-
1Academic Journal
Συγγραφείς: M. P. Sinyakov, М. П. Синяков
Συνεισφορές: The research was carried out as part of the state program p. 2 “Priority areas of scientific and technical activities in the Republic of Belarus” for 2016-2020, within the framework of the subject of the Department of Parasitology and Invasive Animal Diseases of ARSAVM “Study of parasitic systems and development of new means of treatment and prevention of invasive animal diseases” for 2016-2020, Работа выполнена в рамках п. 2 Государственной программы «Приоритетные направления научно-технической деятельности в Республике Беларусь на 2016–2020 годы», в рамках темы кафедры паразитологии и инвазионных болезней животных ВГАВМ «Изучение паразитарных систем и разработка новых средств лечения и профилактики инвазионных болезней животных» на 2016–2020 годы
Πηγή: Proceedings of the National Academy of Sciences of Belarus. Agrarian Series; Том 59, № 2 (2021); 220-231 ; Известия Национальной академии наук Беларуси. Серия аграрных наук; Том 59, № 2 (2021); 220-231 ; 1817-7239 ; 1817-7204 ; 10.29235/1817-7204-2021-59-2
Θεματικοί όροι: препарат «Празимакс», horses, parasitocenosis of digestive tract, intestinal strongylatosis, gastrophilia, parascariosis, oxyurosis, anoplocephalidosis, diagnostic treatment, antiparasitic preparations, anthelmintics, “Prazimax” preparation, лошади, паразитоценозы пищеварительного тракта, кишечные стронгилятозы, гастерофилез, параскариоз, оксиуроз, аноплоцефалидоз, диагностическая обработка, противопаразитарные препараты, антигельминтики
Περιγραφή αρχείου: application/pdf
Relation: https://vestiagr.belnauka.by/jour/article/view/566/530; Двойнос, Г.М. Стронгилиды домашних и диких лошадей / Г.М. Двойнос, В.А. Харченко. – Киев : Наук. думка, 1994. – 233 c.; Длубаковский, В.И. Ассоциативные нематодозы лошадей в Беларуси / В.И. Длубаковский // Ветеринарная наука – производству : науч. тр. / Ин-т эксперим. ветеринарии им. С.Н. Вышелесского НАН Беларуси. – Минск, 2002. – Вып. 36. – С. 169–178.; Ивашкин, В.М. Определитель гельминтозов лошадей / В.М. Ивашкин, Г.М. Двойнос. – Киев : Наук. думка, 1984. – 164 с.; Фауна трихонематид (Strongylida: Trichonematidae) у лошадей Каракалпакстана / А.Ж. Каниязов [и др.] // Теория и практика борьбы с паразитарными болезнями : сб. науч. ст. по материалам междунар. науч. конф. / Всерос. науч.-исслед. ин-т фундам. и приклад. паразитологии животных и растений. – М., 2019. – Вып. 20. – С. 247–251. https://doi.org/10.31016/978-5-9902340-8-6.2019.20.247-251; Понамарев, Н.М. Эколого-эпизоотологическая характеристика оксиуроза лошадей в Алтайском крае / Н.М. Понамарев, Н.В. Тихая // Вестн. Алт. гос. аграр. ун-та. – 2018. – №4 (162). – С. 146–149.; Понамарев, Н. Фауна нематод, паразитирующих у сельскохозяйственных животных Алтайского края / Н. Понамарев, Н. Лунева // Ветеринария с.-х. животных. – 2018. – №12. – С. 31–35.; Пузанова, Е.В. Современная эпизоотическая ситуация по стронгилятозам лошадей в Российской Федерации / Е.В. Пузанова, А.Н. Постевой // Теория и практика борьбы с паразитарными болезнями : сб. науч. ст. по материалам междунар. науч. конф. / Всерос. науч.-исслед. ин-т фундам. и приклад. паразитологии животных и растений. – М., 2019. – Вып. 20. – С. 492–498. https://doi.org/10.31016/978-5-9902340-8-6.2019.20.492-498; Стасюкевич, С.И. Гастерофилез лошадей: проблемы и меры борьбы / С.И. Стасюкевич // Наше сел. хоз-во. – 2013. – №20. – С. 56–62.; Ятусевич, А.И. Гастерофилез лошадей и меры борьбы с ним / А.И. Ятусевич, С.И. Стасюкевич, М.В. Скуловец // Эпизоотология, иммунобиология, фармакология и санитария. – 2008. – №1. – С. 16–22.; Адаптационные процессы и паразитозы животных / А.И. Ятусевич [и др.]; ред. А.И. Ятусевич. – 2-е изд., перераб. – Витебск : ВГАВМ, 2020. – 571 с.; Гастрофилезы лошадей / А.И. Ятусевич [и др.] // Паразитология и инвазионные болезни животных : учебник / А.И. Ятусевич [и др.]; ред. А.И. Ятусевич. – Минск, 2017. – С. 490–495.; Руководство по ветеринарной паразитологии / А.И. Ятусевич [и др.]; ред.: В.Ф. Галат, А.И. Ятусевич. – Минск : ИВЦ Минфина, 2015. – 495 с.; Гастерофилез однокопытных / А.И. Ятусевич [и др.] // Арахноэнтомозные болезни животных / А.И. Ятусевич [и др.]; под ред. А.И. Ятусевича. – Витебск, 2019. – С. 140–172.; Василевич, Ф.И. Оводовые болезни животных и современные меры борьбы с ними / Ф.И. Василевич, С.И. Стасюкевич, А.И. Ятусевич. – М. : МГАВМиБ, 2013. – 311 с.; Гельминты желудочно-кишечного тракта лошадей в Республике Беларусь / А.И. Ятусевич [и др.] // Ветеринар. медицина Беларуси. – 2003. – №4/5. – С. 30–33.; Синяков, М.П. Ассоциативные гельминтозы лошадей и меры борьбы с ними / М.П. Синяков, Е.М. Шевякова // Учен. зап. учреждения образования «Витеб. ордена «Знак Почета» гос. акад. ветеринар. медицины». – 2013. – Т. 49, вып. 1, ч. 1. – С. 58–60.; Синяков, М.П. Ассоциативные паразитозы лошадей Беларуси / М.П. Синяков // Учен. зап. учреждения образования «Витеб. ордена «Знак Почета» гос. акад. ветеринар. медицины». – 2017. – Т. 53, вып. 1. – С. 136–139.; Синяков, М.П. Кишечные гельминтозы лошадей Беларуси / М.П. Синяков. – Витебск : ВГАВМ, 2018. – 179 с; Синяков, М.П. Паразитофауна пищеварительной системы лошадей Беларуси / М.П. Синяков // Паразитарные системы и паразитоценозы животных : материалы V науч.-практ. конф. Междунар. ассоц. паразитоценологов, Витебск, 24–27 мая 2016 г. / Витеб. гос. акад. ветеринар. медицины; ред.: А.И. Ятусевич [и др.]. – Витебск, 2016. – С. 159–162.; Синяков, М.П. Эпизоотология микстпаразитозов лошадей в Республике Беларусь / М.П. Синяков, Г.А. Стогначева, Н.Д. Солейчук // Учен. зап. учреждения образования «Витеб. ордена «Знак Почета» гос. акад. ветеринар. медицины». – Витебск, 2019. – Т. 55, вып. 4. – С. 80–85.; Алезан – новый высокоэффективный антгельминтик при нематодозах лошадей / А.Н. Герке [и др.] // Ветеринария. – 2006. – №9. – С. 11–12.; Испытание противопаразитарной пасты на основе ивермектина при основных паразитозах лошадей в условиях производства / М.Б. Мусаев [и др.] // Теория и практика борьбы с паразитарными болезнями : сб. науч. ст. по материалам междунар. науч. конф. / Всерос. науч.-исслед. ин-т фундам. и приклад. паразитологии животных и растений. – М., 2017. – Вып. 18. – С. 285–288.; Комиссионное испытание противопаразитарной пасты на основе ивермектина при основных гельминтозах лошадей / М.Б. Мусаев [и др.] // Теория и практика борьбы с паразитарными болезнями : сб. науч. ст. по материалам междунар. науч. конфер. / Всерос. науч.-исслед. ин-т фундам. и приклад. паразитологии животных и растений. – М., 2017. – Вып. 18. – С. 289–292.; Калугина, Е.Г. Изучение эффективности «Эквалан Дуо» при гельминтозах лошадей / Е.Г. Калугина, О.А. Столбова // Теория и практика борьбы с паразитарными болезнями : : сб. науч. ст. по материалам междунар. науч. конф. / Всерос. науч.-исслед. ин-т фундам. и приклад. паразитологии животных и растений. – М., 2019. – Вып. 20. – С. 242–246. https://doi.org/10.31016/978-5-9902340-8-6.2019.20.242-246; Ятусевич, А.И. Трихонематидозы лошадей / А.И. Ятусевич, М.П. Синяков. – Витебск : ВГАВМ, 2011. – 106 с.; Паразитозы желудочно-кишечного тракта лошадей Беларуси / А.И. Ятусевич [и др.] // Паразитарные болезни человека, животных и растений : тр. VI Междунар. науч.-практ. конф. / Витеб. гос. мед. ун-т, Отд-ние мед. наук НАН Беларуси; редкол.: О.-Я.Л. Бекиш [и др.] – Витебск, 2008. – С. 340–343.; Синяков, М.П. Проблема эймериоза лошадей в Республике Беларусь / М.П. Синяков, В.М. Мироненко // Учен. зап. учреждения образования «Витеб. гос. акад. ветеринар. медицины». – 2011. – Т. 47, вып. 2, ч. 1. – С. 94–96.; https://vestiagr.belnauka.by/jour/article/view/566
-
2Academic Journal
Συγγραφείς: N. V. Beloborodova, E. V. Zuev, M. N. Zamyatin, V. G. Gusarov, Н. В. Белобородова, Е. В. Зуев, М. Н. Замятин, В. Г. Гусаров
Πηγή: General Reanimatology; Том 16, № 6 (2020); 65-90 ; Общая реаниматология; Том 16, № 6 (2020); 65-90 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2020-6
