Εμφανίζονται 1 - 4 Αποτελέσματα από 4 για την αναζήτηση '"психопатологические состояния"', χρόνος αναζήτησης: 0,51δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The authors are grateful to the Multi-Access Center “Bioinformatics” for access to computing resources under Project FWNR2022-0020 and the Multi-Access Center “Conventional Animal Facility” for access to animals under Projects FWNR-2022-0019 and FWNR-2022-0015.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 7 (2023); 794-806 ; Вавиловский журнал генетики и селекции; Том 27, № 7 (2023); 794-806 ; 2500-3259 ; 10.18699/VJGB-23-83

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3979/1766; Aikawa H., Nonaka I., Woo M., Tsugane T., Esaki K. Shaking rat Kawasaki (SRK): a new neurological mutant rat in the Wistar strain. Acta Neuropathol. 1988;76:366-372. DOI 10.1007/BF00686973; Albert F.W., Somel M., Carneiro M., Aximu-Petri A., Halbwax M., Thalmann O., Blanco-Aguiar J.A., Plyusnina I.Z., Trut L., Villafuerte R., Ferrand N., Kaiser S., Jensen P., Paabo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet. 2012;8(9):e1002962. DOI 10.1371/journal.pgen.1002962; Ashraf U.M., Mell B., Jose P.A., Kumarasamy S. Deep transcriptomic profiling of Dahl salt-sensitive rat kidneys with mutant form of Resp18. Biochem. Biophys. Res. Commun. 2021;572:35-40. DOI 10.1016/j.bbrc.2021.07.071; Barykina N.N., Chepkasov I.L., Alekhina T.A., Kolpakov V.G. Selection of Wistar rats for predisposition to catalepsy. Genetika. 1983; 19(12):2014­2021; Bay V., Happ D.F., Ardalan M., Quist A., Oggiano F., Chumak T., Hansen K., Ding M., Mallard C., Tasker R.A., Wegener G. Flinders sensitive line rats are resistant to infarction following transient occlusion of the middle cerebral artery. Brain Res. 2020;1737:146797. DOI 10.1016/j.brainres.2020.146797; Belyaev D.K., Borodin P.M. The influence of stress on variation and its role in evolution. Biologisches Zentralblatt. 1982;101(6):705-714; Bi J., Huang Y., Liu Y. Effect of NOP2 knockdown on colon cancer cell proliferation, migration, and invasion. Transl. Cancer Res. 2019; 8(6):2274-2283. DOI 10.21037/tcr.2019.09.46; Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55(4):611-622. DOI 10.1373/clinchem.2008.112797; Carter C.S., Richardson A., Huffman D.M., Austad S. Bring back the rat! J. Gerontol. A Biol. Sci. Med. Sci. 2020;75(3):405-415. DOI 10.1093/gerona/glz298; Chadaeva I.V., Ponomarenko M.P., Rasskazov D.A., Sharypova E.B., Kashina E.V., Matveeva M.Y., Arshinova T.V., Ponomarenko P.M., Arkova O.V., Bondar N.P., Savinkova L.K., Kolchanov N.A. Candidate SNP markers of aggressiveness­related complications and co­ morbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2016;17(Suppl.14):995. DOI 10.1186/s12864-016-3353­3; Chadaeva I., Ponomarenko P., Rasskazov D., Sharypova E., Kashina E., Kleshchev M., Ponomarenko M., Naumenko V., Savinkova L., Kolchanov N., Osadchuk L., Osadchuk A. Natural selection equally supports the human tendencies in subordination and domination: a genome­wide study with in silico confirmation and in vivo validation in mice. Front. Genet. 2019;10:73. DOI 10.3389/fgene.2019.00073; Chadaeva I., Ponomarenko P., Kozhemyakina R., Suslov V., Bogomolov A., Klimova N., Shikhevich S., Savinkova L., Oshchepkov D., Kolchanov N., Markel A., Ponomarenko M. Domestication explains two-thirds of differential-gene-expression variance between domestic and wild animals; the remaining one-third reflects intraspecific and interspecific variation. Animals. 2021;11(9):2667. DOI 10.3390/ani11092667; Choi J., Lee S., Won J., Jin Y., Hong Y., Hur T.Y., Kim J.H., Lee S.R., Hong Y. Pathophysiological and neurobehavioral characteristics of a propionic acid­mediated autism­like rat model. PLoS One. 2018; 13(2):e0192925. DOI 10.1371/journal.pone.0192925; Cucielo M.S., Cesario R.C., Silveira H.S., Gaiotte L.B., Dos Santos S.A.A., de Campos Zuccari D.A.P., Seiva F.R.F., Reiter R.J., de Almeida Chuffa L.G. Melatonin reverses the warburg-type metabolism and reduces mitochondrial membrane potential of ovarian cancer cells independent of MT1 receptor activation. Molecules. 2022;27(14):4350. DOI 10.3390/molecules27144350; Du H., Xiao G., Xue Z., Li Z., He S., Du X., Zhou Z., Cao L., Wang Y., Yang J., Wang X., Zhu Y. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt­sensitive rats. Biomed. Pharmacother. 2021;141: 111941. DOI 10.1016/j.biopha.2021.111941; Fedoseeva L.A., Dymshits G.M., Markel A.L., Jakobson G.S. Renin system of the kidney in ISIAH rats with inherited stress-induced arterial hypertension. Bull. Exp. Biol. Med. 2009;147(2):177-180. DOI; 1007/s10517-009-0465-7; Fedoseeva L.A., Riazanova M.A., Antonov E.V., Dymshits G.M., Markel A.L. Expression of the renin angiotensin system genes in the kidney and heart of ISIAH hypertensive rats. Biochem. Moscow Suppl. Ser. B. 2011;5(1):37-43. DOI 10.1134/s1990750811010069; Fedoseeva L.A., Klimov L.O., Ershov N.I., Alexandrovich Y.V., Efimov V.M., Markel A.L., Redina O.E. Molecular determinants of the adrenal gland functioning related to stress­sensitive hypertension in ISIAH rats. BMC Genomics. 2016a;17(Suppl.14):989. DOI 10.1186/s12864-016-3354-2; Fedoseeva L.A., Ryazanova M.A., Ershov N.I., Markel A.L., Redina O.E. Comparative transcriptional profiling of renal cortex in rats with inherited stress­induced arterial hypertension and normotensive Wistar Albino Glaxo rats. BMC Genet. 2016b;17(Suppl.1):12. DOI 10.1186/s12863-015-0306-9; Fedoseeva L.A., Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Orlov Y.L., Redina O.E. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics. 2019;20(Suppl.3):297. DOI 10.1186/s12864-019-5540­5; Gaitanis J., Nie D., Hou T., Frye R. Developmental regression followed by epilepsy and aggression: a new syndrome in autism spectrum disorder? J. Pers. Med. 2023;13(7):1049. DOI 10.3390/jpm 13071049; Gayday E.A., Gayday D.S. Genetic diversity of experimental mice and rats: history of origin, methods of production and check. Laboratornye Zhivotnye Dlya Nauchnykh Issledovaniy = Laboratory Ani­ mals for Scientific Research. 2019;4:78-85. DOI 10.29296/2618723X-2019-04-09 (in Russian); Gholami K., Loh S.Y., Salleh N., Lam S.K., Hoe S.Z. