Εμφανίζονται 1 - 20 Αποτελέσματα από 131 για την αναζήτηση '"противоопухолевая терапия"', χρόνος αναζήτησης: 0,89δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The work was carried out in accordance with the Thematic Plan of the Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, topic “Promising developments: new technologies, applied research” (registration number 122041900064-5)., Работа проведена в соответствии с тематическим планом ФГБУ «Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт», тема «Перспективные разработки: новые технологии, прикладные исследования» (регистрационный номер 122041900064-5).

    Πηγή: Advances in Molecular Oncology; Vol 12, No 2 (2025); 8-21 ; Успехи молекулярной онкологии; Vol 12, No 2 (2025); 8-21 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Πηγή: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 18, No 2 (2025); 164–174 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 18, No 2 (2025); 164–174 ; 2070-4933 ; 2070-4909

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/1226/618; Global oncology trends 2024: outlook to 2028. Annual trend report from the IQVIA Institute for Human Data Science. May 28, 2024. Available at: https://www.iqvia.com/insights/the-iqvia-institute/reports-andpublications/reports/global-oncology-trends-2024 (accessed 25.04.2025).; Schaft N., Dörrie J., Schuler G., et al. The future of affordable cancer immunotherapy. Front Immunol. 2023; 14: 1248867. https://doi.org/10.3389/fimmu.2023.1248867.; Naci H., Zhang Y., Woloshin S., et al. Overall survival benefits of cancer drugs initially approved by the US Food and Drug Administration on the basis of immature survival data: a retrospective analysis. Lancet Oncol. 2024; 25 (6): 760–9. https://doi.org/10.1016/S14702045(24)00152-9.; Del Paggio J.C., Sullivan R., Schrag D., et al. Delivery of meaningful cancer care: a retrospective cohort study assessing cost and benefit with the ASCO and ESMO frameworks. Lancet Oncol. 2017; 18 (7): 887–94. https://doi.org/10.1016/S1470-2045(17)30415-1.; Laviana A.A., Luckenbaugh A.N., Resnick M.J. Trends in the cost of cancer care: beyond drugs. J Clin Oncol. 2020; 38 (4): 316–22. https://doi.org/10.1200/JCO.19.01963.; Всемирная организация здравоохранения. Методы анализа использования лекарств и расходов на содействие осуществлению лекарственной политики. URL: https://iris.who.int/bitstream/handle/10665/342858/9789289055697-rus.pdf?sequence=1&isAllowed=y (дата обращения 25.0.2025).; Жукова О.В., Руина О.В., Хазов М.В. и др. Фармакоэпидемиологический анализ потребления лекарственных препаратов в многопрофильном стационаре – элемент управления качеством медицинской помощи и основа оценки импортозамещения. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2022; 15 (1): 51–8. https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.046.; Pantziarka P., Capistrano I R., De Potter A., et al. An open access database of licensed cancer drugs. Front Pharmacol. 2021; 12: 627574. https://doi.org/10.3389/fphar.2021.627574.; World Health Organization. Model List of Essential Medicines. Available at: https://list.essentialmeds.org/ (accessed 25.04.2025).; Jenei K., Aziz Z., Booth C., et al. Cancer medicines on the WHO Model List of Essential Medicines: processes, challenges, and a way forward. Lancet Glob Health. 2022; 10 (12): e1860–6. https://doi.org/10.1016/S2214-109X(22)00376-X.; Коробейникова А.Н., Мальчикова С.В. ABC-, VEN- и частотный анализ терапии фибрилляции предсердий в условиях «типичной практики». ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2015; 8 (4): 28–31. https://doi.org/10.17749/2070-4909.2015.8.4.028-031.; Zhou Y., Naci H., Chen D., et al. Overall survival benefits of cancer drugs in the WHO Model List of Essential Medicines, 2015–2021. BMJ Glob Health. 2023; 8 (9): e012899. https://doi.org/10.1136/bmjgh-2023-012899.; Yang Y.T., Nagai S., Chen B.K., et al. Generic oncology drugs: are they all safe? Lancet Oncol. 2016; 17 (11): e493–501. https://doi.org/10.1016/S1470-2045(16)30384-9.; Cheung W.Y., Kornelsen E.A., Mittmann N., et al. The economic impact of the transition from branded to generic oncology drugs. Curr Oncol. 2019; 26 (2): 89–93. https://doi.org/10.3747/co.26.4395.; Yabroff K.R., Mariotto A., Tangka F., et al. Annual report to the nation on the status of cancer, Part 2: Patient economic burden associated with cancer care. J Natl Cancer Inst. 2021; 113 (19): 1670– 82. https://doi.org/10.1093/jnci/djab192.; Shin G., Kwon H.Y., Bae S. For whom the price escalates: high price and uncertain value of cancer drugs. Int J Environ Res Public Health. 2022; 19 (7): 4204. https://doi.org/10.3390/ijerph19074204.; https://www.pharmacoeconomics.ru/jour/article/view/1226