Θεματικοί όροι: доксициклин, anti-malaria drugs, viral protease inhibitors, anti-parasitic drugs, interleukin inhibitors, Janus kinase inhibitors, interferons, convalescents plasma, corticosteroids, procalcitonin, antibiotics, new target, matrix metalloproteinases, doxycycline, противомалярийные средства, ингибиторы вирусных протеаз, противопаразитарные препараты, ингибиторы интерлейкинов, ингибиторы янус-киназ, интерфероны, плазма реконвалесцентов, кортикостероиды, прокальцитонин, антибиотики, новая мишень, матриксные металлопротеиназы
Περιγραφή αρχείου: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/1987/1466; https://www.reanimatology.com/rmt/article/view/1987/1467; Stollenwerk N., Harper R.W., Sandrock Ch.E. Bench-to-bedside review: Rare and common viral infections in the intensive care unit — linking pathophysiology to clinical presentation. Critical Care. 2008; 12 (4): 219. DOI:10.1186/cc6917; Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 7 от 03.06.2020 https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/origi-nal/03062020_MR_COVID-19_v7.pdf; Alexander P.E., Debono V.B., Mammen M.J., Iorio A., Aryal K., Deng D., Brocard E., Alhazzani W. COVID-19 research has overall low methodological quality thus far: case in point for chloroquine/hydroxy-chloroquine. J Clin Epidemiol. 2020; 123: 120-126. PMID: 32330521 PMCID: PMC7194626 DOI:10.1016/j.jclinepi.2020.04.016; U.S. National Library of Medicine. Clinical Trials.com https://clini-caltrials.gov/ct2/results/details?cond=COVID-19; Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial agents and chemotherapy. 2009; 53 (8): 3416-3421. DOI:10.1128/AAC.01509-08; Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek Th.G., Seidah N.G., Nichol St.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal. 2005; 2 (1): 69. DOI:10.1186/1743-422X-2-69; Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W. and Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020; 30 (3): 269-271. DOI:10.1038/s41422-020-0282-0; Delvecchio R., Higa L.M., Pezzuto P, Valadao A.L., Garcez PP, Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J.M., Aliota M.T., Caine E.A., Osorio J.E., Bellio M., O’Connor D.H., Rehen S., de Aguiar R.S., Savarino A., Campanati L., Tanuri A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses. 2016; 8 (12): 322. DOI:10.3390/v8120322. PMID: 27916837; te Velthuis A.J.W., van den Worm S.H.E., Sims A.C., Baric R.S., Snijder E.J., van Hemert M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog. 2010; 6 (11): e1001176. PMID: 32330521 PMCID: PMC7194626 DOI:10.1016/j.jclinepi.2020.04.016; Gao J., Tian Zh., Yang X Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020; 14: 723. DOI:10.5582/bst.2020.01047. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32074550; Gautret P., Lagier J.-Ch., Parola Ph.,Hoang V.Th., Meddeb L., Mailhe M., DoudierB., CourjonJ., Giordanengo V, VieiraV.E.,DupontH.T., Honort S., Colson Ph., ChabriereE., La ScolaB., Rolain J.-M., BrouquiPh., Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020: 105949. DOI:10.1016/j.ijantimicag.2020.105949. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32205204; Chu C.M., Cheng V.C.C., Hung I.F.N., Wong M.M.L., Chan K.H., Chan K.S., Kao R.Y.T., Poon L.L.M., C.L.P., Guan Y., Peiris J.S.M., Yuen K.Y., HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59: 252-256. DOI:10.1136/thorax.2003.012658; Chan K.S., Lai S.T., Chu C.M., Tsui E., Tam C.Y., Wong M.M.L., Tse M.W., Que T.L., Peiris J.S.M., Sung J., Wong V.C.W., Yuen K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003; 9: 399-406. PMID: 14660806; Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., Li X., Xia J., Chen N., Xiang J., Yu T., Bai T., Xie X., Zhang L., Li C., Yuan Y., Chen H., Li H., Huang H., Tu S., Gong F., Liu Y., Wei Y., Dong C., Zhou F., Gu X., Xu J., Liu Z., Zhang Y., Li H., Shang L., Wang K., Li K., Zhou X., Dong X., Qu Z., Lu S., Hu X., Ruan S., Luo S., Wu J., Peng L., Cheng F., Pan L., Zou J., Jia C., Wang J., Liu X., Wang S., Wu X., Ge Q., He J., Zhan H., Qiu F., Guo L., Huang C., Jaki T., Hayden F.G., Horby PW, ZhangD., Wang C. A Trial of Lopinavir-Ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020; 382: 17871799. DOI:10.1056/NEJMoa2001282. PMID: 32187464; Cai Q., Huang D., Ou P., Yu H., Zhu Zh., Xia Zh., Su Y., Ma Zh., Zhang Y., Li Zh., He Q., Liu L., Fu Y., Chen J. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. MedRxiv. 2020; DOI:10.1101/2020.02.17.20024018. PMID: 32239761; HuL., Chen S., Fu Y., GaoZ., LongH., RenH.-W.,Zuo Y., LiH., Wang J., Xu Q.-B., Yu W.-X., Liu J., Shao Ch., Hao J.-J., Wang Ch.-Zh., Ma Y., Wang Zh., Yanagihara R. J.-M. Wang, Deng Y. Risk factors associated with clinical outcomes in 323 COVID-19 patients in Wuhan, China. medRxiv 2020 DOI:10.1101/2020.03.25.20037721. PMID: 32361738; Yan D., Liu X.-Y., Zhu Y.-N, Huang L., Dan B.-T., Zhang G.-J., Gao Y.-H. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2. Eur Respir J. 2020; 56: 2000799. DOI:10.1183/13993003.00799-2020; Cai Q., Yang M,. Liu D,. Chen J,. Shu D., Xia J., Liao X., Gu Y., Cai Q., Yang Y., Shen C., Li X., Peng L., Huang D., Zhang J., Zhang S., Wang F., Liu J., Chen L., Chen S., Wang Z., Zhang Z., Cao R., Zhong W., Liu Y., Liu L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering. 2020; DOI:10.1016/j.eng.2020.03.007; de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remde-sivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Nat Acad Sci USA. 2020; 117 (12): 6771-6776. DOI:10.1073/pnas.1922083117. PMID: 32054787; Beigel John H., Tomashek Kay M., Dodd Lori E., Mehta Aneesh K., Zingman Barry S., Kalil Andre C., Hohmann Elizabeth, Chu Helen Y., Luetkemeyer Annie, Kline Susan, Lopez de Castilla Diego, Finberg Robert W., Dierberg Kerry, Tapson Victor, Hsieh Lanny, Patterson Thomas F., Paredes Roger, Sweeney Daniel A., Short William R., Touloumi Giota, Lye David Chien, Ohmagari Norio, Oh Myoung-don, Ruiz-Palacios Guillermo M., Benfield Thomas, Fatkenheuer Gerd, Kortepeter Mark G., Atmar Robert L., Creech C. Buddy, Lundgren Jens, Babiker Abdel G., Pett Sarah, Neaton James D., Burgess Timothy H., Bonnett Tyler, Green Michelle, Makowski Mat, Osinusi Anu, Nayak Seema, Lane H. Clifford. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020. DOI:10.1056/NEJMoa2015301.; Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.-M., Lim W.Sh., Makki S., Rooney K.D., Nguyen-Van-Tam J.S., Beck Ch.R. Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015; 211 (1): 80-90. DOI:10.1093/infdis/jiu396. PMID: 25030060; Shen Ch., Wang Zh., Zhao F., Yang Y., Li J., Yuan J., Wang F., Li D., Yang M., Xing L., Wei J., Xiao H., Yang Y., Qu J., Qing L., Chen L., Xu Zh., Peng L., Li Y., Zheng H., Chen F., Huang K., Jiang Y., Liu D., Zhang Zh., Liu Y., Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020; 323 (16): 1582-1589. DOI:10.1001/jama.2020.4783. PMID: 32219428; Duan K., Liu B., Li C., Zhang H., Yu T., Qu., Zhou M., Chen L., Meng Sh., Hu Y., Peng Ch., Yuan M., Huang J., Wang Z., Yu J., Gao., Wang D., Yu X., Li L., Zhang J., Wu X., Li B., Xu Y., Chen W., Peng Y., Hu Y., Lin L., Liu X., Huang Sh., Zhou Zh., Zhang L., Wang Y., Zhang Zh., Deng K., Xia Zh., Gong Q., Zhang W., Zheng X., Liu Y., Yang H., Zhou D., Yu D., Hou J., Shi Zh., Chen S., Chen Zh., Zhang X., Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. PNAS. 2020; 117 (17): 9490-9496; first published April 6, 2020. DOI:10.1073/pnas.2004168117. PMID: 32253318; Pandey S., Vyas G.N. Adverse effects of plasma transfusion. Transfusion. 2012; 52 (Suppl. 1): 65S-79S. DOI:10.1111/j.1537-2995.2012.03663.x; Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. June 2020; 178: 104787. DOI:10.1016/j.an-tiviral.2020.104787. PMID: 32251768; Rossignol J.