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence. PLoS One. 2017;12(6): e0176368. DOI 10.1371/journal.pone.0176368; Gibbs R.A., Weinstock G.M., Metzker M.L., Muzny D.M., Soder­ gren E.J., Scherer S., Scott G., Steffen D., Worley K.C., Burch P.E., … Peterson J., Guyer M., Felsenfeld A., Old S., Mockrin S., Collins F; Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493-521. DOI 10.1038/nature02426; Gonzalez-Arto M., Hamilton T.R., Gallego M., Gaspar-Torrubia E., Aguilar D., Serrano-Blesa E., Abecia J.A., Perez-Pe R., MuinoBlanco T., Cebrian-Perez J.A., Casao A. Evidence of melatonin synthesis in the ram reproductive tract. Andrology. 2016;4(1):163-171. DOI 10.1111/andr.12117; Govindarajulu M., Patel M.Y., Wilder D.M., Long J.B., Arun P. Blast exposure dysregulates nighttime melatonin synthesis and signaling in the pineal gland: a potential mechanism of blast­induced sleep disruptions. Brain Sci. 2022;12(10):1340. DOI 10.3390/brainsci12101340; Greenhouse D.D., Festing M.F.W., Hasan S., Cohen A.L. Inbred strains of rats and mutants. In: Hedrich H.J. (Ed.) Genetic Monitoring of Inbred Strains of Rats. Stuttgart: Gustav Fischer Verlag, 1990; 410­480; Gryksa K., Schmidtner A.K., Masís-Calvo M., Rodríguez-Villagra O.A., Havasi A., Wirobski G., Maloumby R., Jägle H., Bosch O.J., Slattery D.A., Neumann I.D. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: a unique model for comorbid depression and social dysfunctions. Neurosci. Biobehav. Rev. 2023;152:105292. DOI 10.1016/j.neubiorev.2023.105292; Gulevich R., Kozhemyakina R., Shikhevich S., Konoshenko M., Herbeck Y. Aggressive behavior and stress response after oxytocin administration in male Norway rats selected for different attitudes to humans. Physiol. Behav. 2019;199:210-218. DOI 10.1016/j.physbeh.2018.11.030; Herbeck Yu.E., Os’kina I.N., Gulevich R.G., Plyusnina I.Z. Effects of maternal methyl­supplemented diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior. Cytol. Genet. (Moscow.). 2010;44(2):108-113. DOI 10.3103/S0095452710020064; Ideno J., Mizukami H., Honda K., Okada T., Hanazono Y., Kume A., Saito T., Ishibashi S., Ozawa K. Persistent phenotypic correction of central diabetes insipidus using adeno-associated virus vector expressing arginine­vasopressin in Brattleboro rats. Mol. Ther. 2003; 8(6):895-902. DOI 10.1016/j.ymthe.2003.08.019; Ilchibaeva T.V., Kondaurova E.M., Tsybko A.S., Kozhemyakina R.V., Popova N.K., Naumenko V.S. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression. Behav. Brain Res. 2015;290:45-50. DOI 10.1016/j.bbr.2015.04.041; Ilchibaeva T.V., Tsybko A.S., Kozhemyakina R.V., Naumenko V.S. Expression of apoptosis genes in the brain of rats with genetically defined fear-induced aggression. Mol. Biol. (Moscow). 2016;50(5): 814-820. DOI 10.7868/S0026898416030071; Kang S., Gair S.L., Paton M.J., Harvey E.A. Racial and ethnic differences in the relation between parenting and preschoolers’ externalizing behaviors. Early Educ. Dev. 2023;34(4):823-841. DOI 10.1080/10409289.2022.2074202; Klimov L.O., Fedoseeva L.A., Ryazanova M.A., Dymshits G.M., Markel A.L. Expression of renin-angiotensin system genes in brain structures of ISIAH rats with stress-induced arterial hypertension. Bull. Exp. Biol. Med. 2013;154(3):357-660. DOI 10.1007/s10517-013-1950-6; Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. Genome­wide transcriptome analysis of hypothalamus in rats with inherited stress­induced arterial hypertension. BMC Genet. 2016; 17(Suppl.1):13. DOI 10.1186/s12863-015-0307-8; Klimov L.O., Ryazanova M.A., Fedoseeva L.A., Markel A.L. Effects of brain renin-angiotensin system inhibition in ISIAH rats with inherited stress­induced arterial hypertension. Vavilovskii Zhur nal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017; 21(6):735-741. DOI 10.18699/VJ17.29-o (in Russian); Klimova N.V., Chadaeva I.V., Shichevich S.G., Kozhemyakina R.V. Differential expression of 10 genes in the hypothalamus of two generations of rats selected for a reaction to humans. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(2):208-215. DOI 10.18699/VJ21.50-o; Kolosova N.G., Stefanova N.A., Korbolina E.E., Fursova A.Z., Kozhevnikova O.S. Senescence-accelerated OXYS rats: a genetic mo del of premature aging and age­related diseases. Adv. Gerontol. 2014;4:294-298. DOI 10.1134/S2079057014040146; Kolpakov V.G., Kulikov A.V., Alekhina T.A., Chuguy V.F., Petrenko O.I., Barykina N.N. Catatonia or depression: the GC rat strain as an animal model of psychopathology. Russ. J. Genet. 2004;40(6): 672-678. DOI 10.1023/B:RUGE.0000033315.79449.d4; Kondaurova E.M., Ilchibaeva T.V., Tsybko A.S., Kozhemyakina R.V., Popova N.K., Naumenko V.S. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear­induced aggression or its absence. Behav. Brain Res. 2016;310:20-25. DOI 10.1016/j.bbr.2016.04.050; Kozhevnikova O.S., Korbolina E.E., Ershov N.I., Kolosova N.G. Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle. 2013;12(11):1745-1761. DOI 10.4161/cc.24825; Lau Y.F., Zhang J. Expression analysis of thirty one Y chromosome genes in human prostate cancer. Mol. Carcinog. 2000;27(4):308­321. DOI 10.1002/(sici)1098-2744(200004)27:43.0.co;2-r; Li G., Lv D., Yao Y., Wu H., Wang J., Deng S., Song Y., Guan S., Wang L., Ma W., Yang H., Yan L., Zhang J., Ji P., Zhang L., Lian Z., Liu G. Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota. FASEB J. 2021;35(9):e21783. DOI 10.1096/fj.202100651r; Li W., Wang X., Fan W., Zhao P., Chan Y.C., Chen S., Zhang S., Guo X., Zhang Y., Li Y., Cai J., Qin D., Li X., Yang J., Peng T., Zychlinski D., Hoffmann D., Zhang R., Deng K., Ng K.M., Menten B., Zhong M., Wu J., Li Z., Chen Y., Schambach A., Tse H.F., Pei D., Esteban M.A. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes. Hum. Mol. Genet. 2012;21(1):32-45. DOI 10.1093/hmg/ddr435; Liddelow S.A., Dziegielewska K.M., Ek C.J., Habgood M.D., Bauer H., Bauer H.C., Lindsay H., Wakefield M.J., Strazielle N., Kratzer I., Mollgard K., Ghersi-Egea J.F., Saunders N.R. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One. 2013;8(7):e65629. DOI 10.1371/journal.pone.0065629; Liu W., Huang Z., Xia J., Cui Z., Li L., Qi Z., Liu W. Gene expression profile associated with Asmt knockout-induced depression-like behaviors and exercise effects in mouse hypothalamus. Biosci. Rep. 2022;42(7):bsr20220800. DOI 10.1042/bsr20220800; Liu X., Zhan Y., Xu W., Liu L., Liu X., Da J., Zhang K., Zhang X., Wang J., Liu Z., Jin H., Zhang B., Li Y. Characterization of transcriptional landscape in bone marrow­derived mesenchymal stromal cells treated with aspirin by RNA­seq. PeerJ. 