Showing 1 - 9 results of 9 for search '"пружно-пластична деформація"', query time: 0.49s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Proceedings of National Aviation University; Vol. 64 No. 3 (2015); 97-104 ; Успехи авиакосмической техники; Том 64 № 3 (2015); 97-104 ; Вісник Національного авіаційного університету; Том 64 № 3 (2015); 97-104

    File Description: application/pdf

  3. 3
  4. 4
  5. 5
    Dissertation/ Thesis

    Contributors: Ясній, Володимир Петрович, Тернопільський національний технічний університет імені Івана Пулюя, м. Тернопіль, Україна, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

    Subject Geographic: Тернопіль, UA

    Relation: 1. Sharpe R. D., Bentley R. J. Dynamics of structures by Ray W. Clough and Joseph Penzien. McGraw-Hill 1975. 634 pp. illus. Bulletin of the New Zealand Society for Earthquake Engineering. 1977. Вип. 10, № 2. С. 109–110.; 2. Janke L., Czaderski C., Motavalli M., Ruth J. Applications of shape memory alloys in civil engineering structures - Overview, limits and new ideas. Materials and Structures/Materiaux et Constructions. 2005. Вип. 38, № 279. С. 578–592.; 3. Dolce M., Cardone D., Marnetto R. Implementation and testing of passive control devices based on shape memory alloys. Earthquake Engineering and Structural Dynamics. 2000. Вип. 29, № 7. С. 945–968.; 4. Liang C., Rogers C. A. One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials. http://dx.doi.org/10.1177/1045389X9000100205. 1990. Вип. 1, № 2. С. 207–234.; 5. Song G., Ma N., Li H. N. Applications of shape memory alloys in civil structures. Engineering Structures. 2006. Вип. 28, № 9. С. 1266–1274.; 6. Zhang Q., Tang B., Cai J., Yang R., Feng J. Development and experimental verification of an adaptive structure for phased antenna array using SMA bunch. Engineering Structures. 2020. Вип. 225. С. 111293.; 7. Ajaj R. M., Parancheerivilakkathil M. S., Amoozgar M., Friswell M. I., Cantwell W. J. Recent developments in the aeroelasticity of morphing aircraft. Progress in Aerospace Sciences. 2021. Вип. 120. С. 100682.; 8. Pecora R., Dimino I., Bray M., Bray R. SMA for aeronautics. Shape Memory Alloy Engineering. Elsevier, 2021. С. 527–559.; 9. Leary M., Huang S., Ataalla T., Baxter A., Subic A. Design of shape memory alloy actuators for direct power by an automotive battery. Materials and Design. 2013. Вип. 43. С. 460–466.; 11. Riccio A., Sellitto A., Ameduri S., Concilio A., Arena M. Shape memory alloys (SMA) for automotive applications and challenges. Shape Memory Alloy Engineering. Elsevier, 2021. С. 785–808.; 34. Iasnii V., Yasniy P., Lapusta Y., Yasniy O., Dyvdyk O. Functional Behavior of Pseudoelastic NiTi Alloy Under Variable Amplitude Loading. Acta Mechanica et Automatica. 2020. Вип. 14, № 3. С. 154–160.; 35. Seo J., Kim Y. C., Hu J. W. Pilot study for investigating the cyclic behavior of slit damper systems with recentering shape memory alloy (SMA) bending bars used for seismic restrainers. Applied Sciences (Switzerland). 2015. Вип. 5, № 3. С. 187–208.; 36. Abuzaid W., Sehitoglu H. Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy. Materials and Design. 2018. Вип. 160. С. 642–651.; 37. Humbeeck J. Van. Non-medical applications of shape memory alloys. Materials Science and Engineering: A. 1999. Вип. 273–275. С. 134–148.; 38. Muntasir Billah A. H. M., Alam M. S. Bond behavior of smooth and sand-coated shape memory alloy (SMA) rebar in concrete. Structures. 2016. Вип. 5. С. 186– 195.; 39. Torra V., Isalgue A., Martorell F., Terriault P., Lovey F. C. Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Engineering Structures. 2007. Вип. 29, № 8. С. 1889–1902.; 40. Hu J. W., Noh M. H. Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions. Advances in Materials Science and Engineering. 2015. Вип. 2015.; 41. Saedi S., Acar E., Raji H., Saghaian S. E., Mirsayar M. Energy damping in shape memory alloys: A review. Journal of Alloys and Compounds. 2023. Вип. 956. С. 170286.; 42. Zhang Y., You Y., Moumni Z., Anlas G., Zhu J., Zhang W. Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys. International Journal of Plasticity. 