-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health., 2016; 9 (3): 227-230. DOI:10.1016/j.jiph.2016.04.001; Sisk J.M., Frieman M.B., Machamer C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol. 2018; 99 (5): 619-630. DOI:10.1099/jgv.0.001047. PMID: 29557770; Alhazzani W, M0ller M.H., Arabi Y.M., Loeb M., Gong M.Ng, Fan E., Oczkowski S., Levy M.M., Derde L., Dzierba A., Du B., Aboodi M., Wun-sch H., Cecconi M., Koh Y., Chertow D.S., Maitland K., Alshamsi F., Bel-ley-Cote E., Greco M., Laundy M., Morgan J.S., Kesecioglu J., McGeer A., Mermel L., Mammen M.J., Alexander P.E., Arrington A., Centofanti J.E., Citerio G., Baw B., Memish Z.A., Hammond N., Hayden F.G., Evans L., Rhodes A. Surviving Sepsis Campaign. Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Critical Care Medicine.2020; 48 (6): e440-e469 Volume Online First — Issue — DOI:10.1097/CCM.0000000000004363. PMID: 32222812; Isidori, A.M., Arnaldi, G., Boscaro, Falorni M. A., Giordano C., Giordano R., Pivonello R., Pofi R., Hasenmajer V., Venneri M. A., Sbardella E., Sime-oli C., Scaroni C., Lenziet A. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. Journal of Endocrinolog-icalInvestigation. (43): 1141-1147 DOI:10.1007/s40618-020-01266-w; Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., Almotairi A., Al Khatib K., Alraddadi B., Shalhoub S., Abdulmomen A., Qushmaq I., Mady A., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Balkhy H.H., Al Harthy A., Deeb A.M., Al Mutairi H., Al-Dawood A., Merson L., Hayden F.G., Fowler R.A., Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir. Crit Care Med. 2018; 197: 757-767. DOI:10.1164/rccm.201706-1172OC. PMID: 29161116; Lee N., Chan K.C.A., Hui D.S., Ng E.K.O., Wu A., Chiu R.W.K., Wong V.W.S., Chan P.K.S., Wong K.T., Wong E., Cockram C.S., Tam J.S., Sung J.J.Y., Lo Y. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004; 31: 304-309. DOI:10.1016/j.jcv.2004.07.006.; Chen R.-Ch., TangX.-P, Tan Sh.-Y., LiangB.-L., Wan Zh.-Y., Fang J.-Q., Zhong N. Treatment of severe acute respiratory syndrome with glucosteroids. Chest Journal. 2006; 129 (6): 1441-1452. DOI:10.1378/chest.129.6.1441. PMID: 16778260; Zha L., Li Sh., Pan L., Tefsen B., Li Y., French N., Chen L., Yang G., Villanueva E.V. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Medical Journal of Australia. 2020; 212 (9): 416-420 DOI:10.5694/mja2.50577. PMID: 32296987; Keskin O., Farzan N., Birben E., H.Akel, Karaaslan C., Maitland-van der Zee A.H., Wechsler M.E., Vijverberg S.J., Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019; 9: 2. Published online 2019 Jan 9. DOI:10.1186/s13601-018-0239-2. PMID: 30647901; Zhang X., Song K., Tong F., Fei M., Guo H., Lu Zh., Wang J., Zheng Ch. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances. 2020; 4 (7): 1307-1310. DOI:10.1182/bloodadvances.2020001907. PMID: 32243501; Case Study: Treating COVID-19 in a Patient with Multiple Myeloma [news release]. Washington. Published April 3, 2020. hematology.org/newsroom/press-releases/2020/case-study-treat-ing-covid-19. Accessed April 7, 2020.; Jones G., Ding Ch. Tocilizumab: A Review of Its Safety and Efficacy in Rheumatoid Arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2010; 3: 81-89. DOI:10.4137/CMAMD.S4864; Gritti G., Raimondi F., Ripamonti D., Riva I., Landi F., Alborghetti L., Frigeni M., Damiani M., Mico C., Fagiuoli S., Cosentini R., Lorini FL., Fabretti F., . Morgan J.H, Owens B.M.J., Kanhai K., Cowburn J., Rizzi M., Di Marco F., Rambaldi A. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. preprint DOI:10.1101/2020.04.01.20048561; Treatment of COVID-19 Patients With Anti-interleukin Drugs (COV-AID). ClinicalTrials.gov Identifier: NCT04330638. https://clinicaltri-als.gov/ct2/show/record/NCT04330638; Regeneron and sanofi provide update on u.s. phase 2/3 adaptive-designed trial of kevzara® (sarilumab) in hospitalized covid-19 patients. TARRYTOWN, N.Y. and PARIS, April 27, 2020 /PRNewswire/ — https://www.prnewswire.com/news-releases/regeneron-and-sanofi-pro-vide-update-on-us-phase-23-adaptive-designed-trial-of-kevzara-sar-ilumab-in-hospitalized-covid-19-patients-301047326.html; Cavalli G., De Luca G., Campochiaro C., Della-Torre E., Ripa M., Canetti D., Oltolini Ch., Castiglioni B., Din Ch.T., Boffini N., Tomelleri A., Farina N., Ruggeri A., Rovere-Querini P., Di Lucca G., Martinenghi S., Scotti R., Tresoldi M., Ciceri F., Landoni G., Zangrillo A., Scarpellini P., Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2 (6): e325-e331. Published Online May 7. DOI:10.1016/S2665-9913(20)30127-2. PMID: 32501454; O’Shea J.J., Kontzias A., Yamaoka K., Tanaka Y., Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. Author manuscript; 2013; 72 (Suppl 2): ii111-5. DOI:10.1136/annrheumdis-2012-202576. PMID: 23532440; Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020; 81 (2): 318-356. PMID: 32333918 PMCID: PMC7177073 DOI:10.1016/j.jinf.2020.04.017; Safety and Efficacy of Ruxolitinib for COVID-19. ClinicalTrials.gov Identifier: NCT04348071. https://clinicaltrials.gov/ct2/show/NCT04348071; Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care in Subjects Hospitalized With COVID-19. CALAVI (Calquence Against the Virus) (ACE-ID-201). ClinicalTrials.gov Identifier: NCT04346199. https://clinicaltrials.gov/ct2/show/NCT04346199; TOFAcitinib in SARS-CoV2 Pneumonia. ClinicalTrials.gov Identifier: NCT04332042. https://clinicaltrials.gov/ct2/show/NCT04332042; Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc R Soc London Ser B. 1957; 147: 258-267. DOI:10.1098/rspb.1957.0048; Charles E. Samuel. Antiviral Actions of Interferons. Clin Microbiol Rev. 2001; 14 (4): 778-809. DOI:10.1128/CMR.14.4.778-809.2001; Sheahan TP, Sims A.C., Leist S.R., Schafer A., Won J., Brown A.J., Montgomery S.A., Hogg A., Babusis D., Clarke M.O., Spahn J.E., Bauer L., Sellers S., PorterD.,Feng J.Y., Cihlar T, JordanR.,DenisonM.R.,BaricR.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020; 11. 222. DOI:10.1038/s41467-019-13940-6. PMID: 31924756; Omrani A.S., Saad M.M., Baig K., Bahloul A., Abdul-Matin M., Alaida-roos A.Y., Almakhlafi G.A., Albarrak M.M., Memish Z.A., Albarrak A.M. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect. Dis. 2014; 14: 1090-1095. DOI:10.1016/S1473-3099(14)70920-X. PMID: 25278221; Arabi Y.M., Shalhoub S., Mandourah Y., Al-Hameed F., Al-Omari A., Al Qasim E., Jose J., Alraddadi B., Almotairi A., Al Khatib K., Abdulmomen A., Qushmaq I., Sindi A.A., Mady A., Solaiman O., Al-Raddadi R., Maghrabi K., Ragab A., Al Mekhlafi G.A., Balkhy H.H., Al Harthy A., Kharaba A., Gramish J.A., Al-Aithan A.M., Al-Dawood A., Merson L., Hayden F.G., Fowler R. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: A multicenter observational study. Clin Infect Dis. 2020; 70 (9): 1837-1844. DOI:10.1093/cid/ciz544. PMID: 31925415; National institutes of health. immune-based therapy under evaluation for treatment of COVID-19. Last Updated: May 12, 2020. https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy/; Hung I.F.-N., Lung K.-Ch., Tso E.Y.-K., Liu R., Chung T.W.-H., Chu M.-Y., Ng Y.-Y., Lo J., Chan J., Tam A.R., Shum H.-P., Chan V., Wu A.K.-L., Sin K.-M., Leung W.-Sh., Law W.-L., Lung D.Ch., Sin S., YeungP, Yip C.Ch.-Y., Zhang R.R., Fung A.Y.-F., Yan E.Y.-W., Leung K.-H., Ip J.D., Chu A.W.-H., Chan W.-M., Ng A.Ch.-K., Lee R., Fung K., Yeung A., Wu T.-Ch., Chan J.W.-M., Yan W.-W., Chan W.-M., Chan J. F.-W., Lie A.K.-W., Tsang O.T.-Y., Cheng V.Ch.-Ch., Que T.-L., Lau Ch.-S., Chan K.-H., To K.K.-W., Yuen K.-Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020; 395 (10238): 1695-1704. DOI:10.1016/S0140-6736(20)31042-4. PMID: 32401715; Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang Ch. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179: 104811. DOI:10.1016/j.antiviral.2020.104811. PMID: 32360182; de Jong H.J.I., Kingwell E., Shirani A., Tervaert J.W.C., Hupperts R., Zhao Y., Zhu F., Evans Ch., van der Kop M.L., Traboulsee A., Gustafson P., Petkau J., Marrie R. A., Tremlett H., British Columbia Multiple Sclerosis Clinic Neurologists. Evaluating the safety of в-interferons in MS: a series of nested case-control studies. Neurology. 