-
1Academic Journal
Authors: I. M. Ulyukin, V. V. Rassokhin, A. A. Sechin, E. S. Orlova, И. М. Улюкин, В. В. Рассохин, А. А. Сечин, Е. С. Орлова
Source: HIV Infection and Immunosuppressive Disorders; Том 16, № 3 (2024); 25-35 ; ВИЧ-инфекция и иммуносупрессии; Том 16, № 3 (2024); 25-35 ; 2077-9828 ; 10.22328/2077-9828-2024-16-3
Subject Terms: санитарное благополучие населения, COVID-19 infection, epidemic, clinical picture, complications, neuropsychiatric disorders, neuromuscular disorders, medical and psychological support, sanitary well-being of the population, инфекция COVID-19, эпидемия, клиническая картина, осложнения, психо-неврологические нарушения, нервно-мышечные нарушения, медико-психологическое сопровождение
File Description: application/pdf
Relation: https://hiv.bmoc-spb.ru/jour/article/view/933/601; Беляков Н.А., Халезова Н.Б., Боева Е.В., Рассохин В.В., Симакина О.Е., Незнанов Н.Г. Социальные ипсихологические проблемы вакцинации населения от новой коронавирусной инфекции // ВИЧ-инфекция и иммуносупрессии. 2021. Т. 13, № 3. С. 7–23 https://doi.org/10.22328/2077-9828-2021-13-3-7-23.; Беляков Н.А., Багненко С.Ф., Трофимова Т.Н., Рассохин В.В., Незнанов Н.Г., Тотолян А.А., Лобзин Ю.В., Симбирцев А.С., Дидур М.Д., Лиознов Д.А., Рыбакова М.Г., Колбин А.С., Харит С.М., Климко Н.Н., Пантелеев А.М., Стома И.О., Ястребова Е.Б. Последствия пандемии COVID-19. СПб.: Балтийский медицинский образовательный центр, 2022, 463 с. ISBN 978-5-6045822-5-1. РИНЦ EDN: DBIFYU.; Gorzalski A.J., Tian H., Laverdure C. et al. High-Throughput Transcription-mediated amplification on the Hologic Panther is a highly sensitive method of detection for SARS-CoV-2 // J. Clin. Virol. 2020. Nо. 129. P. 104501. doi:10.1016/j.jcv.2020.104501.; Finsterer J. Neurological side effects of SARS-CoV-2 vaccinations // Acta Neurol. Scand. 2022. Vol. 145, Nо. 1. P. 5−9. doi:10.1111/ane.13550.; Cines D.B., Bussel J.B. SARS-CoV-2 vaccine–induced immune thrombotic thrombocytopenia // N. Engl. J. Med. 2021. Vol. 384, Nо. 23. P.2254–2256. doi:10.1056/NEJMe2106315.; Diaz G.A., Parsons G.T., Gering S.K. et al. Myocarditis and pericarditis after vaccination for COVID-19 // JAMA. 2021. Vol. 326, Nо. 12. P.1210–1212. doi:10.1001/jama.2021.13443.; Ammirati E., Conti N., Palazzini M. et al. Fulminant Myocarditis Temporally Associated with COVID-19 Vaccination // Curr. Cardiol. Rep. 2024. Vol. 6, Nо. 3, P. 97–112. doi:10.1007/s11886-024-02021-w.; European Medicines Agency. COVID-19 vaccines: authorised. URL: www.ema.europa.eu/en/human-regulatory/overview/publichealththreats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/covid-19-vaccines-authorised#authorised-covid-19-vaccines-section.; Baden L.R., El Sahly H.M., Essink B. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine // N. Engl. J. Med. 2021. Vol. 384, Nо.5. P. 403–416. doi:10.1056/NEJMoa2035389.; Voysey M., Clemens S.A.C., Madhi S.A et al, Oxford COVID Vaccine Trial Group. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK // Lancet. 2021. Vol. 397, Nо. 10269. P. 99–111. doi:10.1016/S0140-6736(20)32661-1.; Sadoff J., Gray G., Vandebosch A. et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19 // N. Engl. J. Med. 2021. Vol. 384, Nо. 23. P. 2187–2201. doi:10.1056/NEJMoa2101544.; Li X., Ostropolets A., Makadia R. et al. Characterising the background incidence rates of adverse events of special interest for COVID-19 vaccines in eight countries: multinational network cohort study // BMJ. 2021. Nо. 373. n1435. doi:10.1136/bmj.n1435.; Center for Biologics Evaluation and Research Office of Biostatistics and Epidemiology. CBER Surveillance Program Background Rates of Adverse Events of Special Interest for COVID-19 Vaccine Safety Monitoring Protocol. 