2017. Вип. 90. С. 1–30.; 43. Zheng L., He Y., Moumni Z. Investigation on fatigue behaviors of NiTi polycrystalline strips under stress-controlled tension via in-situ macro-band observation. International Journal of Plasticity. 2017. Вип. 90. С. 116–145.; 45. Pelton A. R. Nitinol Fatigue: A Review of Microstructures and Mechanisms. Journal of Materials Engineering and Performance. 2011. Вип. 20, № 4. С. 613–617.; 44. Pelton A. R., Schroeder V., Mitchell M. R., Gong X.-Y., Barney M., Robertson S. W. Fatigue and durability of Nitinol stents. Journal of the Mechanical Behavior of Biomedical Materials. 2008. Вип. 1, № 2. С. 153–164.; 112. Saiidi M. S., O’Brien M., Mahmoud S. Z. Cyclic response of concrete bridge columns using superelastic nitinol and bendable concrete. ACI Structural Journal. 2009. Вип. 106, № 1. С. 69–77.; 46. Robertson S. W., Pelton A. R., Ritchie R. O. Mechanical fatigue and fracture of Nitinol. International Materials Reviews. 2012. Вип. 57, № 1. С. 1–37.; 47. Sgambitterra E., Magaro P., Niccoli F., Renzo D., Maletta C. Low-to-high cycle fatigue properties of a NiTi shape memory alloy. Procedia Structural Integrity. 2019. Вип. 18. С. 908–913.; 48. Chernenko V. A., L’Vov V. A., Cesari E., Kosogor A., Barandiaran J. M. Transformation Volume Effects on Shape Memory Alloys. Metals 2013, Vol. 3, Pages 237-282. 2013. Вип. 3, № 3. С. 237–282.; 49. Wang Z., Luo J., Kuang W., Jin M., Liu G., Jin X., Shen Y. Strain Rate Effect on the Thermomechanical Behavior of NiTi Shape Memory Alloys: A Literature Review. Metals 2023, Vol. 13, Page 58. 2022. Вип. 13, № 1. С. 58.; 50. Stachiv I., Alarcon E., Lamac M. Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. Metals 2021, Vol. 11, Page 415. 2021. Вип. 11, № 3. С. 415.; 51. Pyndus Y., Yasniy O., Fostyk V., Maruschak P. Assessment of Minimal Fatigue Crack Growth Rate After a Single Overload in D16chT Alloy. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering. 2018. Вип. 42, № 4. С. 341–346.; 52. Yasnii V. P., Student O. Z., Yasnii P. V., Nykyforchyn H. Micromechanism of Propagation of Fatigue Cracks in Pseudoelastic NiTi Shape-Memory Alloy. Materials Science. 2021. Вип. 56, № 4. С. 461–465.; 53. Lopez G. A. Shape Memory Alloys 2020. Metals 2021, Vol. 11, Page 1618. 2021. Вип. 11, № 10. С. 1618.; 54. Morais J., Morais P. G. De, Santos C., Costa A. C., Candeias P. Shape Memory Alloy Based Dampers for Earthquake Response Mitigation. Procedia Structural Integrity. 2017. Вип. 5. С. 705–712.; 55. Iasnii V., Bykiv N., Yasniy O., Budz V. Methodology and some results of studying the influence of frequency on functional properties of pseudoelastic SMA. Scientific journal of the Ternopil national technical university. 2022. Вип. 107, № 3. С. 45–50.; 111. ДБН В.2.6-98:2009. Бетонні та залізобетонні Конструкції. Основні положення. — [Чинний від 2020].; 56. Dolce M., Cardone D. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. International Journal of Mechanical Sciences. 2001. Вип. 43, № 11. С. 2657–2677.; 57. Tamai H., Kitagawa Y. Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building. Computational Materials Science. 2002. Вип. 25, № 1–2. С. 218–227.; 58. Kaup A., Altay O., Klinkel S. Strain amplitude effects on the seismic performance of dampers utilizing shape memory alloy wires. Engineering Structures. 2021. Вип. 244. С. 112708.; 59. Qiu C., Zhu S. Shake table test and numerical study of self-centering steel frame with SMA braces. Earthquake Engineering & Structural Dynamics. 2017. Вип. 46, № 1. С. 117–137.; 60. Ma H., Cho C. Feasibility study on a superelastic SMA damper with re-centring capability. Materials Science and Engineering A. 2008. Вип. 473, № 1–2. С. 290–296.; 61. Zhou P., Liu M., Li H., Song G. Experimental investigations on seismic control of cable-stayed bridges using shape memory alloy self-centering dampers. Structural Control and Health Monitoring. 2018. Вип. 25, № 7. С. e2180.; 62. Zhang Z., Bi K., Hao H., Sheng P., Feng L., Xiao D. Development of a novel deformation-amplified shape memory alloy-friction damper for mitigating seismic responses of RC frame buildings. Engineering Structures. 