Showing 1 - 7 results of 7 for search '"протонообменная мембрана"', query time: 0.47s Refine Results
  1. 1
    Academic Journal

    Contributors: Исследование поддержано Грантом Президента Российской Федерации на проект МК-3371.2022.4.

    Source: Alternative Energy and Ecology (ISJAEE); № 3 (2023); 30-48 ; Альтернативная энергетика и экология (ISJAEE); № 3 (2023); 30-48 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2219/1801; Z. Li, K. Li, P. Du, M. Mehmandoust, F. Karimi, N. Erk, Carbon-based photocatalysts for hydrogen production: A review, Chemosphere. 308 (2022) 135998. https://doi.org/10.1016/j.chemosphere.2022.135998.; J. Koponen, A. Poluektov, V. Ruuskanen, A. Kosonen, M. Niemelä, J. Ahola, Comparison of thyristor and insulated-gate bipolar transistor -based power supply topologies in industrial water electrolysis applications, Journal of Power Sources. 491 (2021) 229443. https://doi.org/10.1016/j.jpowsour.2020.229443.; S. Öberg, M. Odenberger, F. Johnsson, The value of flexible fuel mixing in hydrogen-fueled gas turbines – A techno-economic study, International Journal of Hydrogen Energy. 47 (2022) 31684–31702. https://doi.org/10.1016/j.ijhydene.2022.07.075.; H.C. Mantripragada, H. Zhai, E.S. Rubin, Boundary Dam or Petra Nova – Which is a better model for CCS energy supply?, International Journal of Greenhouse Gas Control. 82 (2019) 59–68. https://doi.org/10.1016/j.ijggc.2019.01.004.; M. Temiz, I. Dincer, Development of solar and wind based hydrogen energy systems for sustainable communities, Energy Conversion and Management. 269 (2022) 116090. https://doi.org/10.1016/j.enconman.2022.116090.; S. Shiva Kumar, H. Lim, An overview of water electrolysis technologies for green hydrogen production, Energy Reports. 8 (2022) 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127.; J. Li, J. Chen, Z. Yuan, L. Xu, Y. Zhang, M. AlBahrani, Multi-objective risk-constrained optimal performance of hydrogen-based multi energy systems for future sustainable societies, Sustainable Cities and Society. 87 (2022) 104176. https://doi.org/10.1016/j.scs.2022.104176.; Y. Zhao, Q. Liu, Y. Duan, Y. Zhang, Y. Huang, L. Shi, J. Wang, Q. Yi, A multi-dimensional feasibility analysis of coal to methanol assisted by green hydrogen from a life cycle viewpoint, Energy Conversion and Management. 268 (2022) 115992. https://doi.org/10.1016/j.enconman.2022.115992.; M.M. Hasan, G. Genç, Techno-economic analysis of solar/wind power based hydrogen production, Fuel. 324 (2022) 124564. https://doi.org/10.1016/j.fuel.2022.124564.; G. Durakovic, P.C. del Granado, A. Tomasgard, Powering Europe with North Sea offshore wind: The impact of hydrogen investments on grid infrastructure and power prices, Energy. 263 (2023) 125654. https://doi.org/10.1016/j.energy.2022.125654.; F. Posso, M. Galeano, C. Baranda, D. Franco, A. Rincón, J. Zambrano, C. Cavaliero, D. Lópes, Towards the Hydrogen Economy in Paraguay: Green hydrogen production potential and end-uses, International Journal of Hydrogen Energy. 47 (2022) 30027–30049. https://doi.org/10.1016/j.ijhydene.2022.05.217.; M. Ozturk, I. Dincer, System development and assessment for green hydrogen generation and blending with natural gas, Energy. 261 (2022) 125233. https://doi.org/10.1016/j.energy.2022.125233.; O.A. Dabar, M.O. Awaleh, M.M. Waberi, A.- B.I. Adan, Wind resource assessment and technoeconomic analysis of wind energy and green hydrogen production in the Republic of Djibouti, Energy Reports. 8 (2022) 8996–9016. https://doi.org/10.1016/j.egyr.2022.07.013.; W. Chaichan, J. Waewsak, R. Nikhom, C. Kongruang, S. Chiwamongkhonkarn, Y. Gagnon, Optimization of stand-alone and grid-connected hybrid solar/wind/fuel cell power generation for green islands: Application to Koh Samui, southern Thailand, Energy Reports. 8 (2022) 480–493. https://doi.org/10.1016/j.egyr.2022.07.024.; S. Kolb, J. Müller, N. Luna-Jaspe, J. Karl, Renewable hydrogen imports for the German energy transition – A comparative life cycle assessment, Journal of Cleaner Production. 373 (2022) 133289. https://doi.org/10.1016/j.jclepro.2022.133289.; I. Dincer, N. Javani, G.K. Karayel, Sustainable city concept based on green hydrogen energy, Sustainable Cities and Society. 87 (2022) 104154. https://doi.org/10.1016/j.scs.2022.104154.; M. Nasser, T.F. Megahed, S. Ookawara, H. Hassan, Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic, Energy Conversion and Management. 267 (2022) 115870. https://doi.org/10.1016/j.enconman.2022.115870.; A. Fatih Güven, M. Mahmoud Samy, Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches, Energy Conversion and Management. 