2017; 88 (24): 2310-2320. DOI:10.1212/WNL.0000000000004037. PMID: 28500224; Hu Y., Ye Y., Ye L., Wang X., Yu H. Efficacy and safety of interferon alpha therapy in children with chronic hepatitis B. Medicine (Baltimore). 2019; 98 (32): e16683. DOI:10.1097/MD.0000000000016683. PMID: 31393369; Open-label, Randomized Study of IFX-1 in Patients With Severe COVID-19 Pneumonia (PANAMO). ClinicalTrials.gov Identifier: NCT04333420. https://clinicaltrials.gov/ct2/show/NCT04333420; Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020; Apr 13: 1-7. DOI:10.1007/s12015-020-09973-w. PMID: 32281052; Website of the British society for antimicrobial therapy http://bsac.org.uk/; Website of National Institute for Health and Care Excellence [NICE] https://www.nice.org.uk/guidance; Qing Y., Wenyang J., Raoyao L. COVID-19 Patients with Gastrointestinal Symptoms Are More Likely to Develop into Severe Cases «Science and Technology Daily», 21.04.2020 https://gmcc.alibabadoctor.com/news/detail?content_id=1496ca6b1c270a6e8a38ddf92471d795; Белобородова Н.В. «Сепсис. Метаболомный подход». Монография. М.: Издательство Медицинское информационное агентство «МИА»; 2018. 272. ISBN: 978-5-9986-0350-1; Beloborodova N.V., Sarshor Yu.N., Bedova A.Yu., Chernevskaya E.A., Pautova A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. SHOCK. 2018; 50 (3): 273-279. DOI:10.1097/SHK.0000000000001064; Beloborodova N.V., Olenin A.Yu., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. of Crit. Care. 2018; 43: 246-255. DOI:10.1016/j.jcrc.2017.09.014; Черневская Е.А., Белобородова Н.В. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018. 14 (5): 96-119. DOI:10.15360/1813-9779-2018-5-96-119; Beloborodova N.V., Grechko A.V., Olenin A.Yu. Chapter «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology» in Book «Infection and Sepsis» InTechOpen [online first]. DOI:10.5772/intechopen.87176; Белобородова Н.В. Метаболизм микробиоты при критических состояниях (обзор и постулаты). Общая реаниматология. 2019; 15 (6), 62-79. DOI:10.15360/1813-9779-2019-6-62-79; Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 3 (03.03.2020), раздел 4.5.1. Особенности клинических проявлений. https://www.garant.ru/products/ipo/prime/doc/73647088/; Carsana L., Sonzogni A., Nasr A., Rossi R., Pellegrinelli A., Zerbi P., Rech R., Colombo R., Antinori S., Corbellino M., Galli M., Catena E., Tosoni A., Gianatti A., Nebuloni M. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv. DOI:10.1101/2020.04.19.20054262; Зайратьянц О.В., СамсоноваМ.В., МихалеваЛ.М., Черняев А.Л., Мишнев О.Д., Крупнов Н.М. Патологическая анатомия легких при COVID-19: атлас. Москва; Рязань: Издательство ГУП РО «Рязанская областная типография», 2020. — 52 с., ил. 62; Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Zh., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu Sh., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-1062. DOI:10.1016/S0140-6736(20)30566-3.; Self W.H., Balk R.A., Grijalva C.G., Williams D.J., Zhu Y., Anderson E.J., Waterer G.W., Courtney D.M., Bramley A.M., Trabue Ch., Fakhran Sh., Blaschke A.J., Jain S., Edwards K.M., Wunderink R.G. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia (multicenter study). Clin Infect Dis. 2017; 65 (2): 183-190. DOI:10.1093/cid/cix317. PMID: 28407054; Grondman I., Pirvu A., Riza A., Ioana M., Mihai G., Netea M.G. Biomarkers of inflammation and the etiology of sepsis. Review Article. Biochemical Society Transactions. 2020; 48: 1-14. DOI:10.1042/BST20190029.; Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou Ch.-Q., He J.-X., Liu L., Shan H., Lei Ch.-L., Hui D.S.C., Du B., Li L.-J., Zeng G., Yuen K.-Y., Chen R.-Ch., Tang Ch.-L., Wang T., Chen P.-Y., Xiang J., Li Sh.-Y., Wang J.-L., Liang Z.-J., Peng Y.-X., Wei L., Liu Y., Hu Y.-H., Peng P., Wang J.-M., Liu J.-Y., Chen Zh., Li G., Zheng Zh.-J., Qiu Sh.-Q., Luo J., Ye Ch.-J., Zhu Sh.-Y., Zhong N.-Sh., China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020; 382 (18): 1708-1720. NEJM. org. DOI:10.1056/NEJMoa2002032. PMID: 32109013; Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A Meta-analysis. Clinica Chimica Acta. 2020; 505: 190-191. DOI:10.1016/j.cca.2020.03.004; Jereb M., Kotar T. Usefulness of procalcitonin to differentiate typical from atypical community-acquired pneumonia. Wien Klin Wochen-schr. 2006; Apr; 118 (5-6): 170-174. DOI:10.1007/s00508-006-0563-8; COVID-19 rapid guideline: antibiotics for pneumonia in adults in hospital. National Institute for Health and Care Excellence (NICE). NICE guideline [NG173] Published date: 01 May 2020. https://www.nice.org.uk/guidance/ng173; Sorbera L.A., Graul A.I., Dulsat C. Taking aim at a fast-moving target: targets to watch for SARS-CoV-2 and COVID-19. Drugs of the Future. 2020; 45 (4): 1-6 (Advanced Publication). DOI:10.1358/dof.2020.45.4.3150676; Bhattacharya S., Sen N., Yiming M.T., Patel R., Parthasarathi K., Quadri S., Issekutz A.C., Bhattacharya J. High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium. Am J Respir Cell Mol Biol. 2003; 28: 218-224. DOI:10.1165/rcmb.4763.; Ries C., Petrides P.E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler. 1995; 376 (6): 345-355. PMID: 7576228; Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997; 378: 151-160. PMID: 9165065; Bode W., Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Review. Biol Chem. 2003; 384 (6): 863-872. DOI:10.1515/BC.2003.097.; Castro M.M., Kandasamy A.D., Youssef N., Schulz R. Matrix Metalloproteinase Inhibitor Properties of Tetracyclines: Therapeutic Potential in Cardiovascular Diseases. Pharmacol Res. 2011; 64 (6): 551-560. Epub 2011 May 31. DOI:10.1016/j.phrs.2011.05.005.; Acharya M.R., Venitz J., Figg W.D. Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resistance Updates.2004; 7 (3): 195-208. DOI:10.1016/j.drup.2004.04.002; Steinberg J., Fink G., Picone A., Searles B., Schiller H., Lee H.M., Nieman G. Evidence of increased matrix metalloproteinase-9 concentration in patients following cardiopulmonary bypass. J Extra Corpor Tech-nol. 2001; 33: 218-222. PMID: 11806432; Lin T.C., Li C.Y., Tsai C.S., Ku C.H., Wu C.T., Wong C.S., Ho S.T. Neutrophil-mediated secretion and activation of matrix metalloproteinase-9 during cardiac surgery with cardiopulmonary bypass. Anesth Analg. 2005; 100 (6): 1554-1560. DOI:10.1213/01.ANE.0000154307.92060.84; Joffs C., Gunasinghe H.R., Multani M.M., Dorman B.H., Kratz J.M., Crumbley A.J. 3rd, Crawford F.A. Jr., Spinale F.G. Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases. Ann Thorac Surg. 2001; 71: 1518-1523. DOI:10.1016/s0003-4975(01)02442-0; Zhang C., Gong W., Liu H., Guo Z., Ge S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int J Clin Exp Med. 2014; 7 (12): 4975-82. eCollection 2014. PMID: 25663995. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307442/; Dalvi P.S., Singh A., Trivedi H.R., Ghanchi1 F.D., Parmar D.M., Mistry S.D. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Annals of Thoracic Medicine. 2011; 6 (4): 221-226. http: //www.thoracicmedicine.org. DOI:10.4103/1817-1737.84777; Doroszko A., Hurst Th.S., Polewicz D., Sawicka J., J. Fert-Bober, D.H. Johnson, G. Sawicki. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury. Proteome Sci. 2010; 8: 3. Published online 2010 Jan 29. DOI:10.1186/1477-5956-8-3. PMCID: PMC2824689 PMID: 20205825 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824689/; Sochor M., Richter S., Schmidt A., Hempel S., Hopt U.T., Keck T. Inhibition of Matrix Metalloproteinase-9 with Doxycycline Reduces Pancreatitis-Associated Lung Injury. Digestion. 2009; 80 (2): 65-73. DOI:10.1159/000212080; Зырянов С.К., Голуб А.В., Козлов Р.С. Доксициклин в современной клинической практике. Клиническая микробиология и антимикробная химиотерапия. 