2020. Вип. 216. С. 110751.; 63. Torra V., Casciati S., Vece M. Shape Memory Alloys Wires: From Small to Medium Diameter. Advances in Science and Technology. 2016. Вип. 101. С. 79– 88.; 110. ДБН В.2.6-98:2009 Конструкції Будинків І Споруд. Бетонні Та Залізобетонні Конструкції. Основні Положення. Зі Зміною № 1. — [Чинний від 2011]. — 67 с.; 64. Aloisio A., Pasca D. P., Santis Y. De, Hillberger T., Giordano P. F., Rosso M. M., Tomasi R., Limongelli M. P., Bedon C. Vibration issues in timber structures: A state-of-the-art review. Journal of Building Engineering. 2023. Вип. 76. С. 2352–7102.; 65. Xie Q., Zhang L., Zhou W., Wang L., Zhou T. Cyclical behavior of timber mortise-tenon joints strengthened with shape memory alloy: experiments and moment-rotation model. https://doi.org/10.1080/15583058.2018.1501116. 2018. Вип. 13, № 8. С. 1209–1222.; 66. Saadat S., Salichs J., Noori M., Hou Z., Davoodi H., Bar-on I., Suzuki Y., Masuda A. An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Materials and Structures. 2002. Вип. 11, № 2. С. 218–229.; 67. Dolce M., Cardone D., Marnetto R. SMA recentering devices for seismic isolation of civil structures. Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways. 2001. Вип. 4330, № May. С. 238–249.; 68. DesRoches R., McCormick J., Delemont M. Cyclic Properties of Superelastic Shape Memory Alloy Wires and Bars. Journal of Structural Engineering. 2003. Вип. 130, № 1. С. 38–46.; 69. Buckle I. G., Friedland I., Mander J. B., Martin G., Nutt R., Power M. Seismic Retrofitting Manual for Highway Structures : Part 1 – Bridges. 2006. № January. С. 1–658.; 70. Neelakanta P. Smart Materials. 2013. Вип. 4, № 3. С. 4172.; 71. Демпфуючий пристрій для транспортування довгомірних конструкцій: пат. 116582 Україна: F16F 7/12. № u 2016 12829; заявл. 16.12.2016; опубл. 25.05.2017, Бюл. №10. 3 с., .; 109. ДСТУ Б В.2.7-214:2009 Будівельні матеріали. Бетони. Методи визначення міцності за контрольними зразками. — [Чинний від 2010].; 72. Choi S. B., Park Y. K., Fukuda T. A proof-of-concept investigation on active vibration control of hybrid smart structures. Mechatronics. 1998. Вип. 8, № 6. С. 673–689.; 73. Yuvaraja M., Senthilkumar M. Comparative Study on Vibration Characteristics of a Flexible GFRP Composite Beam Using SMA and PZT Actuators. Procedia Engineering. 2013. Вип. 64. С. 571–581.; 74. Lu L. Y., Lin C. C., Lin G. L., Lin C. Y. Experiment and analysis of a fuzzy- controlled piezoelectric seismic isolation system. Journal of Sound and Vibration. 2010. Вип. 329, № 11. С. 1992–2014.; 75. Lu L. Y., Lin G. L., Lin C. Y. Experimental verification of a piezoelectric smart isolation system. Structural Control and Health Monitoring. 2011. Вип. 18, № 8. С. 869–889.; 76. Zhan M., Zhang L., Chen X., Wang S. Dynamic response control of engineering structure equipped with smart compound damper. Proceedings of the Institution of Civil Engineers: Structures and Buildings. 2022. Вип. 175, № 2. С. 129–140.; 77. Bykiv N. Z., Yasnii P. V., Iasnii V. P. Modeling of mechenical behavior of reinforced concrete beam reinforced by the shape memory alloy insertion using finite elements method. Сучасні Технології Та Методи Розрахунків У Будівництві. 2020. Вип. 3, № 13. С. 24–34.; 78. Gholampour A., Ozbakkaloglu T. Understanding the compressive behavior of shape memory alloy (SMA)-confined normal- and high-strength concrete. Composite Structures. 2018. Вип. 202. С. 943–953.; 108. Hamid N. A., Ibrahim A., Adnan A., Ismail M. H. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading. American Institute of Physics Inc., 2018. ISBN 9780735416598.; 79. Jung D., Wilcoski J., Andrawes B. Bidirectional shake table testing of RC columns retrofitted and repaired with shape memory alloy spirals. Engineering Structures. 2018. Вип. 160. С. 171–185.; 80. Ai-Rong L., Chun-Hui L., Ji-Yang F., Yong-Lin P., Yong-Hui H., Jun-Ping Z. A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables. International Journal of Structural Stability and Dynamics. 