2022;10:e12819. DOI 10.7717/peerj.12819; Liu Y., Xiang J., Liao Y., Peng G., Shen C. Identification of tryptophan metabolic gene­related subtypes, development of prognostic models, and characterization of tumor microenvironment infiltration in gliomas. Front. Mol. Neurosci. 2022;15:1037835. DOI 10.3389/fnmol.2022.1037835; Lu Z. PubMed and Beyond: A Survey of Web Tools for Searching Biomedical Literature. Database (Oxford). 2011;2011:baq036. DOI 10.1093/database/baq036; Lv J.W., Zheng Z.Q., Wang Z.X., Zhou G.Q., Chen L., Mao Y.P., Lin A.H., Reiter R.J., Ma J., Chen Y.P., Sun Y. Pan-cancer genomic analyses reveal prognostic and immunogenic features of the tumor melatonergic microenvironment across 14 solid cancer types. J. Pi­ neal Res. 2019;66(3):e12557. DOI 10.1111/jpi.12557; Markel A.L. Development of a new strain of rats with inherited stressinduced arterial hypertension. In: Sassard J. (Ed.) Genetic Hypertension. London: John Libbey Eurotext Ltd., 1992;218:405-407; Markel A.L., Maslova L.N., Shishkina G.T., Mahanova N.A., Jacobson G.S. Developmental influences on blood pressure regulation in ISIAH rats. In: McCarty R., Blizard D.A., Chevalier R.L. (Eds.) Development of the Hypertensive Phenotype: Basic and Clinical Studies. In the series Handbook of Hypertension. Amsterdam: Elsevier, 1999;493-526; Martín-Carro B., Donate-Correa J., Fernández-Villabrille S., MartínVírgala J., Panizo S., Carrillo-López N., Martínez-Arias L., Navarro-González J.F., Naves-Díaz M., Fernández-Martín J.L., Alonso-Montes C., Cannata-Andía J.B. Experimental models to study diabetes mellitus and its complications: limitations and new opportunities. Int. J. Mol. Sci. 2023;24(12):10309. DOI 10.3390/ijms 241210309; Melke J., Goubran Botros H., Chaste P., Betancur C., Nygren G., Anckar säter H., Rastam M., Ståhlberg O., Gillberg I.C., Delorme R., Chabane N., Mouren­Simeoni M.C., Fauchereau F., Durand C.M., Chevalier F., Drouot X., Collet C., Launay J.M., Leboyer M., Gillberg C., Bourgeron T. Abnormal melatonin synthesis in autism spectrum disorders. Mol. Psychiatry. 2008;13(1):90-98. DOI 10.1038/sj.mp.4002016; Modlinska K., Pisula W. The Norway rat, from an obnoxious pest to a laboratory pet. eLife. 2020;9:e50651. DOI 10.7554/eLife.50651; Moskaliuk V.S., Kozhemyakina R.V., Bazovkina D.V., Terenina E., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Kulikov A.V., Naumenko V.S., Kulikova E. On an association between fear-induced aggression and striatal­enriched protein tyrosine phosphatase (STEP) in the brain of Norway rats. Biomed. Pharmacother. 2022; 147:112667. DOI 10.1016/j.biopha.2022.112667; Moskaliuk V.S., Kozhemyakina R.V., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Kulikov A.V., Naumenko V.S., Kulikova E.A. On associations between fear-induced aggression, Bdnf transcripts, and serotonin receptors in the brains of Norway rats: an influence of antiaggressive drug TC­2153. Int. J. Mol. Sci. 2023;24(2):983. DOI 10.3390/ijms24020983; Naumenko V.S., Kozhemjakina R.V., Plyusnina I.Z., Popova N.K. Expression of serotonin transporter gene and startle response in rats with genetically determined fear­induced aggression. Bull. Exp. Biol. Med. 2009;147(1):81-83. DOI 10.1007/s10517-009-0441-2; Oshchepkov D., Ponomarenko M., Klimova N., Chadaeva I., Bragin A., Sharypova E., Shikhevich S., Kozhemyakina R. A rat model of human behavior provides evidence of natural selection against underexpression of aggressiveness-related genes in humans. Front. Genet. 2019;10:1267. DOI 10.3389/fgene.2019.01267; Oshchepkov D., Chadaeva I., Kozhemyakina R., Zolotareva K., Khandaev B., Sharypova E., Ponomarenko P., Bogomolov A., Klimova N.V., Shikhevich S., Redina O., Kolosova N.G., Nazarenko M., Kolchanov N.A., Markel A., Ponomarenko M. Stress reactivity, susceptibility to hypertension, and differential expression of genes in hypertensive compared to normotensive patients. Int. J. Mol. Sci. 2022a;23(5):2835. DOI 10.3390/ijms23052835; Oshchepkov D., Chadaeva I., Kozhemyakina R., Shikhevich S., Sharypova E., Savinkova L., Klimova N.V., Tsukanov A., Levitsky V.G., Markel A.L. Transcription factors as important regulators of changes in behavior through domestication of gray rats: quantitative data from RNA sequencing. Int. J. Mol. Sci. 2022b;23(20):12269. DOI 10.3390/ijms232012269; Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. London: Acad. Press, Elsevier Inc., 2013. Penning L.C., Vrieling H.E., Brinkhof B., Riemers F.M., Rothuizen J., Rutteman G.R., Hazewinkel H.A. A validation of 10 feline reference genes for gene expression measurements in snap-frozen tissues. Vet. Immunol. Immunopathol. 2007;120(3-4):212-222. DOI 10.1016/j.vetimm.2007.08.006; Perepechaeva M.L., Grishanova A.Y., Rudnitskaya E.A., Kolosova N.G. The mitochondria-targeted antioxidant SkQ1 downregulates aryl hydrocarbon receptor-dependent genes in the retina of OXYS rats with AMD­like retinopathy. J. Ophthalmol. 2014;2014:530943. DOI 10.1155/2014/530943; Popova N.K., Naumenko V.S., Plyusnina I.Z. Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci. Behav. Physiol. 2007;37(6):631-635. DOI; Plekanchuk V.S., Ryazanova M.A. Expression of glutamate receptor genes in the hippocampus and frontal cortex in GC rat strain with genetic catatonia. J. Evol. Biochem. Phys. 2021;57(1):156-163. DOI 10.1134/S0022093021010154; Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol. Behav. 1997;61(3):381-385. DOI 10.1016/S0031-9384(96)00445-310.1007/s11055-007-0062-z; Popova N.K., Naumenko V.S., Kozhemyakina R.V., Plyusnina I.Z. Functional characteristics of serotonin 5-HT2A and 5-HT2C receptors in the brain and the expression of the 5-HT2A and 5-HT2C receptor genes in aggressive and non­aggressive rats. Neurosci. Behav. Physiol. 2010;40(4):357-361. DOI 10.1007/s11055-010-9264-x; Ryazanova M.A., Fedoseeva L.A., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hyperten sion. BMC Genet. 2016;17(Suppl.3):151. DOI 10.1186/s12863-016-0462-6; Ryazanova M.A., Prokudina O.I., Plekanchuk V.S., Alekhina T.A. Expression of catecholaminergic genes in the midbrain and prepulse inhibition in rats with a genetic catatonia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(7): 798-803. DOI 10.18699/VJ17.296 (in Russian); Ryazanova M.A., Plekanchuk V.S., Prokudina O.I., Makovka Y.V., Alekhina T.A., Redina O.E., Markel A.L. Animal models of hypertension (ISIAH rats), catatonia (GC rats), and audiogenic epilepsy (PM rats) developed by breeding. Biomedicines. 