2020; 22 (1): 21-28. DOI:10.36488/cmac.2020.1.21-28; Wormser G.P., Dattwyler R.J., Shapiro E.D., Halperin J.J., Steere A.C., Klempner M.S., Krause P.J., Bakken J.S., Strle F., Stanek G., Bockenstedt L., Fish D., Dumler J.S., Nadelman R.B. The clinical assessment, treatment and prevention of Lyme disease, human granulocytic anaplas-mosis and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2006; 43 (9): 1089-1134. DOI:10.1086/508667; van Zuuren E.J., Kramer S., Carter B., Graber M.A., Fedorowicz Z. Interventions for rosacea. Cochrane Database Syst Rev. 2011; 3: CD003262. DOI:10.1002/14651858.CD003262.pub4; MUllegger R.R., Glatz M. Skin manifestations of lime borreliosis: diagnosis and management. Am J Clin Dermatol. 2008; 9 (6): 355-368. DOI:10.2165/0128071-200809060-00002; Torresani C., Pavesi A., Manara G.C. Clarithromycin versus doxycycline in the treatment of rosacea. Int J Dermatol. 1997; 36 (12): 938946. DOI:10.1046/j.1365-4362.1997.00301.x; Heneghan С., Aronson J., Hobbs R., Mahtani K. Rapidly managing pneumonia in older people during a pandemic. The Centre for Evidence-Based Medicine (CEBM). Oxford COVID-19 Evidence Service Team. March 16, 2020 https://www.cebm.net/covid-19/rapidly-managing-pneumonia-in-older-people-during-a-pandemic/; Dalvi P. S, Singh A., Trivedi H. R, Ghanchi F. D, Parmar D.M, Mistry S.D. Effect of Doxycycline in Patients of Moderate to Severe Chronic Obstructive Pulmonary Disease With Stable Symptoms. Ann Thorac Med 2011; 6 (4): 221-226. DOI:10.4103/1817-1737.84777; van der Waaij D. Colonization Resistance of the Digestive Tract — Mechanism and Clinical Consequences. Nahrung 1987; 31 (5-6): 507517 DOI:10.1002/food.19870310551; Vollaard E.J., Clasener H.A.L, Van Griethuysen A.J.A., Janssen A.J.H.M., Sanders-Reimers A.H.J., Muller N.F., Huige P.J. Influence of cefaclor, phenethicillin, co-trimoxazole and doxycycline on colonization resistance in healthy volunteers. J Antimicrob Chemother. 1988; 22 (5): 747-758. DOI:10.1093/jac/22.5.747.; Gorbach S.L., Barza M., Giuliano M., Jacobus N.V. Colonization resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis. 1988; 7 (1): 98-102. DOI:10.1007/BF0196219; Vollaard E.J., Clasener H.A., van Saene H.K., Muller N.F. Effect on colonization resistance: an important criterion in selecting antibiotics. Drug Intel. and Clin. Pharm. 1990; 24 (1): 60-66. DOI:10.1177/106002809002400113; https://www.reanimatology.com/rmt/article/view/1987
-
3Book
Θεματικοί όροι: 06.02.03, лекарственные растения, настои, мениант, 03.02.11, вахта трехлистная, лечебные свойства, противопаразитарные препараты, отвары лекарственных трав, ветеринарная фармакология, паразитология, авторефераты диссертаций, ветеринария, ветеринарная фармакалогия с токсикологией, вахтоцид, фармако-токсикологическая характеристика
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.vsu.by/handle/123456789/44354
-
4Academic Journal
Συγγραφείς: R. S. Arakelyan, N. A. Sergeeva, V. Sh. Sangadzhieva, O. V. Konnovа, A. N. Zagina, A. A. Obukhova, Р. С. Аракельян, Н. А. Сергеева, В. Ш. Сангаджиева, О. В. Коннова, А. Н. Загина, А. А. Обухова
Πηγή: CHILDREN INFECTIONS; Том 17, № 1 (2018); 50-53 ; ДЕТСКИЕ ИНФЕКЦИИ; Том 17, № 1 (2018); 50-53 ; 2618-8139 ; 2072-8107 ; 10.22627/2072-8107-2018-17-1
Θεματικοί όροι: противопаразитарные препараты, itching in the perianal region, scraping from perianal folds, onychophagia, rules of personal hygiene, restless sleep, antiparasitic drugs, зуд в перианальной области, соскоб с перианальных складок, онихофагия, правила личной гигиены, беспокойный сон
Περιγραφή αρχείου: application/pdf
Relation: https://detinf.elpub.ru/jour/article/view/343/329; Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2016 году», 26 Мая 2017 г. http://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=8345; Аракельян Р.С., Сало А.А., Ибрагимова С.А. Современная ситуация по паразитарным болезням у детей в Астраханской области. Новая наука: От идеи к результату. 2016; 6-2(90):16— 20.; Елисеева Н.В., Карбышева Н.В., Никулина М.А., Мацакова Л.А., Брух А.А., Бражников Н.А., Бражников Я.А. Эпидемиологическая ситуация по энтеробиозу среди организованных детских коллективов. Дальневосточный журнал инфекционной патологии. 2012. 21:168—172.; Головченко Н.В., Ширинян А.А., Костенич О.Б., Теличева В.О., Ермакова Л.А. Клинические и лабораторные аспекты энтеробиоза. Теория и практика паразитарных болезней животных. 2016:137—139.; Упырев А.В., Хроменкова Е.П., Димидова Л.Л., Ермакова Л.А., Хуторянина И.В., Ковтунов А.И., Славина А.М., Шендо Г.Л., Кобзева Л.Л. Санитарно-паразитологический мониторинг в очагах энтеробиоза. Теория и практика паразитарных болезней животных. 2014:329—331.; Козловский А.А. Гельминтозы у детей Гомельской области. Международные обзоры: клиническая практика и здоровье. 2016. 1(19):68—83.; Постановление Главного государственного санитарного врача Российской Федерации от 22 октября 2013 г. N 57 г. Москва "Об утверждении санитарно-эпидемиологических правил СП 3.2.3110-13 «Профилактика энтеробиоза» https://rg.ru/2014/02/17/enterobioz-site-dok.html; Миропольская Н.Ю., Алмидина О.В. Необычное течение энтеробиоза. Дальневосточный журнал инфекционной патологии. 2017. 32:96—98.; Печкуров Д.В., Тяжева А.А, Глистные инвазии у детей: клиническое значение, диагностика и лечение. РМЖ. 2014; 22(3):242—246.; https://detinf.elpub.ru/jour/article/view/343
-
5Academic Journal
Συγγραφείς: Белоусова, О. В., Белоусов, Е. А., Кубрак, Н. Г.
Θεματικοί όροι: медицина, фармакология, лекарственные препараты, противопаразитарные препараты, производители, фармацевтический рынок, фармакоэкономика, аптеки
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/42877
-
6Academic Journal
Θεματικοί όροι: Elivec, young, internal parasites, Ganamectin, внутренние паразиты, heifers, Эливек, нетели, молодняк, 3. Good health, antiparasitic drugs, противопаразитарные препараты, cattle, телки, крупный рогатый скот, Strongylata of the gastrointestinal tract, стронгилята желудочно-кишечного тракта, Ганамектин
-
7Academic Journal
Θεματικοί όροι: противопаразитарные препараты, фармацевтический рынок, аптеки, фармакология, лекарственные препараты, фармакоэкономика, производители, медицина
Σύνδεσμος πρόσβασης: https://openrepository.ru/article?id=10844
-
8Academic Journal
Συγγραφείς: Гайсина, Л., Залялов, И., Латыпов, Д., Щитковская, Т.
Θεματικοί όροι: ВЕТЕРИНАРНО-САНИТАРНАЯ ОЦЕНКА, КУРЫ, ПРОТИВОПАРАЗИТАРНЫЕ ПРЕПАРАТЫ
Περιγραφή αρχείου: text/html
-
9Academic Journal
Συγγραφείς: Идрисов, А., Крайнов, В., Юсупова, Г.
Θεματικοί όροι: ВЕТЕРИНАРНО-САНИТАРНАЯ ОЦЕНКА, ЦЫПЛЯТА, ПРОТИВОПАРАЗИТАРНЫЕ ПРЕПАРАТЫ
Περιγραφή αρχείου: text/html
-
10Academic Journal
Συγγραφείς: Курманова К.Б., Дерябина Л В., Абильдаева Ф.К.
Θεματικοί όροι: тропическая, трёхдневная и четырёхдневная малярия, диагностика малярии, противопаразитарные препараты, тропикалық безгек, үшжəне төрткүндік безгектін көріністері, диагностикасы, паразитқа қарсы əсері бар дəрі-дəрмектер
Περιγραφή αρχείου: text/html
-
11Book
Συγγραφείς: Горлова, О. С.
Θεματικοί όροι: авторефераты диссертаций, 06.02.03, ветеринарная фармакалогия с токсикологией, 03.02.11, паразитология, вахта трехлистная, вахтоцид, ветеринария, ветеринарная фармакология, лекарственные растения, лечебные свойства, мениант, настои, отвары лекарственных трав, противопаразитарные препараты, фармако-токсикологическая характеристика
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: https://rep.vsu.by/handle/123456789/44354
-
12Academic Journal
Πηγή: Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана.
Περιγραφή αρχείου: text/html
-
13Academic Journal
Влияние антигельминтных препаратов на гематологические показатели у цыплят, зараженных гетеракидозом
Πηγή: Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана.
Περιγραφή αρχείου: text/html
-
14Academic Journal
Πηγή: Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана.
Περιγραφή αρχείου: text/html
-
15Academic Journal
Πηγή: Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана.
Θεματικοί όροι: 3. Good health, ВЕТЕРИНАРНО-САНИТАРНАЯ ОЦЕНКА, ЦЫПЛЯТА, ПРОТИВОПАРАЗИТАРНЫЕ ПРЕПАРАТЫ
Περιγραφή αρχείου: text/html
-
16Academic Journal
Πηγή: Вестник Алматинского государственного института усовершенствования врачей.