2020. URL: www.bestinitiative.org/wpcontent/uploads/2021/02/C19-Vaccine-Safety-AESI-Background-Rate-Protocol-FINAL-2020.pdf; Knoll M.D., Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy // Lancet. 2021. Vol. 397, Nо. 10269. P. 72–74. doi:10.1016/S0140-6736(20)32623-4.; Sadoff J., Le Gars M., Shukarev G. et al. Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine // N. Engl. J. Med. 2021. Vol.384. Nо. 19. P. 1824–1835. doi:10.1056/NEJMoa2034201.; Marquez Loza A.M., Holroyd K.B., Johnson S.A. et al. Guillain-Barre Syndrome in the Placebo and Active Arms of a COVID-19 Vaccine Clinical Trial: Temporal Associations Do Not Imply Causality // Neurology. 2021. Vol. 96, Nо. 22. P. 1052–1054. doi:10.1212/WNL.0000000000011881.; Patone M., Handunnetthi L., Saatci D. et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection // Nat. Med. 2021, Vol. 27, N. 12. P. 2144–53. doi:10.1038/s41591-021-01556-7.; Langmuir A.D., Bregman D.J., Kurland L.T. et al. An epidemiologic and clinical evaluation of Guillain-Barré syndrome reported in association with the administration of swine influenza vaccines // Am. J. Epidemiol. 1984. Vol. 119, Nо. 6. P. 841–879. doi:10.1093/oxfordjournals.aje.a113809.; Salmon D.A., Proschan M., Forshee R. et al. Association between Guillain-Barré syndrome and influenza A (H1N1) 2009 monovalent inactivated vaccines in the USA: a meta-analysis // Lancet. 2013. Vol. 381, Nо. 9876. P. 1461–1468. doi:10.1016/S0140-6736(12)62189-8.; Arya D.P., Said M.A., Izurieta H.S. et al. Surveillance for Guillain-Barré syndrome after 2015–2016 and 2016–2017 influenza vaccination of Medicare beneficiaries // Vaccine. 2019. Vol. 37, Nо. 43. P. 6543–6549. doi:10.1016/j.vaccine.2019.08.045.; Matarneh A.S., Al-Battah A.H., Farooqui K, et al. COVID-19 vaccine causing Guillain-Barre syndrome, a rare potential side effect // Clin. Case Rep. 2021. Vol. 9, Nо. 9. e04756. doi:10.1002/ccr3.4756.; Razok A., Shams A., Almeer A., Zahid M. Post-COVID-19 vaccine Guillain-Barrй syndrome; first reported case from Qatar // Ann. Med. Surg. (Lond) 2021. Nо. 67. P. 102540. doi:10.1016/j.amsu.2021.102540.; Waheed S., Bayas A., Hindi F. et al. Neurological Complications of COVID-19: Guillain-Barre Syndrome Following Pfizer COVID-19 Vaccine // Cureus. 2021. Vol. 13, Nо. 2. e13426. doi:10.7759/cureus.13426.; Hughes D.L., Brunn J.A., Jacobs J. et al. Guillain-Barre syndrome after COVID-19 mRNA vaccination in a liver transplantation recipient with favorable treatment response // Liver Transpl. 2022. Vol. 28, Nо. 1. P. 134–137. doi:10.1002/lt.26279.; Wang Y., Wang Y., Huo L. et al. SARS-CoV-2-associated acute disseminated encephalomyelitis: a systematic review of the literature // J. Neurol. 2022. Vol. 269, Nо. 3. P. 1071–1092. doi:10.1007/s00415-021-10771-8.; Yazdanpanah F., Iranpour P., Haseli S. et al. Acute disseminated encephalomyelitis (ADEM) after SARS- CoV-2 vaccination: a case report // Radio Case Rep. 2022. Vol. 17, Nо. 5. P. 1789–1793. doi:10.1016/j.radcr.2022.03.013.; Lindner G., Ryser B. The syndrome of inappropriate antidiuresis after vaccination against COVID-19: case report // BMC Infect. Dis. 2021. Vol.21, Nо. 1. P. 1000. doi:10.1186/s12879-021-06690-8.; Mira F.S., Costa Carvalho J., de Almeida P.A. et al. A case of acute interstitial nephritis after two doses of the BNT162b2 SARS-CoV-2 vaccine // Int. J. Nephrol. Renovascular. Dis. 2021. Nо. 14. P. 421–426. doi:10.2147/IJNRD.S345898.; Gankam K.F., Decaux G. Hyponatremia and the brain // Kidney Int. Rep. 2018. Vol. 3, No. 1. P. 24–35. doi:10.1016/j.ekir.2017.08.015.; Mehta P.R., Apap M.S., Benger M. et al. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination — a report of two UK cases // Brain Behav. Immun. 