Εμφανίζονται 1 - 20 Αποτελέσματα από 29 για την αναζήτηση '"проточная цитофлюориметрия"', χρόνος αναζήτησης: 0,66δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    Πηγή: Almanac of Clinical Medicine; Vol 49, No 6 (2021); 412-418 ; Альманах клинической медицины; Vol 49, No 6 (2021); 412-418 ; 2587-9294 ; 2072-0505

    Περιγραφή αρχείου: application/pdf

  3. 3
  4. 4
    Academic Journal

    Πηγή: Malignant tumours; Том 8, № 2 (2018); 5-11 ; Злокачественные опухоли; Том 8, № 2 (2018); 5-11 ; 2587-6813 ; 2224-5057

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/510/365; Архипова О. Е., Черногубова Е. А., Лихтанская Н. В., Тарасов В. А., Кит О. И., Матишов Д. Г. Анализ встречаемости онкологических заболеваний в ростовской области. Пространственно-временная статистика // Фундаментальные исследования. 2013. № 7–3. С. 504–510.; Каприн А. Д. Злокачественные новообразования в России в 2012 году (заболеваемость и смертность) / под ред. А. Д. Каприна, В. В. Старинского, Г. В. Петровой. М.: ФГБУ «МНИОИ им. П. А. Герцена» Минздрава России, 2014. 249 c.; Поддубная И. В. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под руководством профессора И. В. Поддубной, профессора В. Г. Савченко // Современная онкология. М.: Медиа Медика, 2013. 104 с.; Каприн А. Д. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность) / под ред. А. Д. Каприна, В. В. Старинского, Г. В. Петровой. М.: ФГБУ «МНИОИ им. П. А. Герцена» филиал ФГБУ «НМИРЦ» Минздрава России, 2017. 250 с.; Кит О. И., Шатова Ю. С., Новикова И. А., Владимирова Л. Ю., Ульянова Е. П., Комова Е. А., Кечеджиева Э. Э. Экспрессия P53 и BCL2 при различных подтипах рака молочной железы // Фундаментальные исследования. 2014. № 10–1. С. 85–88.; Brunelle J. K., Ryan J., Yecies D., Opferman J. T., Letai A. MCL-1-dependent leukemia cells are more sensitive to chemotherapy than BCL-2-dependent counterparts. J. Cell Biology. 2009. Vol. 187. Р. 429–442.; Odenike O., Onida F., Padron E. Myelodysplastic syndromes and myelodysplastic / myeloproliferative neoplasms: an update on risk stratification, molecular genetics, and therapeutic approaches including allogeneic hematopoietic stem cell transplantation. Am. Soc. Clin. Oncol. Educ. Book. 2015. P. e398–412.; Greenberg P. L., Stone R. M., Al-Kali A., Bejar R., Bennett J. M., Bloomfield C. D. et al. NCCN (National Comprehensive Cancer Network) Clinical Practice Guidelines in Oncology. Myelodysplastic syndromes. Version 1. 2016.; Della Porta M. G., Tuechler H., Malcovati L., Schanz J., Sanz G., Garcia-Manero G. et al. Validation of WHO classification-based Prognostic Scoring System (WPSS) for myelodysplastic syndromes and comparison with the revised International Prognostic Scoring System (IPSS-R). A study of the International Working Group for Prognosis in Myelodysplasia (IWG-PM). Leukemia. 2015. Vol. 29 (7). P. 1502–1513.; Carbone P. P., Kaplan H. S., Musshoff K., Smithers D.W., Tubiana M. Report of the Committee on Hodgkin’s Disease Staging Classification. 1971. Cancer Res. Vol. 31 (11). P. 1860–1861.; Lister T. A., Crowther D., Sutcliffe S. B., Glatstein E., Canellos G. P. et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J. Clin. Oncol. 1989. Vol. 7 (11). P. 1630–1636.; Ланг Т. А., Сесик М. Как описывать статистику в медицине. Руководство для авторов, редакторов и рецензентов: перевод с англ. / под ред. В. П. Леонова. Москва: Практическая медицина, 2011. 480 с.; Royston P., Parmar M. K., Altman D. G. Visualizing of survival in time-to-event studies: acompliment to Kaplan-Meier Plots. J. Natl. Cancer Inst. 2008. Vol. 100. Р. 92–97.; https://www.malignanttumors.org/jour/article/view/510