Θεματικοί όροι: тропическая, трёхдневная и четырёхдневная малярия, диагностика малярии, противопаразитарные препараты, тропикалық безгек, үшжəне төрткүндік безгектін көріністері, диагностикасы, паразитқа қарсы əсері бар дəрі-дəрмектер, 3. Good health
Περιγραφή αρχείου: text/html
-
17
Συγγραφείς: Корсакова, Мария Валерьевна
Πηγή: Концептуальные и прикладные аспекты научных исследований и образования в области зоологии беспозвоночных : сборник статей V Международной конференции, 26-28 октября 2020 г., г. Томск, Россия. Томск, 2020. С. 269-272
Θεματικοί όροι: Эмикон, лекарственный препарат, эргазилез рыб, карпы, терапевтические дозы лекарств, противопаразитарные препараты
Περιγραφή αρχείου: application/pdf
Relation: vtls:000789169; http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000789169
-
18Electronic Resource
Additional Titles: Этиотропная терапия COVID-19: критический анализ и перспективы
Συγγραφείς: N. Beloborodova V.; V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, E. Zuev V.; V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; National Medical and Surgical Center named after N.I. Pirogov, M. Zamyatin N.; National Medical and Surgical Center named after N.I. Pirogov, V. Gusarov G.; National Medical and Surgical Center named after N.I. Pirogov, Н. Белобородова В.; НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР, Е. Зуев В.; НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР; Национальный медико-хирургический центр им. Н.И. Пирогов, М. Замятин Н.; Национальный медико-хирургический центр им. Н.И. Пирогов, В. Гусаров Г.; Национальный медико-хирургический центр им. Н.И. Пирогов
Πηγή: General Reanimatology; Том 16, № 6 (2020); 65-90; Общая реаниматология; Том 16, № 6 (2020); 65-90; 2411-7110; 1813-9779; 10.15360/1813-9779-2020-6
Όροι ευρετηρίου: COVID-19; anti-malaria drugs; viral protease inhibitors; anti-parasitic drugs; interleukin inhibitors; Janus kinase inhibitors; interferons; convalescents plasma; corticosteroids; procalcitonin; antibiotics; new target; matrix metalloproteinases; doxycycline, COVID-19; противомалярийные средства; ингибиторы вирусных протеаз; противопаразитарные препараты; ингибиторы интерлейкинов; ингибиторы янус-киназ; интерфероны; плазма реконвалесцентов; кортикостероиды; прокальцитонин; антибиотики; новая мишень; матриксные металлопротеиназы; доксициклин, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
Σύνδεσμος:
https://www.reanimatology.com/rmt/article/view/1987/1466 https://www.reanimatology.com/rmt/article/view/1987/1467 https://www.reanimatology.com/rmt/article/view/1987/1466 https://www.reanimatology.com/rmt/article/view/1987/1467
Stollenwerk N., Harper R.W., Sandrock Ch.E. Bench-to-bedside review: Rare and common viral infections in the intensive care unit — linking pathophysiology to clinical presentation. Critical Care. 2008; 12 (4): 219. DOI: 10.1186/cc6917
Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 7 от 03.06.2020 https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/origi-nal/03062020_MR_COVID-19_v7.pdf
Alexander P.E., Debono V.B., Mammen M.J., Iorio A., Aryal K., Deng D., Brocard E., Alhazzani W. COVID-19 research has overall low methodological quality thus far: case in point for chloroquine/hydroxy-chloroquine. J Clin Epidemiol. 2020; 123: 120-126. PMID: 32330521 PMCID: PMC7194626 DOI: 10.1016/j.jclinepi.2020.04.016
U.S. National Library of Medicine. Clinical Trials.com https://clini-caltrials.gov/ct2/results/details?cond=COVID-19
Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial agents and chemotherapy. 2009; 53 (8): 3416-3421. DOI: 10.1128/AAC.01509-08
Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek Th.G., Seidah N.G., Nichol St.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal. 2005; 2 (1): 69. DOI: 10.1186/1743-422X-2-69
Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W. and Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020; 30 (3): 269-271. DOI: 10.1038/s41422-020-0282-0
Delvecchio R., Higa L.M., Pezzuto P, Valadao A.L., Garcez PP, Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J.M., Aliota M.T., Caine E.A., Osorio J.E., Bellio M., O’Connor D.H., Rehen S., de Aguiar R.S., Savarino A., Campanati L., Tanuri A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses. 2016; 8 (12): 322. DOI: 10.3390/v8120322. PMID: 27916837
te Velthuis A.J.W., van den Worm S.H.E., Sims A.C., Baric R.S., Snijder E.J., van Hemert M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog. 2010; 6 (11): e1001176. PMID: 32330521 PMCID: PMC7194626 DOI: 10.1016/j.jclinepi.2020.04.016
Gao J., Tian Zh., Yang X Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020; 14: 723. DOI: 10.5582/bst.2020.01047. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32074550
Gautret P., Lagier J.-Ch., Parola Ph.,Hoang V.Th., Meddeb L., Mailhe M., DoudierB., CourjonJ., Giordanengo V, VieiraV.E.,DupontH.T., Honort S., Colson Ph., ChabriereE., La ScolaB., Rolain J.-M., BrouquiPh., Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020: 105949. DOI: 10.1016/j.ijantimicag.2020.105949. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32205204
Chu C.M., Cheng V.C.C., Hung I.F.N., Wong M.M.L., Chan K.H., Chan K.S., Kao R.Y.T., Poon L.L.M., C.L.P., Guan Y., Peiris J.S.M., Yuen K.Y., HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59: 252-256. DOI: 10.1136/thorax.2003.012658
Chan K.S., Lai S.T., Chu C.M., Tsui E., Tam C.Y., Wong M.M.L., Tse M.W., Que T.L., Peiris J.S.M., Sung J., Wong V.C.W., Yuen K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003; 9: 399-406. PMID: 14660806
Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., Li X., Xia J., Chen N., Xiang J., Yu T., Bai T., Xie X., Zhang L., Li C., Yuan Y., Chen H., Li H., Huang H., Tu S., Gong F., Liu Y., Wei Y., Dong C., Zhou F., Gu X., Xu J., Liu Z., Zhang Y., Li H., Shang L., Wang K., Li K., Zhou X., Dong X., Qu Z., Lu S., Hu X., Ruan S., Luo S., Wu J., Peng L., Cheng F., Pan L., Zou J., Jia C., Wang J., Liu X., Wang S., Wu X., Ge Q., He J., Zhan H., Qiu F., Guo L., Huang C., Jaki T., Hayden F.G., Horby PW, ZhangD., Wang C. A Trial of Lopinavir-Ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020; 382: 17871799. DOI: 10.1056/NEJMoa2001282. PMID: 32187464
Cai Q., Huang D., Ou P., Yu H., Zhu Zh., Xia Zh., Su Y., Ma Zh., Zhang Y., Li Zh., He Q., Liu L., Fu Y., Chen J. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. MedRxiv. 2020; DOI: 10.1101/2020.02.17.20024018. PMID: 32239761
HuL., Chen S., Fu Y., GaoZ., LongH., RenH.-W.,Zuo Y., LiH., Wang J., Xu Q.-B., Yu W.-X., Liu J., Shao Ch., Hao J.-J., Wang Ch.-Zh., Ma Y., Wang Zh., Yanagihara R. J.-M. Wang, Deng Y. Risk factors associated with clinical outcomes in 323 COVID-19 patients in Wuhan, China. medRxiv 2020 DOI: 10.1101/2020.03.25.20037721. PMID: 32361738
Yan D., Liu X.-Y., Zhu Y.-N, Huang L., Dan B.-T., Zhang G.-J., Gao Y.-H. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2. Eur Respir J. 2020; 56: 2000799. DOI: 10.1183/13993003.00799-2020
Cai Q., Yang M,. Liu D,. Chen J,. Shu D., Xia J., Liao X., Gu Y., Cai Q., Yang Y., Shen C., Li X., Peng L., Huang D., Zhang J., Zhang S., Wang F., Liu J., Chen L., Chen S., Wang Z., Zhang Z., Cao R., Zhong W., Liu Y., Liu L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering. 2020; DOI: 10.1016/j.eng.2020.03.007
de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remde-sivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Nat Acad Sci USA. 2020; 117 (12): 6771-6776. DOI: 10.1073/pnas.1922083117. PMID: 32054787
Beigel John H., Tomashek Kay M., Dodd Lori E., Mehta Aneesh K., Zingman Barry S., Kalil Andre C., Hohmann Elizabeth, Chu Helen Y., Luetkemeyer Annie, Kline Susan, Lopez de Castilla Diego, Finberg Robert W., Dierberg Kerry, Tapson Victor, Hsieh Lanny, Patterson Thomas F., Paredes Roger, Sweeney Daniel A., Short William R., Touloumi Giota, Lye David Chien, Ohmagari Norio, Oh Myoung-don, Ruiz-Palacios Guillermo M., Benfield Thomas, Fatkenheuer Gerd, Kortepeter Mark G., Atmar Robert L., Creech C. Buddy, Lundgren Jens, Babiker Abdel G., Pett Sarah, Neaton James D., Burgess Timothy H., Bonnett Tyler, Green Michelle, Makowski Mat, Osinusi Anu, Nayak Seema, Lane H. Clifford. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2015301.
Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.-M., Lim W.Sh., Makki S., Rooney K.D., Nguyen-Van-Tam J.S., Beck Ch.R. Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015; 211 (1): 80-90. DOI: 10.1093/infdis/jiu396. PMID: 25030060
Shen Ch., Wang Zh., Zhao F., Yang Y., Li J., Yuan J., Wang F., Li D., Yang M., Xing L., Wei J., Xiao H., Yang Y., Qu J., Qing L., Chen L., Xu Zh., Peng L., Li Y., Zheng H., Chen F., Huang K., Jiang Y., Liu D., Zhang Zh., Liu Y., Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020; 323 (16): 1582-1589. DOI: 10.1001/jama.2020.4783. PMID: 32219428
Duan K., Liu B., Li C., Zhang H., Yu T., Qu., Zhou M., Chen L., Meng Sh., Hu Y., Peng Ch., Yuan M., Huang J., Wang Z., Yu J., Gao., Wang D., Yu X., Li L., Zhang J., Wu X., Li B., Xu Y., Chen W., Peng Y., Hu Y., Lin L., Liu X., Huang Sh., Zhou Zh., Zhang L., Wang Y., Zhang Zh., Deng K., Xia Zh., Gong Q., Zhang W., Zheng X., Liu Y., Yang H., Zhou D., Yu D., Hou J., Shi Zh., Chen S., Chen Zh., Zhang X., Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. PNAS. 2020; 117 (17): 9490-9496; first published April 6, 2020. DOI: 10.1073/pnas.2004168117. PMID: 32253318
Pandey S., Vyas G.N. Adverse effects of plasma transfusion. Transfusion. 2012; 52 (Suppl. 1): 65S-79S. DOI: 10.1111/j.1537-2995.2012.03663.x
Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. June 2020; 178: 104787. DOI: 10.1016/j.an-tiviral.2020.104787. PMID: 32251768
Rossignol J.-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health., 2016; 9 (3): 227-230. DOI: 10.1016/j.jiph.2016.04.001
Sisk J.M., Frieman M.B., Machamer C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol. 2018; 99 (5): 619-630. DOI: 10.1099/jgv.0.001047. PMID: 29557770
Alhazzani W, M0ller M.H., Arabi Y.M., Loeb M., Gong M.Ng, Fan E., Oczkowski S., Levy M.M., Derde L., Dzierba A., Du B., Aboodi M., Wun-sch H., Cecconi M., Koh Y., Chertow D.S., Maitland K., Alshamsi F., Bel-ley-Cote E., Greco M., Laundy M., Morgan J.S., Kesecioglu J., McGeer A., Mermel L., Mammen M.J., Alexander P.E., Arrington A., Centofanti J.E., Citerio G., Baw B., Memish Z.A., Hammond N., Hayden F.G., Evans L., Rhodes A. Surviving Sepsis Campaign. Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Critical Care Medicine.2020; 48 (6): e440-e469 Volume Online First — Issue — DOI: 10.1097/CCM.0000000000004363. PMID: 32222812
Isidori, A.M., Arnaldi, G., Boscaro, Falorni M. A., Giordano C., Giordano R., Pivonello R., Pofi R., Hasenmajer V., Venneri M. A., Sbardella E., Sime-oli C., Scaroni C., Lenziet A. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. Journal of Endocrinolog-icalInvestigation. (43): 1141-1147 DOI: 10.1007/s40618-020-01266-w
Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., Almotairi A., Al Khatib K., Alraddadi B., Shalhoub S., Abdulmomen A., Qushmaq I., Mady A., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Balkhy H.H., Al Harthy A., Deeb A.M., Al Mutairi H., Al-Dawood A., Merson L., Hayden F.G., Fowler R.A., Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir. Crit Care Med. 2018; 197: 757-767. DOI: 10.1164/rccm.201706-1172OC. PMID: 29161116
Lee N., Chan K.C.A., Hui D.S., Ng E.K.O., Wu A., Chiu R.W.K., Wong V.W.S., Chan P.K.S., Wong K.T., Wong E., Cockram C.S., Tam J.S., Sung J.J.Y., Lo Y.. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004; 31: 304-309. DOI: 10.1016/j.jcv.2004.07.006.