2023;11(7):1814. DOI 10.3390/biomedicines11071814; Sengupta P. The laboratory rat: relating its age with human’s. Int. J. Prev. Med. 2013;4(6):624-630; Schmidt I. Metabolic diseases: the environment determines the odds, even for genes. News Physiol. Sci. 2002;17:115-121. DOI 10.1152/nips.01380.2001; Shikhevich S., Chadaeva I., Khandaev B., Kozhemyakina R., Zolotareva K., Kazachek A., Oshchepkov D., Bogomolov A., Klimova N.V., Ivanisenko V.A., Demenkov P., Mustafin Z., Markel A., Savinkova L., Kolchanov N.A., Kozlov V., Ponomarenko M. Differentially expressed genes and molecular susceptibility to human agerelated diseases. Int. J. Mol. Sci. 2023;24(4):3996. DOI 10.3390/ijms24043996; Singh G., Bhat B., Jayadev M.S.K., Madhusudhan C., Singh A. mutTCPdb: a comprehensive database for genomic variants of a tropical country neglected disease-tropical calcific pancreatitis. Database (Oxford ). 2018;2018:bay043. DOI 10.1093/database/bay043; Stefanova N.A., Kolosova N.G. The rat brain transcriptome: from infancy to aging and sporadic Alzheimer’s disease­like pathology. Int. J. Mol. Sci. 2023;24(2):1462. DOI 10.3390/ijms24021462; Stefanova N.A., Maksimova K.Y., Rudnitskaya E.A., Muraleva N.A., Kolosova N.G. Association of cerebrovascular dysfunction with the development of Alzheimer’s disease-like pathology in OXYS rats. BMC Genomics. 2018;19(Suppl.3):75. DOI 10.1186/s12864-0184480­9; Stefanova N.A., Ershov N.I., Maksimova K.Y., Muraleva N.A., Tyumentsev M.A., Kolosova N.G. The rat prefrontal-cortex transcriptome: effects of aging and sporadic Alzheimer’s disease-like pathology. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74(1):33-43. DOI 10.1093/gerona/gly198; Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., Kaplan S., Dahary D., Warshawsky D., Guan-Golan Y., Kohn A., Rappaport N., Safran M., Lancet D. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 2016;54:1.30.1-1.30.33. DOI 10.1002/cpbi.5; Stenson P.D., Mort M., Ball E.V., Shaw K., Phillips A., Cooper D.N. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2014;133(1):1­9. DOI 10.1007/s00439-013-1358-4; Sun S., Wang Y., Maslov A.Y., Dong X., Vijg J. SomaMutDB: a database of somatic mutations in normal human tissues. Nucleic Acids Res. 2022;50(D1):D1100-D1108. DOI 10.1093/nar/gkab914; Suzuki H., Han S.D., Lucas L.R. Increased 5-HT1B receptor density in the basolateral amygdala of passive observer rats exposed to aggression. Brain Res. Bull. 2010;83(1-2):38-43. DOI 10.1016/j.brainresbull.2010.06.007; Tain Y.L., Huang L.T., Chan J.Y., Lee C.T. Transcriptome analysis in rat kidneys: importance of genes involved in programmed hypertension. Int. J. Mol. Sci. 2015;16(3):4744-4758. DOI 10.3390/ijms16034744; Talarowska M., Szemraj J., Zajączkowska M., Galecki P. ASMT gene expression correlates with cognitive impairment in patients with recurrent depressive disorder. Med. Sci. Monit. 2014;20:905-912. DOI 10.12659/MSM.890160; Taylor J.R., Morshed S.A., Parveen S., Mercadante M.T., Scahill L., Peterson B.S., King R.A., Leckman J.F., Lombroso P.J. An animal model of Tourette’s syndrome. Am. J. Psychiatry. 2002;159(4):657-660. DOI 10.1176/appi.ajp; Tharmalingam S., Khurana S., Murray A., Lamothe J., Tai T.C. Whole transcriptome analysis of adrenal glands from prenatal glucocorticoid programmed hypertensive rodents. Sci. Rep. 2020;10(1): 18755. DOI 10.1038/s41598-020-75652-y; Trent S., Dean R., Veit B., Cassano T., Bedse G., Ojarikre O.A., Humby T., Davies W. Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder. Psychoneuroendocrinology. 2013; 38(8):1370-1380. DOI 10.1016/j.psyneuen.2012.12.002; Wall V.L., Fischer E.K., Bland S.T. Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol. Behav. 2012;107(3):440-450. DOI 10.1016/j.physbeh.2012.09.002; Watanabe Y., Yoshida M., Yamanishi K., Yamamoto H., Okuzaki D., No jima H., Yasunaga T., Okamura H., Matsunaga H., Yamanishi H. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the kidneys. Int. J. Mol. Med. 2015;36(3):712-724. DOI 10.3892/ijmm.2015. 2281; Wu H.M., Zhao C.C., Xie Q.M., Xu J., Fei G.H. TLR2-melatonin feedback loop regulates the activation of NLRP3 inflammasome in murine allergic airway inflammation. Front. Immunol. 2020;11:172.; Xiao G., Wang T., Zhuang W., Ye C., Luo L., Wang H., Lian G., Xie L. RNA sequencing analysis of monocrotaline-induced PAH reveals dysregulated chemokine and neuroactive ligand receptor pathways. Aging (Albany NY ). 2020;12(6):4953-4969. DOI 10.18632/aging.102922; Xie F., Wang L., Liu Y., Liu Z., Zhang Z., Pei J., Wu Z., Zhai M., Cao Y. ASMT regulates tumor metastasis through the circadian clock system in triple­negative breast cancer. Front. Oncol. 2020;10:537247. DOI 10.3389/fonc.2020.537247; Yang H., Zhang Z., Ding X., Jiang X., Tan L., Lin C., Xu L., Li G., Lu L., Qin Z., Feng X., Li M. RP58 knockdown contributes to hypoxia-ischemia-induced pineal dysfunction and circadian rhythm disruption in neonatal rats. J. Pineal Res. 2023;75(1):e12885. DOI 10.1111/jpi.12885; Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. DOI 10.1186/1471-2105-13-134; Yoshida M., Watanabe Y., Yamanishi K., Yamashita A., Yamamoto H., Okuzaki D., Shimada K., Nojima H., Yasunaga T., Okamura H., Matsunaga H., Yamanishi H. Analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the brain. Int. J. Mol. Med. 2014;33(4):887-896. DOI 10.3892/ijmm.2014.1631; Yuan X., Wu Q., Liu X., Zhang H., Xiu R. Transcriptomic profile analysis of brain microvascular pericytes in spontaneously hypertensive rats by RNA­Seq. Am. J. Transl. Res. 2018;10(8):2372-2386. PMID 30210677; Zhang H.F., Wang J.H., Wang Y.L., Gao C., Gu Y.T., Huang J., Wang J.H., Zhang Z. Salvianolic acid A protects the kidney against oxidative stress by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway in 5/6 nephrectomized rats. Oxid. Med. Cell. Longev. 2019;2019:2853534. DOI 10.1155/2019/2853534; Zhang Z., Silveyra E., Jin N., Ribelayga C.P. A congenic line of the C57BL/6J mouse strain that is proficient in melatonin synthesis. J. Pineal Res. 2018;65(3):e12509. DOI 10.1111/jpi.12509; https://vavilov.elpub.ru/jour/article/view/3979

  2. 2
    Academic Journal

    Συνεισφορές: The study was carried out with the financial support of the Russian Science Foundation (RSF) within the framework of the scientific project No. 20-65-46007 (to I.I.S., D.O.N., A.V.N., R.I.M., V.V.K.)., Исследование выполнено при финансовой поддержке Российского Научного Фонда в рамках научного проекта № 20-65-46007.