269 (2022) 116058. https://doi.org/10.1016/j.enconman.2022.116058.; A. Okunlola, M. Davis, A. Kumar, The development of an assessment framework to determine the technical hydrogen production potential from wind and solar energy, Renewable and Sustainable Energy Reviews. 166 (2022) 112610. https://doi.org/10.1016/j.rser.2022.112610.; J. Wang, J. Mao, R. Hao, S. Li, G. Bao, Multienergy coupling analysis and optimal scheduling of regional integrated energy system, Energy. 254 (2022) 124482. https://doi.org/10.1016/j.energy.2022.124482.; W. Zhang, A. Maleki, M. Alhuyi Nazari, Optimal operation of a hydrogen station using multi-source renewable energy (solar/wind) by a new approach, Journal of Energy Storage. 53 (2022) 104983. https://doi.org/10.1016/j.est.2022.104983.; A. Izadi, M. Shahafve, P. Ahmadi, N. Javani, Transient simulation and techno-economic assessment of a near-zero energy building using a hydrogen storage system and different backup fuels, International Journal of Hydrogen Energy. 47 (2022) 31927–31940. https://doi.org/10.1016/j.ijhydene.2022.06.033.; V. Mariani, F. Zenith, L. Glielmo, Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control, Energies. 15 (2022) 6307. https://doi.org/10.3390/en15176307.; T. Liu, Z. Yang, Y. Duan, S. Hu, Technoeconomic assessment of hydrogen integrated into electrical/thermal energy storage in PV+ Wind system devoting to high reliability, Energy Conversion and Management. 268 (2022) 116067. https://doi.org/10.1016/j.enconman.2022.116067.; A.A. Alturki, Optimal design for a hybrid microgrid-hydrogen storage facility in Saudi Arabia, Energ Sustain Soc. 12 (2022) 24. https://doi.org/10.1186/s13705-022-00351-7.; H.S. Salama, G. Magdy, A. Bakeer, I. Vokony, Adaptive coordination control strategy of renewable energy sources, hydrogen production unit, and fuel cell for frequency regulation of a hybrid distributed power system, Prot Control Mod Power Syst. 7 (2022) 34. https://doi.org/10.1186/s41601-022-00258-7.; J. Sun, W. Zhou, H. Zhou, A novel principle for PLL and its application in digital innovation experiment of circuits in active hydrogen maser, in: 2010 IEEE International Frequency Control Symposium, IEEE, Newport Beach, CA, USA, 2010: pp. 431–434. https://doi.org/10.1109/FREQ.2010.5556295.; H. Zhang, T. Yuan, Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations, Applied Energy. 324 (2022) 119760. https://doi.org/10.1016/j.apenergy.2022.119760.; F. K/bidi, C. Damour, D. Grondin, M. Hilairet, M. Benne, Power Management of a Hybrid Micro-Grid with Photovoltaic Production and Hydrogen Storage, Energies. 14 (2021) 1628. https://doi.org/10.3390/en14061628.; M. Tao, J.A. Azzolini, E.B. Stechel, K.E. Ayers, T.I. Valdez, Review—Engineering Challenges in Green Hydrogen Production Systems, J. Electrochem. Soc. 169 (2022) 054503. https://doi.org/10.1149/1945-7111/ac6983.; B. Yodwong, D. Guilbert, M. Phattanasak, W. Kaewmanee, M. Hinaje, G. Vitale, AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges, Electronics. 9 (2020) 912. https://doi.org/10.3390/electronics9060912.; D. Concha, H. Renaudineau, M.S. Hernández, A.M. Llor, S. Kouro, Evaluation of DCX converters for off-grid photovoltaic-based green hydrogen production, International Journal of Hydrogen Energy. 46 (2021) 19861–19870. https://doi.org/10.1016/j.ijhydene.2021.03.129.; N.K. Singh, S. Saxena, V.K. Sethi, Performance Evaluation of A PV- Powered Alkaline Water Electrolyzer for Sustainable Green Hydrogen Production, IJETT. 70 (2022) 337–348. https://doi.org/10.14445/22315381/IJETT-V70I6P235.; V. Subotić, C. Hochenauer, Analysis of solid oxide fuel and electrolysis cells operated in a real-system environment: State-of-the-health diagnostic, failure modes, degradation mitigation and performance regeneration, Progress in Energy and Combustion Science. 93 (2022) 101011. https://doi.org/10.1016/j.pecs.2022.101011.; C.H. Li, X.J. Zhu, Q.J. Zeng, Y.L. Wang, Modeling of Hydrogen Production in a Stand-Alone Photovoltaic System, AMR. 512–515 (2012) 1413–1417. https://doi.org/10.4028/www.scientific.net/AMR.512-515.1413.; F. Moazeni, J. Khazaei, Electrochemical optimization and small-signal analysis of grid-connected polymer electrolyte membrane (PEM) fuel cells for renewable energy integration, Renewable Energy. 155 (2020) 848–861. https://doi.org/10.1016/j.renene.2020.03.165.; J. Khazaei, F. Moazeni, B. Trussell, A. Asrari, Small-signal Modeling and Analysis of a GridConnected PEM Fuel Cell, in: 2019 North American Power Symposium (NAPS), IEEE, Wichita, KS, USA, 2019: pp. 1–6. https://doi.org/10.1109/NAPS46351.2019.9000355.; https://www.isjaee.com/jour/article/view/2219

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7