Chen R.-Ch., TangX.-P, Tan Sh.-Y., LiangB.-L., Wan Zh.-Y., Fang J.-Q., Zhong N. Treatment of severe acute respiratory syndrome with glucosteroids. Chest Journal. 2006; 129 (6): 1441-1452. DOI: 10.1378/chest.129.6.1441. PMID: 16778260
Zha L., Li Sh., Pan L., Tefsen B., Li Y., French N., Chen L., Yang G., Villanueva E.V. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Medical Journal of Australia. 2020; 212 (9): 416-420 DOI: 10.5694/mja2.50577. PMID: 32296987
Keskin O., Farzan N., Birben E., H.Akel, Karaaslan C., Maitland-van der Zee A.H., Wechsler M.E., Vijverberg S.J., Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019; 9: 2. Published online 2019 Jan 9. DOI: 10.1186/s13601-018-0239-2. PMID: 30647901
Zhang X., Song K., Tong F., Fei M., Guo H., Lu Zh., Wang J., Zheng Ch. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances. 2020; 4 (7): 1307-1310. DOI:10.1182/bloodadvances.2020001907. PMID: 32243501
Case Study: Treating COVID-19 in a Patient with Multiple Myeloma [news release]. Washington. Published April 3, 2020. hematology.org/newsroom/press-releases/2020/case-study-treat-ing-covid-19. Accessed April 7, 2020.
Jones G., Ding Ch. Tocilizumab: A Review of Its Safety and Efficacy in Rheumatoid Arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2010; 3: 81-89. DOI: 10.4137/CMAMD.S4864
Gritti G., Raimondi F., Ripamonti D., Riva I., Landi F., Alborghetti L., Frigeni M., Damiani M., Mico C., Fagiuoli S., Cosentini R., Lorini FL., Fabretti F., . Morgan J.H, Owens B.M.J., Kanhai K., Cowburn J., Rizzi M., Di Marco F., Rambaldi A. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. preprint DOI: 10.1101/2020.04.01.20048561
Treatment of COVID-19 Patients With Anti-interleukin Drugs (COV-AID). ClinicalTrials.gov Identifier: NCT04330638. https://clinicaltri-als.gov/ct2/show/record/NCT04330638
Regeneron and sanofi provide update on u.s. phase 2/3 adaptive-designed trial of kevzara® (sarilumab) in hospitalized covid-19 patients. TARRYTOWN, N.Y. and PARIS, April 27, 2020 /PRNewswire/ — https://www.prnewswire.com/news-releases/regeneron-and-sanofi-pro-vide-update-on-us-phase-23-adaptive-designed-trial-of-kevzara-sar-ilumab-in-hospitalized-covid-19-patients-301047326.html
Cavalli G., De Luca G., Campochiaro C., Della-Torre E., Ripa M., Canetti D., Oltolini Ch., Castiglioni B., Din Ch.T., Boffini N., Tomelleri A., Farina N., Ruggeri A., Rovere-Querini P., Di Lucca G., Martinenghi S., Scotti R., Tresoldi M., Ciceri F., Landoni G., Zangrillo A., Scarpellini P., Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2 (6): e325-e331. Published Online May 7. DOI: 10.1016/S2665-9913(20)30127-2. PMID: 32501454
O’Shea J.J., Kontzias A., Yamaoka K., Tanaka Y., Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. Author manuscript; 2013; 72 (Suppl 2): ii111-5. DOI: 10.1136/annrheumdis-2012-202576. PMID: 23532440
Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020; 81 (2): 318-356. PMID: 32333918 PMCID: PMC7177073 DOI: 10.1016/j.jinf.2020.04.017
Safety and Efficacy of Ruxolitinib for COVID-19. ClinicalTrials.gov Identifier: NCT04348071. https://clinicaltrials.gov/ct2/show/NCT04348071
Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care in Subjects Hospitalized With COVID-19. CALAVI (Calquence Against the Virus) (ACE-ID-201). ClinicalTrials.gov Identifier: NCT04346199. https://clinicaltrials.gov/ct2/show/NCT04346199
TOFAcitinib in SARS-CoV2 Pneumonia. ClinicalTrials.gov Identifier: NCT04332042. https://clinicaltrials.gov/ct2/show/NCT04332042
Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc R Soc London Ser B. 1957; 147: 258-267. DOI: 10.1098/rspb.1957.0048
Charles E. Samuel. Antiviral Actions of Interferons. Clin Microbiol Rev. 2001; 14 (4): 778-809. DOI: 10.1128/CMR.14.4.778-809.2001
Sheahan TP, Sims A.C., Leist S.R., Schafer A., Won J., Brown A.J., Montgomery S.A., Hogg A., Babusis D., Clarke M.O., Spahn J.E., Bauer L., Sellers S., PorterD.,Feng J.Y., Cihlar T, JordanR.,DenisonM.R.,BaricR.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020; 11. 222. DOI: 10.1038/s41467-019-13940-6. PMID: 31924756
Omrani A.S., Saad M.M., Baig K., Bahloul A., Abdul-Matin M., Alaida-roos A.Y., Almakhlafi G.A., Albarrak M.M., Memish Z.A., Albarrak A.M. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect. Dis. 2014; 14: 1090-1095. DOI: 10.1016/S1473-3099(14)70920-X. PMID: 25278221
Arabi Y.M., Shalhoub S., Mandourah Y., Al-Hameed F., Al-Omari A., Al Qasim E., Jose J., Alraddadi B., Almotairi A., Al Khatib K., Abdulmomen A., Qushmaq I., Sindi A.A., Mady A., Solaiman O., Al-Raddadi R., Maghrabi K., Ragab A., Al Mekhlafi G.A., Balkhy H.H., Al Harthy A., Kharaba A., Gramish J.A., Al-Aithan A.M., Al-Dawood A., Merson L., Hayden F.G., Fowler R. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: A multicenter observational study. Clin Infect Dis. 2020; 70 (9): 1837-1844. DOI: 10.1093/cid/ciz544. PMID: 31925415
National institutes of health. immune-based therapy under evaluation for treatment of COVID-19. Last Updated: May 12, 2020. https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy
Hung I.F.-N., Lung K.-Ch., Tso E.Y.-K., Liu R., Chung T.W.-H., Chu M.-Y., Ng Y.-Y., Lo J., Chan J., Tam A.R., Shum H.-P., Chan V., Wu A.K.-L., Sin K.-M., Leung W.-Sh., Law W.-L., Lung D.Ch., Sin S., YeungP, Yip C.Ch.-Y., Zhang R.R., Fung A.Y.-F., Yan E.Y.-W., Leung K.-H., Ip J.D., Chu A.W.-H., Chan W.-M., Ng A.Ch.-K., Lee R., Fung K., Yeung A., Wu T.-Ch., Chan J.W.-M., Yan W.-W., Chan W.-M., Chan J. F.-W., Lie A.K.-W., Tsang O.T.-Y., Cheng V.Ch.-Ch., Que T.-L., Lau Ch.-S., Chan K.-H., To K.K.-W., Yuen K.-Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020; 395 (10238): 1695-1704. DOI: 10.1016/S0140-6736(20)31042-4. PMID: 32401715
Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang Ch. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179: 104811. DOI: 10.1016/j.antiviral.2020.104811. PMID: 32360182
de Jong H.J.I., Kingwell E., Shirani A., Tervaert J.W.C., Hupperts R., Zhao Y., Zhu F., Evans Ch., van der Kop M.L., Traboulsee A., Gustafson P., Petkau J., Marrie R. A., Tremlett H., British Columbia Multiple Sclerosis Clinic Neurologists. Evaluating the safety of в-interferons in MS: a series of nested case-control studies. Neurology. 2017; 88 (24): 2310-2320. DOI: 10.1212/WNL.0000000000004037. PMID: 28500224
Hu Y., Ye Y., Ye L., Wang X., Yu H. Efficacy and safety of interferon alpha therapy in children with chronic hepatitis B. Medicine (Baltimore). 2019; 98 (32): e16683. DOI: 10.1097/MD.0000000000016683. PMID: 31393369
Open-label, Randomized Study of IFX-1 in Patients With Severe COVID-19 Pneumonia (PANAMO). ClinicalTrials.gov Identifier: NCT04333420. https://clinicaltrials.gov/ct2/show/NCT04333420
Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020; Apr 13: 1-7. DOI: 10.1007/s12015-020-09973-w. PMID: 32281052
Website of the British society for antimicrobial therapy http://bsac.org.uk
Website of National Institute for Health and Care Excellence [NICE] https://www.nice.org.uk/guidance
Qing Y., Wenyang J., Raoyao L. COVID-19 Patients with Gastrointestinal Symptoms Are More Likely to Develop into Severe Cases «Science and Technology Daily», 21.04.2020 https://gmcc.alibabadoctor.com/news/detail?content_id=1496ca6b1c270a6e8a38ddf92471d795
Белобородова Н.В. «Сепсис. Метаболомный подход». Монография. М.: Издательство Медицинское информационное агентство «МИА»; 2018. 272. ISBN: 978-5-9986-0350-1
Beloborodova N.V., Sarshor Yu.N., Bedova A.Yu., Chernevskaya E.A., Pautova A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. SHOCK. 2018; 50 (3): 273-279. DOI: 10.1097/SHK.0000000000001064
Beloborodova N.V., Olenin A.Yu., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. of Crit. Care. 2018; 43: 246-255. DOI: 10.1016/j.jcrc.2017.09.014
Черневская Е.А., Белобородова Н.В. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018. 14 (5): 96-119. DOI: 10.15360/1813-9779-2018-5-96-119
Beloborodova N.V., Grechko A.V., Olenin A.Yu. Chapter «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology» in Book «Infection and Sepsis» InTechOpen [online first]. DOI: 10.5772/intechopen.87176
Белобородова Н.В. Метаболизм микробиоты при критических состояниях (обзор и постулаты). Общая реаниматология. 2019; 15 (6), 62-79. DOI: 10.15360/1813-9779-2019-6-62-79
Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 3 (03.03.2020), раздел 4.5.1. Особенности клинических проявлений. https://www.garant.ru/products/ipo/prime/doc/73647088
Carsana L., Sonzogni A., Nasr A., Rossi R., Pellegrinelli A., Zerbi P., Rech R., Colombo R., Antinori S., Corbellino M., Galli M., Catena E., Tosoni A., Gianatti A., Nebuloni M. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv. DOI: 10.1101/2020.04.19.20054262
Зайратьянц О.В., СамсоноваМ.В., МихалеваЛ.М., Черняев А.Л., Мишнев О.Д., Крупнов Н.М. Патологическая анатомия легких при COVID-19: атлас. Москва; Рязань: Издательство ГУП РО «Рязанская областная типография», 2020. — 52 с., ил. 62
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Zh., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu Sh., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-1062. DOI: 10.1016/S0140-6736(20)30566-3.