2021. Nо. 95. P. 514–517. doi:10.1016/j.bbi.2021.04.006.; Malik B., Kalantary A., Rikabi K., Kunadi A. Pulmonary embolism, transient ischaemic attack and thrombocytopenia after the Johnson & Johnson COVID-19 vaccine // BMJ Case Rep. 2021. Vol. 14, N. 7. e243975. doi:10.1136/bcr-2021-243975.; Wan E.Y.F., Chui C.S.L., Lai F.T.T. et al. Bell’s palsy following vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines: a case series and nested case-control study // Lancet Infect. Dis. 2021. Vol. 22, Nо. 1. P. 64–72. doi:10.1016/S1473-3099(21)00451-5.; Peitersen E. Bell’s palsy: the spontaneous course of 2,500 peripheral facial nerve palsies of different etiologies // Acta Otolaryngol. Suppl. 2002. Nо. 549. P. 4–30.; Yiran E.L., Shuyi W., Russel J.R., Jun R. Clinical cardiovascular emergencies and the cellular basis of COVID-19 vaccination: from dream to reality // Int. J. Infect. Dis. 2022. Nо. 124. P. 1–10. doi:10.1016/j.ijid.2022.08.026.; Rosenblatt A.E., Stein S.L. Cutaneous reactions to vaccinations // Clin. Dermatol. 2015. Vol. 33, Nо. 3. P. 327–332. doi:10.1016/j.clindermatol.2014.12.009.; Flordeluna Z., Mesina F.Z. Severe relapsed autoimmune hemolytic anemia after booster with mRNA-1273 COVID-19 vaccine // Hematol. Trans. Cell Therapy. 2022. May 30. doi:10.1016/j.htct.2022.05.001. Online ahead of print.; Cohen S.R., Prussick L., Kahn J.S. et al. Leukocytoclastic vasculitis flare following the COVID-19 vaccine // Int. J. 2021. Vol. 60, Nо. 8. P. 1032–1033. doi:10.1111/ijd.15623.; Russo R., Cozzani E., Micalizzi C., Parodi A. Chilblain-like Lesions after COVID-19 Vaccination: A Case Series // Acta Derma. Venereologica. 2022. Nо. 102. adv00711. doi:10.2340/actadv.v102.2076.; Fiorillo G., Pancetti S., Cortese A. et al. Leukocytoclastic vasculitis (cutaneous small-vessel vasculitis) after COVID-19 vaccination // J. Autoimmun. 2022. Nо. 127. P. 102783. doi:10.1016/j.jaut.2021.102783.; Chaurasia B., Chavda V., Lu B. et al. Cognitive deficits and memory impairments after COVID-19 (Covishield) vaccination // Brain Behav. Immun. Health. 2022. Nо. 22. P. 100463. doi:10.1016/j.bbih.2022.100463.; Pilishvili T., Gierke R., Fleming D.K.E. et al. Effectiveness of mRNA COVID-19 vaccine among U.S. Health care personnel // N. Engl. J. Med. 2021. Vol. 385, Nо. 25. e90. doi:10.1056/NEJMoa2106599.; Dutta S., Kaur R., Charan J. et al. Analysis of neurological adverse events reported in VigiBase from COVID-19 vaccines // Cureus. 2022. Vol. 14, Nо. 1. e21376. doi:10.7759/cureus.21376.; 43.Polack F.P., Thomas S.J., Kitchin N. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine // N. Engl. J. Med. 2020. Vol. 383, Nо. 25. P. 2603–2615.; Elias C., Cardoso P., Goncalves D. et al. Rhabdomyolysis following administration of comirnaty // Eur. J. Case Rep. Intern. Med. 2021. Vol. 8, Nо. 8. P. 002796. doi:10.12890/2021_002796.; Hakroush S., Tampe B. Case report: ANCA-associated vasculitis presenting with rhabdomyolysis and pauci-immune crescentic glomerulonephritis after pfizer-BioNTech COVID-19 mRNA vaccination // Front. Immunol. 2021. Nо. 12. P. 762006. doi:10.3389/fimmu.2021.762006.; Ozonoff A, Nanishi E, Levy O. Bell’s palsy and SARS-CoV-2 vaccines // Lancet Infect. Dis. 2021. Vol. 21, Nо. 4. P. 450–452. doi:10.1016/S1473-3099(21)00076-1.; Angeli F., Reboldi G., Trapasso M. et al. COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. Closing the loop on the «Spike» effect // Eur. J. Intern. Med. 2022. Nо. 103. P. 23–28. doi:10.1016/j.ejim.2022.06.015.; Mele F., Tafuri S., Stefanizzi P. et al. Cerebral venous sinus thrombosis after COVID-19 vaccination and congenital deficiency of coagulation factors: is there a correlation // Hum. Vaccines & Immunotherapeutic. 2022. Vol. 18, Nо. 6. P. 2095166. doi:10.1080/21645515.2022.2095166.; Nassar M., Chung H., Dhayaparan Y. et al. COVID-19 vaccine induced rhabdomyolysis: case report with literature review // Diabetes Metabol. Syndr. 