    Πηγή: Drug development & registration; Том 12, № 1 (2023); 161-181 ; Разработка и регистрация лекарственных средств; Том 12, № 1 (2023); 161-181 ; 2658-5049 ; 2305-2066

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1447/1104; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1447/1566; You R., Liu Y., Chang R. C. C. A behavioral test battery for the repeated assessment of motor skills, mood, and cognition in mice. Journal of Visualized Experiments. 2019;(145):e58973. DOI:10.3791/58973.; Беспалов А. Ю., Звартау Э. Э., Бирдсли П., Катц. Д. Ж. Фармакология поведения. Хрестоматия.СПб.: СПбГМУ; 2013. 466 с.; Hock F. J. Drug Discovery and Evaluation: Pharmacological assays. Berlin: Springer. 2015; 306 p. DOI:10.1007/978-3-319-05392-9.; Rodgers R. J., Cao B. J., Dalvi A., Holmes A. Animal models of anxiety: an ethological perspective. Brazilian Journal of Medical and Biological Research. 1997;30:289–304. DOI:10.1590/s0100-879x1997000300002.; Sestakova N., Puzserova A., Kluknavsky M., Bernatova I. Determination of motor activity and anxiety related behavior in rodents: methodological aspects and role of nitric oxide. Interdisciplinary Toxicology. 2013;6(3):126–135. DOI:10.2478/intox-2013-0020.; Hall C., Ballachey E. L. A study of the rat’s behavior in a field. A contribution to method in comparative psychology. University of California Publications in Psychology. 1932;6:1–12. DOI:10.1007/978-1-60761-303-9_1.; Broadhurst P. L. Psychogenetics of emotionality in the rat. NYASA. 1969;159(3):806–824. DOI:10.1111/j.1749-6632.1969.tb12980.x.; Henry B. L. Minassian A., Young J. W., Paulus M. P., Geyer M. A., Perry W. Cross–species assessments of motor and exploratory behavior related to bipolar disorder. Neuroscience & Biobehavioral Reviews. 2010;34(8):1296–1306. DOI:10.1016/j.neubiorev.2010.04.002.; Aitken P., Zheng Y., Smith P. F. Ethovision™ analysis of open field behaviour in rats following bilateral vestibular loss. Journal of Vestibular Research. 2017;27(2-3):89–101. DOI:10.3233/ves-170612.; Zamani M., Budde T., Bozorgi H. Intracerebroventricular administration of N-type calcium channel blocker ziconotide displays anticonvulsant, anxiolytic, and sedative effects in rats: A preclinical and pilot study. Epilepsy & Behavior. 2020;111:107251. DOI:10.1016/j.yebeh.2020.107251.; Berton O. Ramos A., Chaouloff F., Mormede P. Behavioral reactivity to social and nonsocial stimulations: a multivariate analysis of six inbred rat strains. Behavioral Genetics. 1997;27:155–166. DOI:10.1023/A:1025641509809.; Krishna S., Dodd C. A., Hekmatyar S. K., Filipov N. M. Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water. Archives of Toxicology. 2014;88(1):47–64. DOI:10.1007/s00204-013-1088-3.; Martin–Arenas F. J., Pintado C.O. Results of the Open Field Test at different light intensities in C57 mice. Proceeding of Measuring Behavior. 2014;322–326. DOI:10.13140/RG.2.2.29920.74247.; Ковалев Г. И., Васильева Е. В., Салимов Р. М. Сравнение поведения мышей в тестах открытого поля, закрытого и приподнятого крестообразного лабиринтов с помощью факторного анализа. Журнал высшей нервной деятельности им И. П. Павлова. 2019;69(1):123–130. DOI:10.1134/S0044467719010064.; Ramos A., Correia E. C., Izídio G. S., Brüske G. R. Genetic selection of two new rat lines displaying different levels of anxiety-related behaviors. Behavior Genetics. 2003;33:657–668. DOI:10.1023/A:1026131130686.; Абдурасулова И. Н., Екимова И. В., Чернышев М. В., Мацулевич А. В., Пастухов Ю. Ф. Нарушение когнитивных функций у крыс Вистар в модели доклинической стадии болезни Паркинсона. Журнал высшей нервной деятельности им И. П Павлова. 2019;69(3):364–381. DOI:10.1134/S0044467719030031.; Пашина И. П., Семина И. И., Сидуллина С. А., Тарасова Р. И., Газизов М. Б., Мустафин Р. И. Синтез и психотропная активность гидразидов арилгидроксифосфорилуксусных кислот и их солей. Химико-фармацевтический журнал. 2013;47(8):19–22. DOI:10.30906/0023-1134-2013-47-8-19-22.; Swiergiel A. H., Dunn A. J. Effects of interleukin–1β and lipopolysaccharide on behavior of mice in the evaluated plus–maze and open field tests. Pharmacology Biochemistry and Behavior. 2007;86:651–659. DOI:10.1016/j.pbb.2007.02.010.; Schiller G. D., Daws L. C., Overstreet D. H., Orbach J. Lack of anxiety in an animal model of depression with cholinergic supersensitivity. Brain Research Bulletin. 1991;26:433–435. DOI:10.1016/0361-9230(91)90019-G.; Никитин Д. О., Никитина А. В., Семина И. И., Байчурина А. З., Садыкова Р. Г., Овчинникова А. Г., Крутов И. А., Габдрахманова Д. Ф., Бурангулова Р. Н., Гаврилова Е. Л. К вопросу о психотропных свойствах новых производных фосфорилацетогидразидов – солей арилфосфиновых кислот. Современные проблемы науки и образования. 2019;3:107–107.; van Erp. A. M., Kruk M. R., Meelis W., Willekens–Bramer D. C. Effect of environmental stressors on time course, variability and form of self–grooming in the rat: handing, social contact, defeat, novelty, restrain and fut moistening. Behavioural Brain Research. 1994;65(1):47–55. DOI:10.1016/0166-4328(94)90072-8.; Weiss I. C., Pryce C. R., Jonger–Relo A. L., Nanz–Bahr N. I., Feldon J. Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behavioural Brain Research. 2004;152(2):279–295. DOI:10.1016/j.bbr.2003.10.015.; Mach M., Grubbs R. D., Price W. A., Nagaoka M., Dubovický M., Lucot J. B. Delayed behavioral and endocrine effects of sarin and stress exposure in mice. Journal of Applied Toxicology. 2008;28(2):132–139. DOI:10.1002/jat.1258.; Talarovičová A., Kršková L., Blažeková J. Testosterone enhancement during pregnancy influences the 2D: 4D ratio and open field motor activity of rat siblings in adulthood. Hormones and Behavior. 2009;55(1):235–239. DOI:10.1016/j.yhbeh.2008.10.010.; Ramos A., Berton O., Mormede P., Chaouloff F. A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behavioral Brain Research. 1997;85(1):57–69. DOI:10.1016/s0166-4328(96)00164-7.; McCormick C. M., Robarts D., Kopeikina K., Kelsey J. E. Long-lasting, sex- and age-specific effects of social stressors on corticosterone responses to restraint and on locomotor responses to psychostimulants in rats. Hormones and Behavior. 2005;48(1):64–74. DOI:10.1016/j.yhbeh.2005.01.008.; Bernatova I., Puzserova A., Dubovicky M. Sex differences in social stress-induced pressor and behavioral responses in normotensive and prehypertensive rats. General Physiology and Biophysics. 2010;29(4):346–354. DOI:10.4149/gpb_2010_04_346.; Rasmussen S., Miller M. M., Filipski S. B., Tolwani R. J. Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. Journal of the American Association for Laboratory Animal Science. 2011;50(4):479–483.; Pritchard L. M., Van Kempen T. A., Zimmerberg B. Behavioral effects of repeated handling differ in rats reared in social isolation and environmental enrichment. Neuroscience Letters. 