Self W.H., Balk R.A., Grijalva C.G., Williams D.J., Zhu Y., Anderson E.J., Waterer G.W., Courtney D.M., Bramley A.M., Trabue Ch., Fakhran Sh., Blaschke A.J., Jain S., Edwards K.M., Wunderink R.G. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia (multicenter study). Clin Infect Dis. 2017; 65 (2): 183-190. DOI: 10.1093/cid/cix317. PMID: 28407054
Grondman I., Pirvu A., Riza A., Ioana M., Mihai G., Netea M.G. Biomarkers of inflammation and the etiology of sepsis. Review Article. Biochemical Society Transactions. 2020; 48: 1-14. DOI: 10.1042/BST20190029.
Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou Ch.-Q., He J.-X., Liu L., Shan H., Lei Ch.-L., Hui D.S.C., Du B., Li L.-J., Zeng G., Yuen K.-Y., Chen R.-Ch., Tang Ch.-L., Wang T., Chen P.-Y., Xiang J., Li Sh.-Y., Wang J.-L., Liang Z.-J., Peng Y.-X., Wei L., Liu Y., Hu Y.-H., Peng P., Wang J.-M., Liu J.-Y., Chen Zh., Li G., Zheng Zh.-J., Qiu Sh.-Q., Luo J., Ye Ch.-J., Zhu Sh.-Y., Zhong N.-Sh., China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020; 382 (18): 1708-1720. NEJM. org. DOI: 10.1056/NEJMoa2002032. PMID: 32109013
Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A Meta-analysis. Clinica Chimica Acta. 2020; 505: 190-191. DOI: 10.1016/j.cca.2020.03.004
Jereb M., Kotar T. Usefulness of procalcitonin to differentiate typical from atypical community-acquired pneumonia. Wien Klin Wochen-schr. 2006; Apr; 118 (5-6): 170-174. DOI: 10.1007/s00508-006-0563-8
COVID-19 rapid guideline: antibiotics for pneumonia in adults in hospital. National Institute for Health and Care Excellence (NICE). NICE guideline [NG173] Published date: 01 May 2020. https://www.nice.org.uk/guidance/ng173
Sorbera L.A., Graul A.I., Dulsat C. Taking aim at a fast-moving target: targets to watch for SARS-CoV-2 and COVID-19. Drugs of the Future. 2020; 45 (4): 1-6 (Advanced Publication). DOI: 10.1358/dof.2020.45.4.3150676
Bhattacharya S., Sen N., Yiming M.T., Patel R., Parthasarathi K., Quadri S., Issekutz A.C., Bhattacharya J. High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium. Am J Respir Cell Mol Biol. 2003; 28: 218-224. DOI: 10.1165/rcmb.4763.
Ries C., Petrides P.E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler. 1995; 376 (6): 345-355. PMID: 7576228
Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997; 378: 151-160. PMID: 9165065
Bode W., Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Review. Biol Chem. 2003; 384 (6): 863-872. DOI: 10.1515/BC.2003.097.
Castro M.M., Kandasamy A.D., Youssef N., Schulz R. Matrix Metalloproteinase Inhibitor Properties of Tetracyclines: Therapeutic Potential in Cardiovascular Diseases. Pharmacol Res. 2011; 64 (6): 551-560. Epub 2011 May 31. DOI: 10.1016/j.phrs.2011.05.005.
Acharya M.R., Venitz J., Figg W.D. Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resistance Updates.2004; 7 (3): 195-208. DOI: 10.1016/j.drup.2004.04.002
Steinberg J., Fink G., Picone A., Searles B., Schiller H., Lee H.M., Nieman G. Evidence of increased matrix metalloproteinase-9 concentration in patients following cardiopulmonary bypass. J Extra Corpor Tech-nol. 2001; 33: 218-222. PMID: 11806432
Lin T.C., Li C.Y., Tsai C.S., Ku C.H., Wu C.T., Wong C.S., Ho S.T. Neutrophil-mediated secretion and activation of matrix metalloproteinase-9 during cardiac surgery with cardiopulmonary bypass. Anesth Analg. 2005; 100 (6): 1554-1560. DOI: 10.1213/01.ANE.0000154307.92060.84
Joffs C., Gunasinghe H.R., Multani M.M., Dorman B.H., Kratz J.M., Crumbley A.J. 3rd, Crawford F.A. Jr., Spinale F.G. Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases. Ann Thorac Surg. 2001; 71: 1518-1523. DOI: 10.1016/s0003-4975(01)02442-0
Zhang C., Gong W., Liu H., Guo Z., Ge S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int J Clin Exp Med. 2014; 7 (12): 4975-82. eCollection 2014. PMID: 25663995. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307442
Dalvi P.S., Singh A., Trivedi H.R., Ghanchi1 F.D., Parmar D.M., Mistry S.D. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Annals of Thoracic Medicine. 2011; 6 (4): 221-226. http: //www.thoracicmedicine.org. DOI: 10.4103/1817-1737.84777
Doroszko A., Hurst Th.S., Polewicz D., Sawicka J., J. Fert-Bober, D.H. Johnson, G. Sawicki. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury. Proteome Sci. 2010; 8: 3. Published online 2010 Jan 29. DOI: 10.1186/1477-5956-8-3. PMCID: PMC2824689 PMID: 20205825 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824689
Sochor M., Richter S., Schmidt A., Hempel S., Hopt U.T., Keck T. Inhibition of Matrix Metalloproteinase-9 with Doxycycline Reduces Pancreatitis-Associated Lung Injury. Digestion. 2009; 80 (2): 65-73. DOI: 10.1159/000212080
Зырянов С.К., Голуб А.В., Козлов Р.С. Доксициклин в современной клинической практике. Клиническая микробиология и антимикробная химиотерапия. 2020; 22 (1): 21-28. DOI: 10.36488/cmac.2020.1.21-28
Wormser G.P., Dattwyler R.J., Shapiro E.D., Halperin J.J., Steere A.C., Klempner M.S., Krause P.J., Bakken J.S., Strle F., Stanek G., Bockenstedt L., Fish D., Dumler J.S., Nadelman R.B. The clinical assessment, treatment and prevention of Lyme disease, human granulocytic anaplas-mosis and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2006; 43 (9): 1089-1134. DOI: 10.1086/508667
van Zuuren E.J., Kramer S., Carter B., Graber M.A., Fedorowicz Z. Interventions for rosacea. Cochrane Database Syst Rev. 2011; 3: CD003262. DOI: 10.1002/14651858.CD003262.pub4
MUllegger R.R., Glatz M. Skin manifestations of lime borreliosis: diagnosis and management. Am J Clin Dermatol. 2008; 9 (6): 355-368. DOI: 10.2165/0128071-200809060-00002
Torresani C., Pavesi A., Manara G.C. Clarithromycin versus doxycycline in the treatment of rosacea. Int J Dermatol. 1997; 36 (12): 938946. DOI: 10.1046/j.1365-4362.1997.00301.x
Heneghan С., Aronson J., Hobbs R., Mahtani K. Rapidly managing pneumonia in older people during a pandemic. The Centre for Evidence-Based Medicine (CEBM). Oxford COVID-19 Evidence Service Team. March 16, 2020 https://www.cebm.net/covid-19/rapidly-managing-pneumonia-in-older-people-during-a-pandemic
Dalvi P. S, Singh A., Trivedi H. R, Ghanchi F. D, Parmar D.M, Mistry S.D. Effect of Doxycycline in Patients of Moderate to Severe Chronic Obstructive Pulmonary Disease With Stable Symptoms. Ann Thorac Med 2011; 6 (4): 221-226. DOI: 10.4103/1817-1737.84777
van der Waaij D. Colonization Resistance of the Digestive Tract — Mechanism and Clinical Consequences. Nahrung 1987; 31 (5-6): 507517 DOI: 10.1002/food.19870310551
Vollaard E.J., Clasener H.A..L, Van Griethuysen A.J.A., Janssen A.J.H.M., Sanders-Reimers A.H.J., Muller N.F., Huige P.J. Influence of cefaclor, phenethicillin, co-trimoxazole and doxycycline on colonization resistance in healthy volunteers. J Antimicrob Chemother. 1988; 22 (5): 747-758. DOI: 10.1093/jac/22.5.747.
Gorbach S.L., Barza M., Giuliano M., Jacobus N.V. Colonization resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis. 1988; 7 (1): 98-102. DOI: 10.1007/BF0196219
Vollaard E.J., Clasener H.A., van Saene H.K., Muller N.F. Effect on colonization resistance: an important criterion in selecting antibiotics. Drug Intel. and Clin. Pharm. 1990; 24 (1): 60-66. DOI: 10.1177/106002809002400113 -
19Electronic Resource
Συγγραφείς: Белоусова, О. В., Белоусов, Е. А., Кубрак, Н. Г.
Όροι ευρετηρίου: медицина, фармакология, лекарственные препараты, противопаразитарные препараты, производители, фармацевтический рынок, фармакоэкономика, аптеки, Article
Σύνδεσμος:
http://hdl.handle.net/rour/10844uri
Медицина и фармация