2017. Вип. 17, № 7. С. 6–23.; 81. Abraik E., Al O. Examining the yielding displacement of concrete bridge piers equipped with shape memory alloy rebars Examining the yielding displacement of concrete bridge piers equipped with shape memory alloy rebars Emad Abraik. .; 82. Soul H., Yawny A. Self-centering and damping capabilities of a tension- compression device equipped with superelastic NiTi wires. Smart Materials and Structures. 2015. Вип. 24, № 7. С. 075005.; 83. DBN V.1.2-2:2006 Navantazhennia ta vplyvy. Normy proektuvannia : ДБН В.1.2-2:2006. — [Чинний від 2006].; 84. Rajasekaran S. Structural dynamics of earthquake engineering. Theory and aplication using MATHEMATICA and MATLAB. Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington,Cambridge CB21 6AH, UK, 2009. 903 с. ISBN 9781855739673.; 107. Gupta M. 3D Printing of Metals. Metals 2017, Vol. 7, Page 403. 2017. Вип. 7, № 10. С. 403.; 85. ДБН В.1.1-12:2014. Будівництво у сейсмічних районах України. — [Чинний від 2014]. — 118 с.; 87. Nguyen T.-H., Tuong T., Phan V., Le T.-C., Ho D.-D., Huynh T.-C., Ruggieri S. Numerical Simulation of Single-Point Mount PZT-Interface for Admittance-Based Anchor Force Monitoring. 2021.; 88. Katsikadelis J. T. Dynamic Analysis of Structures. 2020. 1–786 с. ISBN 9780128186435.; 89. Song A., Xu H., Luo Q., Wan S. Finite Element Analysis on Inelastic Mechanical Behavior of Composite Beams Strengthened With Carbon-Fiber-Reinforced Polymer Laminates Under Negative Moment. Frontiers in Materials. 2022. Вип. 9.; 90. Azhir P., Asgari Marnani J., Panji M., Rohanimanesh M. S. A Coupled Finite- Boundary Element Method for Efficient Dynamic Structure-Soil-Structure Interaction Modeling. Mathematical and Computational Applications. 2024. Вип. 29, № 2. С. 24.; 106. Zafar A., Andrawes B. Seismic behavior of SMA–FRP reinforced concrete frames under sequential seismic hazard. Engineering Structures. 2015. Вип. 98. С. 163– 173.; 91. Azadpour F., Maghsoudi A. A. Experimental and analytical investigation of continuous RC beams strengthened by SMA strands under cyclic loading. Construction and Building Materials. 2020. Вип. 239.; 92. Lyu P., Fang Z., Wang X., Huang W., Zhang R., Sang Y., Sun P. Explosion Test and Numerical Simulation of Coated Reinforced Concrete Slab Based on BLAST Mitigation Polyurea Coating Performance. Materials. 2022. Вип. 15, № 7.; 93. ASTM F2516-14. Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials. Book of Standards Volume: 13.02. — [Чинний від 2014].; 94. Bykiv N., Iasnii V., Yasniy P., Junga R. Thermomechanical analysis of nitinol memory alloy behavior. Scientific journal of the Ternopil national technical university. 2021. Вип. 102, № 2. С. 161–167.; 105. Elbahy Y. I., Youssef M. A., Meshaly M., Elbahy Y. I., Youssef M. A., Meshaly M. Numerical investigation of reinforced-concrete beam-column joints retrofitted using external superelastic shape memory alloy bars. AIMS Materials Science 2021 5:716. 2021. Вип. 8, № 5. С. 716–738.; 95. Bykiv N., Yasniy P., Lapusta Y., Iasnii V. Finite element analysis of reinforced- concrete beam with shape memory alloy under the bending. Procedia Structural Integrity. 2022. Вип. 36. С. 386–393.; 96. Wang Z. G., Zu X. T., Huo Y. Effect of heating/cooling rate on the transformation temperatures in TiNiCu shape memory alloys. Thermochimica Acta. 2005. Вип. 436, № 1–2. С. 153–155.; 97. Cakmak U. D., Major Z., Fischlschweiger M. Mechanical consequences of dynamically loaded niti wires under typical actuator conditions in rehabilitation and neuroscience. Journal of Functional Biomaterials. 2021. Вип. 12, № 1. С. 11–17.; 104. Hamid N. A., Ibrahim A., Adnan A., Ismail M. H. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading. AIP Conference Proceedings. 2018. Вип. 1958.; 98. Iasnii V., Yasniy P., Baran D., Rudawska A. The effect of temperature on low-cycle fatigue of shape memory alloy. 2019. Вип. 50. С. 310–318.; 99. Kok M., Da?delen F., Aydo?du A., Aydo?du Y. The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing. Journal of Physics: Conference Series. 2016. Вип. 667, № 1.; 100. Sidharth R., Mohammed A. S. K., Sehitoglu H. Functional Fatigue of NiTi Shape Memory Alloy: Effect of Loading Frequency and Source of Residual Strains. Shape Memory and Superelasticity. 