2013;536:47–51. DOI:10.1016/j.neulet.2012.12.048.; Pitsikas N., Georgiadou G., Delis F., Antoniou K. Effects of Anesthetic Ketamine on Anxiety-Like Behaviour in Rats. Neurochemical Research. 2019;44(4):829–838. DOI:10.1007/s11064-018-02715-y.; Ковалев Г. И., Фирстова Ю. Ю., Салимов Р. М. Влияние пирацетама и ацефена на NMDA и никотиновые рецепторы мозга мышей с различной эффективностью исследовательского поведения в крестообразном лабиринте. Экспериментальная и клиническая фармакология. 2008;71(1):12–17. DOI:10.30906/0869-2092-2008-71-1-12-17.; Воронина Т. А., Островская Р. У., Гарибова Т. Л. Методические рекомендации по доклиническому изучению лекарственных средств с ноотропным типом действия. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Ч. 1. М.: ФГБУ «НЦЭСМП» Минздравсоцразвития России, Гриф и К; 2012. 264–275 с.; Crawley J., Goodwin F. K., Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior. 1980;13(2):167–170. DOI:10.1016/0091-3057(80)90067-2.; Ramos A., Mormede P. Stress and emotionality: a multidimensional and genetic approach. Neuroscience & Biobehavioral Reviews. 1998;22:33–57. DOI:10.1016/S0149-7634(97)00001-8.; Bourin M., Hascoët M. The mouse light/dark box test. European Journal of Pharmacology. 2003;463(1–3):55–65. DOI:10.1016/s0014-2999(03)01274-3.; Crawley J. N. Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacology Biochemistry and Behavior. 1981;15(5):695–699. DOI:10.1016/0091-3057(81)90007-1.; Salim S., Asghar M., Chugh G., Taneja M., Xia Z., Saha K., Oxidative stress: a potential recipe for anxiety, hypertension and insulin resistance. Brain Research. 2010;1359:178–185. DOI:10.1016/j.brainres.2010.08.093.; Aguilar B. L., Malkova L., N’Gouemo P., Forcelli P. A. Genetically epilepsy-prone rats display anxiety-like behaviors and neuropsychiatric comorbidities of epilepsy. Frontiers in Neurology. 2018;9:1–15. DOI:10.3389/fneur.2018.00476.; Costall B., Jones B. J., Kelly M. E., Naylor R. J., Tomkins D. M. Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacology Biochemistry and Behavior. 1989;32(3):777–758. DOI:10.1016/0091-3057(89)90033-6.; Montgomery K. C., The relation between fear induced by novel stimulation and exploratory drive. Journal of Comparative and Physiological Psychology. 1955;48(4):254–260. DOI:10.1037/h0043788.; Gonzales L. E., File S. E. A five minute experience in the evaluated plus-maze alters the state of the benzodiazepine receptor in the dorsal raphe nucleus. The Journal of Neuroscience. 1997;17(4):1505–1511. DOI:10.1523/JNEUROSCI.17-04-01505.1997.; Walf A. A., Frye C. A. The use of the evaluated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols. 2007;2(2):322–328. DOI:10.1038/nprot.2007.44.; Forcelli P. A., Turner J. R., Lee B. G., Olson T. T., Xie T., Xiao Y., Kellar K. J. Anxiolytic-and antidepressant-like effects of the methadone metabolite 2-ethyl-5-methyl-3, 3-diphenyl-1-pyrroline (EMDP). Neuropharmacology. 2016;101:46–56. DOI:10.1016/j.neuropharm.2015.09.012.; Ari C., D’Agostinio D. P., Diamond D. M., Kindy M., Park C., Kovacs Z., Elevated plus maze test combined with video tracking software to investigate the anxiolytic effect of exogenous ketogenic supplements. Journal of Visualized Experiments. 2019;143:1–10. DOI:10.3791/58396.; Schrader A. J., Taylor R. M., Lowery-Gionta E. G., Moore N. L. Repeated elevated plus maze trials as a measure for tracking within-subjects behavioral performance in rats (Rattus norvegicus). PLoS One. 2018;13(11):e0207804. DOI:10.1371/journal.pone.0207804.; Andrade M. M. M., Tomé M. F., Santiago E. S., Lúcia-Santos A., de Andrade T. G. C. S. Longitudinal study of daily variation of rats’ behavior in the elevated plus-maze. Physiology & Behavior. 2003;78(1):125–133. DOI:10.1016/s0031-9384(02)00941-1.; Carobrez A. P., Bertoglio L. J. Ethological and temporal analyses of anxiety-like behavior: the ebaluated plus-maze model 20 years. Neuroscience & Biobehavioral Reviews. 2005;29(8):1193–1205. DOI:10.1016/j.neubiorev.2005.04.017.; Treit D., Menard J., Royan C. Anxiogenic stimuli in the elevated plusmaze. Pharmacology Biochemistry and Behavior. 1993;44(2):463–469. DOI:10.1016/0091-3057(93)90492-c.; Bertoglio L. J., Carobrez A. P. Behavioral profile of rats submitted to session 1-session 2 in the evaluated plus-maze during diurnal/nocturnal phases and under different illumination conditions. Behavioural Brain Research. 2002;132(2):135–143. DOI:10.1016/s0166-4328(01)00396-5.; Adamec R., Strasser K., Blundell J., Burton P., McKay D. W. Protein synthesis and the mechanisms of lasting change in anxiety induced by severe stress. Behavioural Brain Research. 2006;167(2):270–286. DOI:10.1016/j.bbr.2005.09.019.; Tucker L. B., McCabe J. T. Behavior of male and female C57BL/6J mice is more consistent with repeated trails in the elevated zero maze than in the evaluated plus maze. Frontiers in journals behavioral neuroscience. 2017;11. DOI:10.3389/fnbeh.2017.00013.; Шиловская Е. В., Семина И. И., Тарасова Р. И., Байчурина А. З., Пашина И. П., Воскресенская О. В., Гараев Р. С., Фаттахов Ш. А., Газизов М. Б. Компьютерный прогноз, синтез и психотропные свойства гидразиниевых солей фосфорилацетогидразидов. Химико-фармацевтический журнал. 2013;47(4):26–29. DOI:10.30906/0023-1134-2013-47-4-26-29.; Семина И. И., Байчурина А. З., Макарова Е. А., Леушина А. В., Казакевич Ж. В., Габдрахманова М. Р., Мухамедьяров М. А., Зефиров А. Л. Динамика развития поведенческих нарушений у трансгенных мышей с моделью болезни Альцхаймера. Бюллетень экспериментальной биологии и медицины. 2014;158(11):568–571. DOI:10.1007/s10517-015-2821-0.; Herbst L. S., Gaigher T., Siqueira A. A., Joca S. R. L., Sampaio K. N., Beijamini V. New evidence for refinement of anesthetic choice in procedures preceding the forced swimming test and the elevated plus-maze. Behavioural Brain Research. 2019;368:111897. DOI:10.1016/j.bbr.2019.04.011.; Oguchi-Katayama A., Monma A., Sekino Y., Moriguchi T., Sato K. Comparative gene expression analysis of the amygdala in autistic rat models produced by pre- and post-natal exposures to valproic acid. The Journal of Toxicological Sciences. 2013;38(3):391–402. DOI:10.2131/jts.38.391.; Deacon R. M. The successive alleys test of anxiety in mice and rats. Journal of Visualized Experiments. 2013;76. DOI:10.3791/2705.; Lahmann C., Clark R. H., Iberl M., Ashcroft F. M. A mutation causing increased KATP channel activity leads to reduced anxiety in mice. Physiology & Behavior. 2014;129:79–84. DOI:10.1016/j.physbeh.2014.02.031.; Sakaguchi Y., Sakurai Y. Left–right functional asymmetry of ventral hippocampus depends on aversiveness of situations. Behavioural Brain Research. 2017;325:25–33. DOI:10.1016/j.bbr.2017.02.028.; Ewin S. E., Morgan J. W., Niere F., McMullen N. P., Barth S. H., Almonte A. G., Weiner J. L. Chronic intermittent ethanol exposure selectively increases synaptic excitability in the ventral domain of the rat hippocampus. Journal of Neuroscience. 