  5. 5
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 20, № 1 (2018); 45-52 ; Медицинская иммунология; Том 20, № 1 (2018); 45-52 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2018-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1431/1002; Иванова И.П., Савкин И.В., Селедцова Г.В., Шишков А.А., Селедцов В.И. Фенотипические характеристики и внутриклеточные цитокины Т-клеток памяти у больных рассеянным склерозом после Т-клеточной вакцинации // Acta Biomedica Scientifica, 2012. № 3-2 (85). С. 79-82. [Ivanova I.P., Savkin I.V., Seledtsova G.V., Shishkov A.A., Seledtsov V.I. Phenotypic characterization and intracellular cytokines of memory T-cells in multiple sclerosis patients aſter T-cell vaccination. Acta Biomedica Scientifica = Acta Biomedica Scientifica, 2012, no. 3-2 (85), pp. 79-82. (In Russ.)]; Кудрявцев И.В. Т-клетки памяти: основные популяции и стадии дифференцировки // Российский иммунологический журнал, 2014. Т. 8, № 4 (17). С. 947-964. [Kudryavtsev I.V. T cells: major populations and stages of differentiation. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2014, Vol. 8, no. 4, pp. 947-964. (In Russ.)]; Топтыгина А.П., Семикина Е.Л., Копыльцова Е.А., Алешкин В.А. Возрастная динамика экспрессии изоформ CD45 Т-хелперами и Т-цитотоксическими лимфоцитами крови здоровых доноров // Иммуно-логия, 2014. № 4. С. 229-232. [Toptygina A.P., Semikina E.L., Kopyltsova E.A., Alyoshkin V.A. Age-dependent dynamics of the CD45 isoforms expression on the T-helper and T-cytotoxic lymphocytes in the blood of the healthy people. Immunologiya = Immunology, 2014, Vol. 35, no. 4, pp. 229-232. (In Russ.)]; Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2010. 752 c. [Yarilin A.A. Immunology]. Moscow: GEOTAR-Media, 2010. 752 p.; Ahlers J.D., Belyakov I.M. Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood, 2010, Vol. 115, no. 9, pp. 1678-1689.; Alves N.L., Hooibrink B., Arosa F.A., van Lier R.A. IL-15 induces antigen-independent expansion and differentiation of human naive CD8+ T cells in vitro. Blood, 2003, Vol. 102, no. 7, pp. 2541-2546.; Appay V., Dunbar P.R., Callan M., Klenerman P., Gillespie G.M., Papagno L., Ogg G.S., King A., Lechner F., Spina C.A., Little S., Havlir D.V., Richman D.D., Gruener N., Pape G., Waters A., Easterbrook P., Salio M., Cerundolo V., McMichael A.J., Rowland-Jones S.L. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med., 2002, Vol. 8, pp. 379-385.; Bell E.B., Sparshott S.M., Bunce C. CD4+ T-cell memory, CD45R subsets and the persistence of antigen – a unifying concept. Immunol. Today, 1998, Vol. 19, no. 2, pp. 60-64.; Berger C., Jensen M.C., Lansdorp P.M., Gough M., Elliott C., Riddell S.R. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest., 2008, Vol. 118, no. 1, pp. 294-305.; Bouneaud C., Garcia Z., Kourilsky P., Pannetier C. Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J. Exp. Med., 2005, Vol. 201, pp. 579-590.; Burkett P.R., Koka R., Chien M., Chai S., Chan F., Ma A., Boone D.L. IL-15Rα expression on CD8+ T cells is dispensable for T cell memory. Proc. Natl. Acad. Sci. USA, 2003, Vol. 100, no. 8, pp. 4724-4729.; Carrasco J., Godelaine D., van Pel A., Boon T., van der Bruggen P. CD45RA on human CD8 T cells is sensitive to the time elapsed since the last antigenic stimulation. Blood, 2006, Vol. 108, no. 9, pp. 2897-2905.; Cooper M.A., Bush J.E., Fehniger T.A., van Deusen J.B., Waite R.E., Liu Y., Aguila H.L., Caligiuri M.A. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood, 2002, Vol. 100, no. 10, pp. 3633-3638.; Dunne P.J., Faint J.M., Gudgeon N.H., Fletcher J.M., Plunkett F.J., Soares M.V., Hislop A.D., Annels N.E., Rickinson A.B., Salmon M., Akbar A.N. Epstein–Barr virus–specific CD8(+) T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood, 2002, Vol. 100, no. 3, pp. 933-940.; Faint J.M., Annels N.E., Curnow S.J., Shields P., Pilling D., Hislop A.D., Wu L., Akbar A.N., Buckley C.D., Moss P.A., Adams D.H., Rickinson A.B., Salmon M. Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics. J. Immunol., 2001, Vol. 167, no. 1, pp. 212-220.; Foulds K.E., Zenewicz L.A., Shedlock D.J., Jiang J., Troy A.E., Shen H. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol., 2002, Vol. 168, no. 4, pp. 1528-1532.; Geginat J., Campagnaro S., Sallusto F., Lanzavecchia A. TCR-independent proliferation and differentiation of human CD4+ T cell subsets induced by cytokines. Adv. Exp. Med. Biol., 2002, Vol. 512, pp. 107-112.; Geginat J., Lanzavecchia A., Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood, 2003, Vol. 101, no. 11, pp. 4260-4266.; Geginat J., Sallusto F., Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J. Exp. Med., 2001, Vol. 194, no. 12, pp. 1711-1719.; Goldrath A.W., Sivakumar P.V., Glaccum M., Kennedy M.K., Bevan M.J., Benoist C., Mathis D., Butz E.A. Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med., 2002, Vol. 195, no. 12, pp. 1515-1522.; Jiang Q., Li W.Q., Hofmeister R.R., Young H.A., Hodge D.R., Keller J.R., Khaled A.R., Durum S.K. Distinct regions of the interleukin-7 receptor regulate different Bcl2 family members. Mol. Cell. Biol., 2004, Vol. 24, no. 14, pp. 6501-6513.; Kalia V., Sarkar S., Subramaniam S., Haining W.N., Smith K.A., Ahmed R. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity, 2010, Vol. 32, no. 1, pp. 91-103.; Lanzavecchia A., Sallusto F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol., 2002, Vol. 2, pp. 982-987.; Lefrançois L. Development, trafficking, and function of memory T-cell subsets. Immunol. Rev., 2006, Vol. 211, pp. 93-103.; Lefrançois L., Marzo A. The descent of memory T-cell subsets. Nat. Rev. Immunol., 2006, Vol. 6, pp. 618-623.; Libri V., Azevedo R.I., Jackson S.E., Di Mitri D., Lachmann R., Fuhrmann S., Vukmanovic–Stejic M., Yong K., Battistini L., Kern F., Soares M.V., Akbar A.N. Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+CD45RA+CD27+ T cells: the potential involvement of interleukin-7 in this process. Immunology, 2011, Vol. 132, no. 3, pp. 326-339.; Litvinova L.S., Sokhonevich N.A., Gutsol A.A., Kofanova K.A. Influence of immunoregulatory cytokines (IL-2, IL-7 and IL-15) in vitro upon activation, proliferation and apoptosis of immune memory T-cells. Cell and tissue biology, 2013, Vol. 7, no. 6, pp. 539-544.; Ma A., Koka R., Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol., 2006, Vol. 24, pp. 657-679.; Mahnke Y.D., Brodie T.M., Sallusto F., Roederer M., Lugli E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol., 2013, Vol. 43, no. 11, pp. 2797-2809.; Marsden V.S., Strasser A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol., 2003, Vol. 21, pp. 72-105.; Marzo A.L., Klonowski K.D., le Bon A., Borrow P., Tough D.F., Lefrançois L. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol., 2005, Vol. 6, pp. 793-799.; Mora J.R., von Andrian U.H. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol., 2006, Vol. 27, no. 5, pp. 235-243.; Prlic M., Lefrancois L., Jameson S.C. Multiple Choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J. Exp. Med., 2002, Vol. 195, no. 12, F49-52.; Riou C., Yassine-Diab B., van Grevenynghe J., Somogyi R., Greller L.D., Gagnon D., Gimmig S., Wilkinson P., Shi Y., Cameron M.J., Campos-Gonzalez R., Balderas R.S., Kelvin D., Sekaly R.-P., Haddad E.K. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med., 2007, Vol. 204, no. 1, pp. 79-91.; Romero P., Zippelius A., Kurth I., Pittet M.J., Touvrey C., Iancu E.M., Corthesy P., Devevre E., Speiser D.E., Rufer N. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J. Immunol., 2007, Vol. 178, no. 7, pp. 4112-4119.; Saito S., Nakashima A., Shima T., Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol., 2010, Vol. 63, no. 6, pp. 601-610.; Sallusto F., Geginat J., Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol., 2004, Vol. 22, pp. 745-763.; Tan J.T., Ernst B., Kieper W.C., LeRoy E., Sprent J., Surh C.D. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med., 2002, Vol. 195, no. 12, pp. 1523-1532.; Unsoeld H., Pircher H. Complex memory T-cell phenotypes revealed by coexpression of CD62L and CCR7. J. Virol., 2005, Vol. 79, pp. 4510-4513.; van Leeuwen E.M., Gamadia L.E., Baars P.A., Remmerswaal E.B., ten Berge I.J., van Lier R.A. Proliferation requirements of cytomegalovirus–specific, effector-type human CD8+ T cells. J. Immunol., 2002, Vol. 169, no. 10, pp. 5838-5843.; Willinger T., Freeman T., Hasegawa H., McMichael A.J., Callan M.F. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol., 2005, Vol. 175, no. 9, pp. 5895-5903.; Yang S., Liu F., Wang Q.J., Rosenberg S.A., Morgan R.A. The shedding of CD62L (L-selectin) regulates the acquisition of lytic activity in human tumor reactive T lymphocytes. PLoS ONE, 2011, Vol. 6, no. 7, e22560. doi:10.1371/journal.pone.0022560.; https://www.mimmun.ru/mimmun/article/view/1431

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20