2022. Вип. 8, № 4. С. 394–412.; 103. Oliveira J. P., Miranda R. M., Braz Fernandes F. M. Welding and Joining of NiTi Shape Memory Alloys: A Review. Progress in Materials Science. 2017. Вип. 88. С. 412–466.; 101. Lara-Quintanilla A., Bersee H. E. N. Active Cooling and Strain-Ratios to Increase the Actuation Frequency of SMA Wires. Shape Memory and Superelasticity. 2015. Вип. 1, № 4. С. 460–467.; 102. Iasnii V., Junga R. Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory. Materials Science. 2018. Вип. 54, № 3. С. 406–411.; 12. Mao S., Dong E., Jin H., Xu M., Zhang S., Yang J., Low K. H. Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs. Journal of Bionic Engineering. 2014. Вип. 11, № 3. С. 400–411.; 13. Hadi A., Yousefi-Koma A., Moghaddam M. M., Elahinia M., Ghazavi A. Developing a novel SMA-actuated robotic module. Sensors and Actuators, A: Physical. 2010. Вип. 162, № 1. С. 72–81.; 14. Mansour N. A., Jang T., Baek H., Shin B., Ryu B., Kim Y. Compliant closed- chain rolling robot using modular unidirectional SMA actuators. Sensors and Actuators, A: Physical. 2020. Вип. 310. С. 112024.; 15. Peng C., Yin Y. H., Hong H. B., Zhang J. J., Chen X. Bio-inspired Design Methodology of Sensor-actuator-structure Integrated System for Artificial Muscle Using SMA. Elsevier B.V., 2017.; 16. Chekotu J. C., Groarke R., O’Toole K., Brabazon D. Advances in selective laser melting of Nitinol shape memory alloy part production. 2019.; 17. Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Pergamon, 2005.; 18. Contardo L., Guenin G. Training and two way memory effect in CuZnAl alloy. Acta Metallurgica Et Materialia. 1990. Вип. 38, № 7. С. 1267–1272.; 19. Биків Н. Дослідження сплавів пам’яті форми з ефектом надпружності в якості елементів підсилення будівельних конструкцій. Тернопіль:2020. 72 с.; 20. Фірстов Г. С. Високотемпературні сплави з пам’яттю форми. Київ:Наук. думка, 2019. 199 с. ISBN 978-966-00-1687-3.; 21. Mei W., Sun J., Wen Y. ARTICLE Martensitic transformation from b to a9 and a0 phases in Ti-V alloys: A first-principles study. 2017.; 22. Wayman C. M., Otsuka K. SMA - Space Antenna TiNi shape memory book - Space antenna 2002. 2002.; 23. Ren X., Miura N., Zhang J., Otsuka K., Tanaka K., Koiwa M., Suzuki T., Chumlyakov Y. I., Asai M. A comparative study of elastic constants of Ti-Ni based alloys prior to martensitic transformation. Materials Science and Engineering A. 2001. Вип. 312, № 1–2. С. 196–206.; 24. Fernandes D. J., Peres R. V., Mendes A. M., Elias C. N. Understanding the Shape- Memory Alloys Used in Orthodontics. ISRN Dentistry. 2011. Вип. 2011. С. 1–6.; 25. Azadpour F., Maghsoudi A. A. Experimental and analytical investigation of continuous RC beams strengthened by SMA strands under cyclic loading. Construction and Building Materials. 2020. Вип. 239. С. 117730.; 26. Qian H., Zhang Q., Zhang X., Deng E., Gao J. Experimental investigation on bending behavior of existing rc beam retrofitted with sma-ecc composites materials. Materials. 2022. Вип. 15, № 1.; 27. Moumni Z., Zhang Y., Wang J., Gu X. A Global Approach for the Fatigue of Shape Memory Alloys. Shape Memory and Superelasticity. 2018. Вип. 4, № 4. С. 385–401.; 28. Kim Y. K. Alloys, Shape Memory. 2006. ISBN 9780387476841.; 29. Otsuka K., Wayman C. M. Shape Memory Materials. Cambridge, Mass, USA: Cambridge University Press, 1998. 284 с.; 30. Huang W. M., Ding Z., Wang C. C., Wei J., Zhao Y., Purnawali H. Shape memory materials. Materials Today. 2010. Вип. 13, № 7. С. 54–61.; 31. Chen Q., Thouas G. A. Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 2015. Вип. 87. С. 1–57.; 32. Sun L., Huang W. M., Ding Z., Zhao Y., Wang C. C., Purnawali H., Tang C. Stimulus-responsive shape memory materials: A review. Materials & Design. 2012. Вип. 33. С. 577–640.; 33. Park M., Hartford N. Introduction to Nitinol. 2017. С. 40.; Биків Н.З. Підвищення деформованих властивостей елементів конструкцій за циклічних навантажень шляхом застосування сплавів з пам’яттю форми : дис. . доктора філософії : 131. Тернопіль, 2024. 161 с.; http://elartu.tntu.edu.ua/handle/lib/45318