2019;398:144–157. DOI:10.1016/j.neuroscience.2018.11.028.; Olton D. S., Becker J. T. Handelmann G. E. Hippocampus, space and memory. Behavioral and Brain Sciences. 1979;2(3):313–322. DOI:10.1017/S0140525X00062713.; Rawlins J. N. P., Olton D. S. The septo-hippocampal system and cognitive mapping. Behavioural Brain Research. 1982;5(4):331–358. DOI:10.1016/0166-4328(82)90039-0.; Lalon R. The neurobiological basis of spontaneous alternation. Neuroscience & Biobehavioral Reviews. 2002;26(1):91–104. DOI:10.1016/s0149-7634(01)00041-0.; Deacon R. M., Bannerman D. M., Kirby B. P., Croucher A., Rawlins J. N. P. Effects of cytotoxic hippocampal lesions in mice on a cognitive test battery. Behavioural Brain Research. 2002;133(1):57–68. DOI:10.1016/s0166-4328(01)00451-x.; Deacon R. M. J., Penny C., Rawlins J. N. P. Effects of medial prefrontal cortex cytotoxic lesions in mice. Behavioural Brain Research. 2003;139(1–2):139–155. DOI:10.1016/s0166-4328(02)00225-5.; Deacon R. M. J. Digging and marble burying mice: simple methods for in vivo identification of biological impacts. Nature Protocols. 2006;1(1):122–124. DOI:10.1038/nprot.2006.20; Dember W. N., Fowler H. Spontaneous alternation behavior. Psychological Bulletin. 1958;55(6):412–428. DOI:10.1037/h0045446.; Asin K. E., Fibiger H. C. Spontaneous and delayed spatial alteration following damage to specific neuronal elements within the nucleus medianus raphe. Behavioural Brain Research. 1984;13(3):241–250. DOI:10.1016/0166-4328(84)90166-9.; Duff K., Suleman F. Transgenic mouse models of Alzheimer’s disease: how useful have they been for therapeutic development? Brief. Functional genomics. 2004;3(1):47–59. DOI:10.1093/bfgp/3.1.47.; Hsiao K., Borchelt D. R., Olson K., Johannsdottir R., Kitt C., Yunis W., Xu S., Eckman C., Younkin S., Price D., Iadecola C., Clark H. B., Carlson G. Age-related CNS disorder and early Fdeath in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron. 1995;15(5):1203–1218. DOI:10.1016/0896-6273(95)90107-8.; Demas G. E., Nelson R. J., Krueger B. K., Yarowsky P. J. Spatial memory deficits in segmental trisomic Ts65Dn mice. Behavioural Brain Research. 1996;82(1):85–92. DOI:10.1016/s0166-4328(97)81111-4.; Campolongo M., Kazlauskas N., Falasco G., Urrutia L., Salgueiro N., Höcht C., Depino A. M. Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment. Molecular Autism. 2018;9(1):1–17. DOI:10.1186/s13229-018-0221-9.; Семенова А. А., Лопатина О. Л., Салмина А. Б. Модели аутизма и методики оценки аутистически-подобного поведения у животных. Журнал высшей нервной деятельности имени И. П. Павлова. 2020;70(2):147–162. DOI:10.31857/S0044467720020112.; Van Dam D., De Deyn P. P. Drug discovery in dementia: the role of rodent models. Nature Reviews Drug Discovery. 2006;5(11):956–970. DOI:10.1038/nrd2075.; Bali Z. K., Inkeller J., Csurgyók R., Bruszt N., Horváth H., Hernádi I. Differential effects of α7 nicotinic receptor agonist PHA-543613 on spatial memory performance of rats in two distinct pharmacological dementia models. Behavioural Brain Research. 2015;278:404–410. DOI:10.1016/j.bbr.2014.10.030.; Hidaka N., Suemaru K., Takechi K., Li B., Araki H. Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta medica Okayama. 2011;65(4):269–277. DOI:10.18926/AMO/46853.; Magen I., Fleming S. M., Zhu C., Garcia E. C., Cardiff K. M., Dinh D., David Jentsch J. Cognitive deficits in a mouse model of pre-manifest Parkinson’s disease. European Journal of Neuroscience. 2012;35(6):870–882. DOI:10.1111/j.1460-9568.2012.08012.x.; Плаксина Д. В., Екимова И. В. Возрастные особенности альфа-синуклеиновой патологии в головном мозге при моделировании доклинической стадии болезни Паркинсона у крыс. Российский физиологический журнал им. И. М. Сеченова. 2018;104(6):709–716. DOI:10.7868/S086981391806014X.; Lieberwirth C., Pan Y., Liu Y., Zhang Z., Wang Z. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain Research. 2016;1644:127–140. DOI:10.1016/j.brainres.2016.05.015.; Горина Я. В., Лопатина О. Л., Комлева Ю. К., Иптышев А. М., Польников А. М., Салмина А. Б. Восьмирукавный радиальный лабиринт как инструмент для оценки пространственного обучения и памяти у мышей. Сибирское медицинское обозрение. 2016;5(101):46–52.; Barnes C. A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. Journal of Comparative Physiology. 1979;93(1):74–104. DOI:10.1037/h0077579.; O’Leary T. P., Brown R. E. Optimization of apparatus design and behavioral measures for the assessment of visuo-spatial learning and memory of mice on the Barnes maze. Learning & Memory. 2013;20(2):85–96. DOI:10.1101/lm.028076.112.; Uriarte M., Ogundele O. M., Pardo J. Long-lasting training in the Barnes maze prompts hippocampal spinogenesis and habituation in rats. NeuroReport. 2017;28(6):307–312. DOI:10.1097/WNR.0000000000000755.; Yamada M., Sakurai Y. An observational learning task using Barnes maze in rats. Cognitive Neurodynamics. 2018;12(5):519–523. DOI:10.1007/s11571-018-9493-1.; Morel G. R., Andersen T., Pardo J., Zuccolilli G. O., Cambiaggi V. L., Hereñú C. B., Goya R. G. Cognitive impairment and morphological changes in the dorsal hippocampus of very old female rats. Neuroscience. 2015;303:189–199. DOI:10.1016/j.neuroscience.2015.06.050.; Tan H. M., Wills T. J., Cacucci F. The development of spatial and memory circuits in the rat. Wiley Interdisciplinary Reviews: Cognitive Science. 2016;125:159–167. DOI:10.1002/wcs.1424.; Rosenfeld C. S., Ferguson S. A. Barnes maze testing strategies with small and large rodent models. Journal of Visualized Experiments. 2014;84. DOI:10.3791/51194.; Gawel K., Labuz K., Gibula-Bruzda E., Jenda M., Marszalek-Grabska M., Filarowska J., Kotlinska, J. H. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2016;389(10):1059–1071. DOI:10.1007/s00210-016-1269-8.; Vargha-Khadem F. Differential Effects of Early Hippocampal Pathology on Episodic and Semantic Memory. Science. 1997;277(5324):376–380. DOI:10.1126/science.277.5324.376.; Aggleton J. P., Brown M. W. Episodic memory, amnesia and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences. 1999;22(3):425-444. DOI:10.1017/S0140525X99002034; Eacott M. J., Easton A., Zinkivskay A. Recollection in an episodic-like memory task in the rat. Learning & Memory. 2005;12(3):221–223. DOI:10.1101/lm.92505.; Fortin N. J., Wright S. P., Eichenbaum H. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature. 2004;431(7005):188–191. DOI:10.1038/nature02853.; Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods. 1984;11(1):47–60. DOI:10.1016/0165-0270(84)90007-4.; Vorhees C. V. Williams M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols. 2006;1(2):848–858. DOI:10.1038/nprot.2006.116.; Leggio M. G., Graziano A., Mandolesi L., Molinari M., Neri P., Petrosini L. A new paradigm to analyze observational learning in rats. Brain research protocols. 2003;12(2):83–90. DOI:10.1016/j.brainresprot.2003.08.001.; Gehring T. V., Luksys G., Sandi C., Vasilaki E. detailed classification of swimming path in the Morris Water Maze: multiple strategies within one trial. Scientific Reports. 