancer Management: A Practical Approach IAEA, Vienna, 2009, 141 p.; Радионуклидная диагностика для практических врачей / Под ред. Ю.Б. Лишманова, В.И. Чернова. Томск: STT, 2004. С.317-319.; Чипига Л.А., Водоватов А.В., Звонова И.А., и др. Обращение с биологическими отходами пациентов после проведения радионуклидной терапии // Радиационная гигиена. 2022. Т. 15, № 2. С. 19-30. DOI:10.21514/1998-426X-2022-15-2-19-30.; Чипига Л.А., Водоватов А.В., Петрякова А.В., и др. Обоснование дифференцированного подхода к обращению с биологическими отходами пациентов в подразделениях ядерной медицины // Радиационная гигиена. 2022. T. 15, № 4. С. 34-44. DOI: https://doi. org/10.21514/1998-426X-2022-15-4-34-44.; Gleisner K.S., Chouin N., Gabina P.M., et al. EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptorand PSMA-targeting ligands // European Journal of Nuclear Medicine and Molecular Imaging. 2022. Vol. 49, No. 6. P. 1778-1809. doi:10.1007/s00259-022-05727-7.; Станжевский А.А., Майстренко Д.Н., Важенина Д.А., и др. Методы дозиметрического планирования в радионуклидной терапии. Часть 2: уровни планирования // Лучевая диагностика и терапия. 2022. Т. 13, № 4. С. 1626. https://doi.org/10.22328/2079-5343-2022-13-4-16-26.; Sgouros G., Bolch WE, Chiti A., et al. ICRU REPORT 96, Dosimetry-Guided Radiopharmaceutical Therapy // Journal of the ICRU. 2021. Vol. 21, Nо. 1. P. 1–212. doi:10.1177/14736691211060117.; International Atomic Energy Agency, Pan American Health Organization, World Health Organization, Radiological Protection for Medical Exposure to Ionizing Radiation, IAEA Safety Standards Series No. RS-G-1.5, IAEA, Vienna (2002).; International Atomic Energy Agency. Nuclear Medicine Resources Manual 2020 Edition, IAEA Human Health Series No. 37, IAEA, Vienna (2020).; Saha GB. Radiation Safety in Nuclear Medicine. A Practical, Concise Guide. Springer Nature Switzerland AG, 2019, 192 p. https://doi.org/10.1007/978-3-030-16406-5.; Turner J.H. Outpatient therapeutic nuclear oncology. Annals of Nuclear Medicine. 2012. No 26. P. 289–97.; Mattsson S., Hoeschen C. Radiation Protection in Nuclear Medicine. Springer-Verlag Berlin Heidelberg, 2013, 159 p.; https://www.radhyg.ru/jour/article/view/949
-
3Academic Journal
Authors: G. E. Kodina, A. O. Malysheva, A. A. Larenkov, A. B. Bruskin, Г. Е. Кодина, А. О. Малышева, А. А. Ларенков, А. Б. Брускин
Contributors: The study was performed as part of the state assignment for the Federal Medical Biological Agency of Russia (R&D public accounting No. 122031100212-9)., Работа проведена в рамках выполнения государственного задания Федерального медико-биологического агентства России, регистрационный № НИОКТР 122031100212-9.