  6. 6
    Academic Journal

    Source: Вісник НТУУ «КПІ». Машинобудування: збірник наукових праць

    File Description: Pp. 40-49; application/pdf

    Relation: Dragobetskiy V. Modelling of the process of elastic-plastic deformation of a layered metal composition welded by explosion / Dragobetskiy V., Zagoyanskiy V., Fedorac I. // Вісник НТУУ «КПІ». Машинобудування : збірник наукових праць. – 2016. – № 2(77). – С. 40–49. – Бібліогр.: 17 назв.; https://ela.kpi.ua/handle/123456789/19620; http://dx.doi.org/10.20535/2305‐9001.2016.77.68158

  7. 7
    Academic Journal

    Relation: Вакуленко, И. А. О причинах зарождения усталостных трещин на поверхности катания железнодорожных бандажей / И. А. Вакуленко, Н. А. Грищенко, О. Н. Перков // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. В. Лазаряна. – Дніпропетровськ, 2007. – Вип. 19. – С. 242–244. – DOI:10.15802/stp2007/17572.; 2307-3489 (Print); 2307-6666 (Online); http://eadnurt.diit.edu.ua/jspui/handle/123456789/3773; http://stp.diit.edu.ua/article/view/17572/15310; http://stp.diit.edu.ua/article/view/17572

  8. 8
  9. 9