2021. Vol. 15, Nо. 4. P. 102170. doi:10.1016/j.dsx.2021.06.007.; Ghiasi N., Valizadeh R., Arabsorkhi M. et al. Efficacy and side effects of Sputnik V, Sinophar and AstraZeneca vaccines to stop COVID-19; a review and discussion // Immunopathologia Persa. 2021. Vol. 7, Nо. 2. P. 31. doi:10.34172/ipp.2021.31.; Day B., Menschik D., Thompson D. et al. Reporting Rates for VAERS Death Reports Following COVID-19 Vaccination, December 14, 2020-November 17, 2021 // Pharmacoepidemiol. Drug Saf. 2023. Vol. 32, Nо. 7. P. 763–772. doi:10.1002/pds.5605.; Xu S., Huang R., Sy L.S. et al. COVID-19 Vaccination and Non-COVID-19 Mortality Risk — Seven Integrated Health Care Organizations, United States, December 14, 2020 — July 31, 2021 // MMWR. 2021. Vol. 70, Nо. 43. P. 1520–1524. doi:10.15585/mmwr.mm7043e2.; Xu S., Huang R., Sy L.S. et al. A safety study evaluating non-COVID-19 mortality risk following COVID-19 vaccination // Vaccine. 2023. Vol.41, Nо. 3. P. 844–854. doi:10.1016/j.vaccine.2022.12.036.; Rosenblum H.G., Gee J., Liu R. et al. Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: an observational study of reports to the Vaccine Adverse Event Reporting System and v-safe // Lancet Infect. Dis. 2022. Vol. 22, Nо. 6. P. 802–812. doi:10.1016/S1473–3099(22)00054–8.; Montalti M., Solda G., Di Valerio Z. et al. ROCCA observational study: Early results on safety of Sputnik V vaccine (Gam-COVID-Vac) in the Republic of San Marino using active surveillance // eClinicalMedicine. 2021. Nо. 38. P. 101027. doi:10.1016/j.eclinm.2021.101027.; Di Valerio Z., La Fauci G., Sold G. et al. ROCCA cohort study: Nationwide results on safety of Gam-COVID-Vac vaccine (Sputnik V) in the Republic of San Marino using active surveillance // eClinicalMedicine. 2022. Nо. 49. P. 101468. doi:10.1016/j.eclinm.2022.101468.; Hampshire A., Azor A., Atchison C. et al. Cognition and Memory after COVID-19 in a Large Community Sample // N. Engl. J. Med. 2024. Vol.390, Nо. 9. P. 806–818. doi:10.1056/NEJMoa2311330.; Vivaldi G., Pfeffer P.E., Talaei M. et al. Long-term symptom profiles after COVID-19 vs other acute respiratory infections: an analysis of data from the COVIDENCE UK study // eClinicalMedicine. 2023. Nо. 65. P. 102251. doi:10.1016/j.eclinm.2023.102251.; Pagotto V., Ferloni A., Mercedes Soriano M. et al. Active monitoring of early safety of Sputnik V vaccine in Buenos Aires, Argentina // Medicina (B. Aires). 2021. Vol. 81, Nо. 3. Р. 408–414.; European Union risk management plan (EU RMP) for Vaxzevria (ChAdOx1-S [recombinant]). Administrative information. 15.09.2023. 111 p. // URL: https://www.ema.europa.eu/en/documents/rmp-summary/vaxzevria-previously-covid-19-vaccine-astrazeneca-epar-risk-managementplan_en.pdf.; ФМБА заявило о сохранении «МИР 19» эффективности против субвариантов коронавируса FLiRT // ТАСС. 24.05.2024. https://tass.ru/obschestvo/20889607.; Katella K. 3 Things to Know About FLiRT, the New Coronavirus Strains // Yale Medicine. May 21, 2024. URL: https://www.yalemedicine.org/news/3-things-to-know-about-flirt-new-coronavirus-strains.; Роспотребнадзор ведет мониторинг эпидемиологической ситуации поCOVID-19 // Федеральная служба понадзору всфере защиты прав потребителей иблагополучия человека. 22.05.2024. https://rospotrebnadzor.ru/about/info/news/news_details.php?ELEMENT_ID=27703; Сергеева Д. Как российский стартап разработал новую вакцину от коронавируса // РБК. Тренды. 27.12.2021. URL: https://trends.rbc.ru/trends/innovation/61c8f7c49a794755f762a23a.; Проскурнина Е.В., Иванов Д.В., Редько А.А. Осложнения после вакцинации препаратами против SARS-СoV-2: обзор зарубежной литературы // Вестник Санкт-Петербургского университета. Медицина. 2023. Т. 18, вып. 2. С. 112–140. https://doi.org/10.21638/spbu11.2023.202.