2015;5:14562. DOI:10.1038/srep14562.; Левина А. С., Захаров Г. А., Ширяева Н. В., Вайдо А. И. Сравнительная характеристика поведения крыс двух линий, различающихся по порогу возбудимости нервной системы, в модели пространственного обучения в водном лабиринте Морриса. Журнал высшей нервной деятельности имени И. П. Павлова. 2018;68(3):366–377. DOI:10.7868/S0044467718030097; Zhang L., Fang Y., Cheng X., Lian Y., Xu H., Zeng Z., Zhu H. TRPML1 participates in the progression of Alzheimer’s disease by regulating the PPARγ/AMPK/Mtor signalling pathway. Cellular Physiology and Biochemistry. 2017;43(6):2446–2456. DOI:10.1159/000484449.; Jaramillo T. C., Speed H. E., Xuan Z., Reimers J. M., Escamilla C. O., Weaver T. P., Powell C. M. Novel Shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function. Autism Research. 2017;10(1):42–65. DOI:10.1002/aur.1664.; Svenson M., Hallin T., Broms J., Ekstrand J., Tingström A. Spatial memory impairment in Morris water maze after electroconvulsive seizures. Acta Neuropsychiatrica. 2016;29(01):17–26. DOI:10.1017/neu.2016.22.; Laczó J., Markova H., Lobellova V., Gazova I., Parizkova M., Cerman J., Windisch M. Scopolamine disrupts place navigation in rats and humans: a translational validation of the Hidden Goal Task in the Morris water maze and a real maze for humans. Journal of Psychopharmacology. 2017;234(4):535–547. DOI:10.1007/s00213-016-4488-2.; Liu Q., Shi J., Lin R., Wen T. Dopamine and dopamine receptor D1 associated with decreased social interaction. Behavioural Brain Research. 2017;324:51–57. DOI:10.1016/j.bbr.2017.01.045.; Ahmadi M., Rajaei Z., Hadjzadeh M. A., Nemati H., Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. Neuroscience Letters. 2017;642:1–6. DOI:10.1016/j.neulet.2017.01.049.; de la Tremblaye P. B., Wellcome J. L., de Witt B. W., Cheng J. P., Skidmore E. R., Bondi C. O., Kline A. E. Rehabilitative success after brain trauma by augmenting a subtherapeutic dose of environmental enrichment with Galantamine. Neurorehabilitation and Neural Repair. 2017;31(10–11):977–985. DOI:10.1177/1545968317739999.; Alcalá J. A., Callejas-Aguilera J. E., Nelson J. B., Rosas J. M. Reversal training facilitates acquisition of new learning in a Morris water maze. Learning & Behavior. 2019;48:208–220. DOI:10.3758/s13420-019-00392-7.; Cho H., Kim C. H., Knight E. Q., Oh H. W., Park B., Kim D. G., Park H.-J. Changes in brain metabolic connectivity underlie autistic-like social deficits in a rat model of autism spectrum disorder. Scientific Reports. 2017;7(1):13213. DOI:10.1038/s41598-017-13642-3.; Fortunato J. J., da Rosa N., Laurentino A. O. М., Goulart M., Michalak C., Borges L. P., da Cruz Cittadin Soares E., Reis P. A., de Castro Faria Neto H. C., Petronilho F. Effects of ω-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides. Nutrition. 2017;35:119–127. DOI:10.1016/j.nut.2016.10.019.; Tickerhoof M. C., Hale L. H., Butler M. J., Smith A. S. Regulation of defeat-induced social avoidance by medial amygdala DRD1 in male and female prairie voles. Psychoneuroendocrinology. 2020;113:104542. DOI:10.1016/j.psyneuen.2019.104542.; Homberg J. R., Olivier J. D. A., VandenBroeke M., Youn J., Ellenbroe A. K., Karel P., Shan L., van Boxtel R., Ooms S., Balemans M., Langedijk J., Muller M., Vriend G., Cools A. R., Cuppen E., Ellenbroek B. A. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model. Disease Models & Mechanisms. 2016;9(10):1147–1158. DOI:10.1242/dmm.024752.; Ahern M., Goodell D. J., Adams J., Bland S. T. Brain regional differences in social encounter-induced. Fos expression in male and female rats after post-weaning social isolation. Brain Research. 2016;1630:120–133. DOI:10.1016/j.brainres.2015.11.006.; Lopatina O., Yoshihara T., Nishimura T., Zhong J., Akther S., Fakhrul A. A. K. M., Liang M., Higashida C., Sumi K., Furuhara K., Inhata Y., Huang J.-J., Kozumi K., Yokoyama S., Tsuji T., Petugina Y., Sumarokov A., Salmina A. B., Hashida K., Kitano Y., Hori O., Asano M., Kitamura Y., Kozaka T., Shiba K., Zhong F., Xie M.-J., Sato M. Ishihara K., Higashida H. Anxietyand depressionlike behavior in mice lacking the C157/BST1 gene, a risk factor for Parkinson’s disease. Frontiers in Behavioral Neuroscience. 2014;8(133). DOI:10.3389/fnbeh.2014.00133.; Degroote S., Hunting D. J., Baccarelli A. A., Takser L. Maternal gut and fetal brain connection: Increased anxiety and reduced social interactions in Wistar rat offspring following peri-conceptional antibiotic exposure. Prog. Neuropsychopharmacol. Biological Psychiatry. 2016;71:76–82. DOI:10.1016/j.pnpbp.2016.06.010.; Wu C. Y., Lerner F. M., e Silva A. C., Possoit H. E., Hsieh T. H., Neumann J. T., Lee R. H. Utilizing the modified T-maze to assess functional memory outcomes after cardiac arrest. Journal of Visualized Experiments. 2018;(131):e56694. DOI:10.3791/56694.; Wang L., Simpson H. B., Dulawa S. C. Assessing the validity of current mouse genetic models of obsessive–compulsive disorder. Behavioural Pharmacology. 2009;20(2):119–133. DOI:10.1097/fbp.0b013e32832a80ad.; Çalişkan H., Şentunali B., Özden F. M., Cihan K. H., Uzunkulaoğlu M., Çakan O., Zaloğlu N. Marble burying test analysis in terms of biological and non-biological factors. Journal of Applied Biological Sciences. 2017;11(1):54–57.; Choi C. S., Gonzales E. L., Kim K. C., Yang S. M., Kim J.-W., Mabunga D. F., Cheong J. H., Han S.-H., Bahn G. H., Shin C. Y. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy. Scientific Reports. 2016;6(1):36250. DOI:10.1038/srep36250.; Salunke B. P., Umathe S. N., Chavan J. G. Experimental evidence for involvement of nitric oxide in low frequency magnetic field induced obsessive compulsive disorder-like behavior. Pharmacology Biochemistry and Behavior. 2014;122:273–278. DOI:10.1016/j.pbb.2014.04.007.; Vogel H. G., editor. Drug Effects on Learning and Memory. In: Drug discovery and evaluation: pharmacological assays. Berlin: Sрringer-Verlag; 2008. P. 715–774. DOI:10.1007/978-3-540-70995-4.; Costall B., Naylor R. J. On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity. Psychopharmacologia. 1974;34(3):233–241. DOI:10.1007/BF00421964.; Morpurgo C. Effects of antiparkinsonian drugs on a phenothiazine-induced catatonic reaction. Archives internationales de pharmacodynamie et de thérapie. 1962;137:84-90.; Порфирьева Н. Н., Семина И. И., Мустафин Р. И., Хуторянский В. В. Интраназальное введение как способ доставки лекарств в головной мозг (обзор). Разработка и регистрация лекарственных средств. 2021;10(4):117–127. DOI:10.33380/2305-2066-2021-10-4-117-127.; Porfiryeva N. N., Semina, I. I., Salakhov I. A., Moustafine R. I., Khutoryanskiy V. V. Mucoadhesive and mucus-penetrating interpolyelectrolyte complexes for nose-to-brain drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicinе. 2021;37:102432. DOI:10.1016/j.nano.2021.102432.; https://www.pharmjournal.ru/jour/article/view/1447

  3. 3
  4. 4