Source: Regulatory Research and Medicine Evaluation; Том 12, № 3 (2022); 244-262 ; Регуляторные исследования и экспертиза лекарственных средств; Том 12, № 3 (2022); 244-262 ; 3034-3453 ; 3034-3062
Subject Terms: химические примеси, radiopharmaceutical, radionuclide impurities, radiochemical impurities, chemical impurities, радиофармацевтический лекарственный препарат, радионуклидные примеси, радиохимические примеси
File Description: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/478/852; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/478/286; Bornholdt MG, Woelfel KM, Fang P, Jacobson MS, Hung JC. Rapid ITLC system for determining the radiochemical purity of 68Ga-DOTATATE. J Nucl Med Technol. 2018;46(3):285–7. https://doi.org/10.2967/jnmt.117.200873; Zolle I., ed. Technetium-99m pharmaceuticals: Preparation and quality control in nuclear medicine. Berlin, Heidelberg, New York: Springer; 2007. https://doi.org/10.1007/978-3-540-33990-8; Papagiannopoulou D. Technetium-99m radiochemistry for pharmaceutical applications. J Labelled Comp Radiopharm. 2017;60(11):502–20. https://doi.org/10.1002/jlcr.3531; Hou X. Determination of radionuclidic impurities in 99mTc eluate from 99Mo/99mTc generator for quality control. J Radioanal Nucl Chem. 2017;314:659–68. https://doi.org/10.1007/s10967-017-5369-9; Hasan S, Prelas MA. Molybdenum 99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: a review. SN Applied Sciences. 2020;2:1782. https://doi.org/10.1007/s42452-020-03524-1; Tsivadze AYu, Filyanin AT, Filyanin OA, Avetisyan AA, Zykov MP, Kodina GE, et al. Radiochemical technology for production of preparations of technetium - 99m on extraction centrifugal semi-countercurrent generator. J Nucl Med Radiol Radiat Ther. 2017;2:007. https://doi.org/10.24966/NMRR-7419/100007; Vallabhajosula S, Killeen RP, Osborne JR. Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl Med. 2010;40(4):220–41. https://doi.org/10.1053/j.semnuclmed.2010.02.004; Opportunities and approaches for supplying molybdenum-99 and associated medical isotopes to global markets. Proceedings of a symposium. National Academies of Sciences, Engineering, and Medicine. Washington (DC): The National Academies Press; 2018. https://doi.org/10.17226/24909; Selivanova SV, Lavallée É, Senta H, Caouette L, Sader JA, van Lier EJ, et al. Radioisotopic purity of sodium pertechnetate 99mTc produced with a medium-energy cyclotron: implications for internal radiation dose, image quality, and release specifications. J Nucl Med. 2015;56(10):1600–8. https://doi.org/10.2967/jnumed.115.156398; Selivanova SV, Lavallée É, Senta H, Caouette L, McEwan AJB, Guérin B, et al. Clinical trial with sodium 99mTc-pertechnetate produced by a medium-energy cyclotron: biodistribution and safety assessment in patients with abnormal thyroid function. J Nucl Med. 2017;58(5):791–98. https://doi.org/10.2967/jnumed.116.178509; Tymiński Z, Saganowski P, Kołakowska E, Listkowska A, Ziemek T, Cacko D, et al. Impurities in Tc-99m radiopharmaceutical solution obtained from Mo-100 in cyclotron. Appl Radiat Isot. 2018;134:85–8. https://doi.org/10.1016/j.apradiso.2017.10.021; Andersson JD, Thomas B, Selivanova SV, Berthelette E, Wilson JS, McEwan AJB, et al. Robust high-yield ~1 TBq production of cyclotron based sodium [99mTc]pertechnetate. Nucl Med Biol. 2018;60:63–70. https://doi.org/10.1016/j.nucmedbio.2018.02.003; Meléndez-Alafort L, Ferro-Flores G, De Nardo L, Bello M, Paiusco M, Negri A, et al. Internal radiation dose assessment of radiopharmaceuticals prepared with cyclotron-produced 99mTc. Med Phys. 2019;46(3):1437–46. https://doi.org/10.1002/mp.13393; Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, et al. Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front Med (Lausanne). 2019;6:132. https://doi.org/10.3389/fmed.2019.00132; Цивадзе АЮ, Филянин АТ, Романовский ВН, Зыков МП, Кодина ГЕ, Малышева АО и др. Экстракционный центробежный генератор 188Re и радиофармпрепараты на его основе для радионуклидной терапии. Радиохимия. 2016;58(5):443–9. https://doi.org/10.1134/S1066362216050118; Зверев АВ, Клементьева ОЕ, Жукова МВ, Красноперова АС. Доклиническая оценка терапевтического потенциала радиофармацевтического лекарственного препарата на основе микросфер альбумина 5–10 мкм с рением-188. РМЖ. 2018;4(1):31–5.; Кодина ГЕ, Малышева АО, Клементьева ОЕ, Таратоненкова НА, Лямцева ЕА, Жукова МВ и др. «Синорен,188Re» – потенциальный радиофармацевтический лекарственный препарат для радиосиновэктомии. Радиация и риск. 2018;27(4):76–86. https://doi.org/10.21870/0131-3878-2018-27-4-76-86; Hammermaier A, Reich E, Biigl W. Chemical, radiochemical, and radionuclide purity of eluates from different commercial fission 99Mo/99mTc generators. Eur J Nucl Med. 1986;12(1):41–6. https://doi.org/10.1007/bf00638794; Brandau W, Hotze L-A, Meyer G-J. Radiochemie. In: Bаll U, Schicha H, Biersack H-J, Knapp WH, Reiners Chr, Schober O, eds. Nuklearmedizin. Stuttgart: Georg Thieme; 1996. P. 79–113.; Ullah H, Ahmad I, Khattak MR, Shah S, Ahmad S, Khan K, et al. Evaluation of radiochemical purities of routinely used radiopharmaceuticals: Three years’ experience of a single institute. Iran J Nucl Med. 2019;27(1):19–25.; Maioli C, Luciniani G, Strinchini A, Tagliabue L, Del Sole A. Quality control on radiochemical purity in Technetium-99m radiopharmaceuticals labelling: three years of experience on 2280 procedures. Acta Biomed. 2017;88(1):49–56.; Mang’era K, Wong D, Douglas D, Franz K, Biru T. Evaluation of alternative rapid thin layer chromatography systems for quality control of technetium-99m radiopharmaceuticals. Appl Radiat Isot. 2014;86:57–62. https://doi.org/10.1016/j.apradiso.2013.12.016; Ponto JA, Swanson DP, Freitas JE. Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT, eds. Essentials of nuclear medicine science. Baltimore: Williams & Wilkins; 1987. P. 270–4.; McCready VR. Radioiodine – the success story of nuclear medicine. Eur J Nucl Med Mol Imaging. 2017;44(2):179–82. https://doi.org/10.1007/s00259-016-3548-5; Mishra A, Singh T. Estimation and verification of 131I yield from fission and irradiation of tellurium. Appl Radiat Isot. 2021;168:109535. https://doi.org/10.1016/j.apradiso.2020.109535; Smart BE. Fluorine substituent effects (on bioactivity). J of Fluorine Chem. 2001;109(1):3–11. https://doi.org/10.1016/S0022-1139(01)00375-X; Chiappiniello A, Iacco M, Rongoni A, Susta F, Sabatini P, Beneventi S, Tarducci R. Assessment of radionuclide impurities in [18F]fluoromethylcholine ([18F]FMCH). Phys Med. 2020;78:150–5. https://doi.org/10.1016/j.ejmp.2020.09.025; Bowden L, Vintro LL, Mitchell PI, O’Donnell RG, Seymour AM, Duffy GJ. Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F: Activities and distribution in the [18F]FDG synthesis process. Appl Radiat Isot. 2009;67(2):248–55. https://doi.org/10.1016/j.apradiso.2008.10.015; Siikanen J, Ohlsson T, Medema J, Van-Essen J, Sandell A. A niobium water target for routine production of [18F]Fluoride with a MC 17 cyclotron. Appl Radiat Isot. 2013;72:133–6. https://doi.org/10.1016/j.apradiso.2012.10.011; Metzger RL, Lasche GP, Eckerman KF, Leggett RW. Long-lived contaminants in cyclotron-produced radiopharmaceuticals: measurement and dosimetry. J Radioanal Nucl Chem. 2018;318(4):7–10. https://doi.org/10.1007/s10967-018-5970-6; Dziel T, Tymiński Z, Sobczyk K, Walęcka-Mazur А, Kozanecki P. Radionuclidic purity tests in 18F radiopharmaceuticals production process. Appl Radiat Isot. 2016;109:242–6. https://doi.org/10.1016/j.apradiso.2015.11.008; Savisto N, Bergman J, Aromaa, J, Forsback S, Eskola O, Viljanen T. et al. Influence of transport line material on the molar activity of cyclotron produced [18F]fluoride. Nucl Med Biol. 2018;64–65:8–15. https://doi.org/10.1016/j.nucmedbio.2018.06.004; Koziorowski J. A simple method for the quality control of [18F]FDG. Appl Radiat Isot. 2010;68(9):1740–2. https://doi.org/10.1016/j.apradiso.2010.03.006; Kuntzsch M, Lamparter D, Brüggener N, Müller M, Kienzle GJ, Reischl G. Development and successful validation of simple and fast TLC spot tests for determination of Kryptofix 2.2.2 and tetrabutylammonium in 18F-labeled radiopharmaceuticals. Pharmaceuticals (Basel). 2014;7(5):621–33. https://doi.org/10.3390/ph7050621; Antuganov D, Antuganova Y, Zykova T, Krasikova R. Use of capillary electrophoresis for the determination of impurities in preparations of fluorine-18 labelled PET radiopharmaceuticals. J Pharm Biomed Anal. 2019;173:68–74. https://doi.org/10.1016/j.jpba.2019.05.016; Rösch F. and Riss P.J. The reneaissance of the 68Ge/68Ga radionuclide generator initiates new development in 68Ga radiofarmaceutical chemistry. Curr Top Med Chem. 2010;10(16):1633–68. https://doi.org/10.2174/156802610793176738; Ambrosini V, Kunikowska J, Baudin E, Bodei L, Bouvier C, Capdevila J, et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur J Cancer. 2021;146:56–73. https://doi.org/10.1016/j.ejca.2021.01.008; Lepareur N. Cold kit labeling: the future of 68Ga radiopharmaceuticals? Front Med (Lausanne). 2022;9:812050. https://doi.org/10.3389/fmed.2022.812050; Velikyan I. 68Ga-based radiopharmaceuticals: Production and application relationship. Molecules. 2015;20(7):12913–43. https://doi.org/10.3390/molecules200712913; Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2014;4(1):47–80. https://doi.org/10.7150/thno.7447; Satpati D. Recent breakthrough in 68Ga-radiopharmaceuticals cold kits for convenient PET radiopharmacy. Bioconjug Chem. 2021;32(3):430–47. https://doi.org/10.1021/ACS.BIOCONJCHEM.1C00010; Kumar K. The current status of the production and supply of gallium-68. Cancer Biother Radiopharm. 2020;35(3):163–6. https://doi.org/10.1089/cbr.2019.3301; Tsionou MI, Knapp CE, Foley CA, Munteanu CR, Cakebread A, Imberti C, et al. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017;7(78):49586–99. https://doi.org/10.1039/C7RA09076E; Spang P, Herrmann C, Roesch F. Bifunctional gallium-68 chelators: past, present, and future. Semin Nucl Med. 2016;46(5):373–94. https://doi.org/10.1053/J.SEMNUCLMED.2016.04.003; Burke BP, Clemente GS, Archibald SJ. Recent advances in chelator design and labelling methodology for 68Ga radiopharmaceuticals. J Label Compd Radiopharm. 2014;57(4):239–43. https://doi.org/10.1002/JLCR.3146; Kubíček V, Havlíčková J, Kotek J, Tircsó G, Hermann P, Tóth E, et al. Gallium(III) complexes of DOTA and DOTA-Monoamide: Kinetic and thermodynamic studies. Inorg Chem. 2010;49(23):10960–9. https://doi.org/10.1021/ic101378s; Wood SA, Samson IM. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev. 2006;28(1):57–102. https://doi.org/10.1016/j.oregeorev.2003.06.002; Bois F, Noirot C, Dietemann S, Mainta IC, Zilli T, Garibotto V, et al. [68Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review. Am J Nucl Med Mol Imaging. 2020;10(6):349–74. PMID: 33329937; Hennrich U, Eder M. [68Ga]Ga-PSMA-11: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals (Basel). 2021;14(8):713. https://doi.org/10.3390/PH14080713; Eder M, Wängler B, Knackmuss S, LeGall F, Little M, Haberkorn U, et al. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies. Eur J Nucl Med Mol Imaging. 2008;35(10):1878–86. https://doi.org/10.1007/S00259-008-0816-Z; Schuhmacher J, Klivényi G, Hull WE, Matys R, Hauser H, Kalthoff H, et al. A bifunctional HBED-derivative for labeling of antibodies with 67Ga, 111In and 59Fe. Comparative biodistribution with 111In-DPTA and 131I-labeled antibodies in mice bearing antibody internalizing and non-internalizing tumors. Int J Radiat Appl Instrumentation Part B Nucl Med Biol. 1992;19(8):809–24. https://doi.org/10.1016/0883-2897(92)90167-W; Schuhmacher J, Klivényi G, Matys R, Stadler M, Regiert T, Hauser H. et al. Multistep tumor targeting in nude mice using bispecific antibodies and a gallium chelate suitable for immunoscintigraphy with positron emission tomography. Cancer Res. 1995;55(1):115–23. PMID: 7805020; Eder M, Neels O, Müller M, Eder M, Neels O, Müller M. et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel). 2014;7(7):779–96. https://doi.org/10.3390/ph7070779; Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48(10):1741–8. https://doi.org/10.2967/JNUMED.107.040378; Mueller D, Klette I, Baum RP, Gottschaldt M, Schultz MK, Breeman WAP. Simplified NaCl based 68Ga concentration and labeling procedure for rapid synthesis of 68Ga radiopharmaceuticals in high radiochemical purity. Bioconjug Chem. 2012;23(8):1712–7. https://doi.org/10.1021/bc300103t; Meisenheimer M, Kürpig S, Essler M, Eppard E. Ethanol effects on 68Ga-radiolabelling efficacy and radiolysis in automated synthesis utilizing NaCl post-processing. EJNMMI Radiopharm Chem. 2019;4(1):1–10. https://doi.org/10.1186/S41181-019-0076-1; Mu L, Hesselmann R, Oezdemir U, Bertschi L, Blanc A, Dragic M, et al. Identification, characterization and suppression of side-products formed during the synthesis of high dose 68Ga-DOTA-TATE. Appl Radiat Isot. 2013;76:63–9. https://doi.org/10.1016/j.apradiso.2012.07.022; Martins AF, Prata MIM, Rodrigues SPJ, Geraldes CF, Riss PJ, et al. Spectroscopic, radiochemical, and theoretical studies of the Ga3+-N-2-hydroxyethyl piperazine-N′-2-ethanesulfonic acid (HEPES buffer) system: Evidence for the formation of Ga3+- HEPES complexes in 68Ga labeling reactions. Contrast Media Mol Imaging. 2013;8(3):265–73. https://doi.org/10.1002/cmmi.1517; Breeman WA, De Jong M, Visser TJ, Erion JL, Krenning EP. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging. 2003;30(6):917–20. https://doi.org/10.1007/s00259-003-1142-0; Jussing E, Milton S, Samén E, Moein MM, Bylund L, Axelsson R, et al. Clinically applicable cyclotron-produced Gallium-68 gives high-yield radiolabeling of DOTA-based tracers. Biomolecules. 2021;11(8):1118. https://doi.org/10.3390/biom11081118; https://www.vedomostincesmp.ru/jour/article/view/478