  4. 4
    Academic Journal

    Συνεισφορές: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 3 (2025); 322-326 ; Акушерство, Гинекология и Репродукция; Vol 19, No 3 (2025); 322-326 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2491/1341; Соловьевская Н.Л., Пряничников С.В. Особенности течения беременности у женщин различных возрастных групп в условиях Кольского Севера. Акушерство, Гинекология и Репродукция. 2025;19(3):327–340. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.576.; Мэлэк М.И., Игнатко И.В., Тимохина Е.В., Кузьмина Т.Е., Федюнина И.А., Самойлова Ю.А., Алиева Ф.Н., Григорьян И.С., Подсекаева С.А. Использование доплерографии глазных артерий в прогнозировании и ранней диагностике преэклампсии. Акушерство, Гинекология и Репродукция. 2025;19(3):341–350. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.609.; Воробьев А.В., Бицадзе В.О., Хизроева Д.Х., Солопова А.Г., Мамчич Д.М., Мун Э.Д., Блинов Д.В., Гри Ж.-К., Элалами И., Геротзиафас Г., Ван Дреден П., Макацария А.Д. Система гемостаза и метастазирование: терапевтический потенциал антикоагулянтов при раке яичников. Акушерство, Гинекология и Репродукция. 2025;19(3):351–359. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.644.; Тормозова А.В., Эракаева А.А., Ибадуллаева Г.А., Галата А.С., Асиновская А.С., Кузюра Д.Э., Ефремова К.Н., Чос В.М., Сварник У.В., Дьяченко А.А., Мавлютова А.Н., Мукосий Л.А., Карпусь Ю.С., Пирожкова Е.Д., Альбекова Ф.А., Сорокина Л.Е. Таксономическое разнообразие микробиомного кишечного ландшафта и его клиническое значение при привычном невынашивании беременности. Акушерство, Гинекология и Репродукция. 2025;19(3):360–368. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.620.; Сьяриф Ш.Д.Р., Ритонга М.А., Анвар Р. Взаимосвязь между индексом массы тела при подростковой беременности и преэклампсией в больнице Хасана Садыкина в 2019–2023 гг. Акушерство, Гинекология и Репродукция. 2025;19(3):369–376. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.603.; Бицадзе В.О., Хизроева Д.Х., Грандоне Э., Габидуллина Р.И., Третьякова М.В., Макацария Н.А., Гашимова Н.Р., Григорьева К.Н., Воробьев А.В., Лазарчук А.В., Муравьёва М.М., Кренделева А.Г., Полякова Т.Е., Зайнулина М.С., Капанадзе Д.Л., Ягубова Ф.Э., Гри Ж.-К., Элалами И., Геротзиафас Г., Ван Дреден П., Макацария А.Д. Венозные и артериальные тромбозы в программах ВРТ: эпидемиология и превентивные стратегии. Акушерство, Гинекология и Репродукция. 2025;19(3):377–388. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.656.; Загидуллина А.А., Джамбулатова Л.А., Шатуева М.А., Донгак Т.Б., Лаубах Я.С., Шакирова Д.С., Голанцев А.С., Пайзулаева Х.Р., Ястребова Д.П., Аксенов А.М., Гончарова Е.С., Ожерельева М.А., Саргсян Д.Г. Методы сохранения фертильности в контексте лечения рака молочной железы: реальность и перспективы. Акушерство, Гинекология и Репродукция. 2025;19(3):389–407. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.607.; Дикке Г.Б., Макацария А.Д., Зиганшин А.М., Шайхиева Э.А., Бицадзе В.О. Анатомия и функция мышечного комплекса, замыкающего влагалище, в норме и при пролапсе тазовых органов. Акушерство, Гинекология и Репродукция. 2025;19(3):408–422. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.615.; Лебина В.А., Шихалахова О.Х., Кохан А.А., Рашидов И.Ю., Тажев К.А., Филиппова А.В., Мышинская Е.П., Сымолкина Ю.В., Ибуев Ю.И., Матаева А.А., Сиротенко А.Н., Габараева Т.Т., Аскерова А.И. Возможности и ограничения внедрения технологий искусственного интеллекта репродуктивную медицину. Акушерство, Гинекология и Репродукция. 2025;19(3):423–442. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.591.; Антонова А.С., Хизроева Д.Х., Калашникова И.С., Третьякова М.В., Попёнова Ю.А., Кунешко Н.Ф., Фаткуллина Л.С. Система комплемента у беременных с тяжелой преэклампсией. Акушерство, Гинекология и Репродукция. 2025;19(3):443–452. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.626.; Гасанов М.Г., Тугушева Р.А., Карапетян М.У., Воробьев А.В. Патрик Кристофер Стептоу: хирург, без которого не было бы ЭКО. Акушерство, Гинекология и Репродукция. 2025;19(3):453–457. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.636.; https://www.gynecology.su/jour/article/view/2491

  5. 5
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 4 (2025); 151-159 ; Медицинский Совет; № 4 (2025); 151-159 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/9035/7852; Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer; 2024. Available at: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf.; Massarotti C, Scaruffi P, Lambertini M, Remorgida V, Del Mastro L, Anserini P. State of the art on oocyte cryopreservation in female cancer patients: A critical review of the literature. Cancer Treat Rev. 2017;57:50–57. https://doi.org/10.1016/j.ctrv.2017.04.009.; Hickey M, Basu P, Sassarini J, Stegmann ME, Weiderpass E, Nakawala Chilowa K et al. Managing menopause after cancer. Lancet. 2024;403(10430):984–996. https://doi.org/10.1016/S0140-6736(23)02802-7.; Доброхотова ЮЭ, Лысенко МА, Грабовский ВМ, Шевченко НА, Гращенко ИМ. Проблема сохранения фертильности у онкогематологических пациенток репродуктивного возраста. РМЖ. Мать и дитя. 2023;6(4):362–367. Режим доступа: https://www.rmj.ru/articles/onkologiya/Problema_sohraneniya_fertilynosti_u_onkogematologicheskih_pacientok_reproduktivnogo_vozrasta/?ysclid=m9l0qbjyf5523580479#.; Каприн АД, Старинский ВВ, Петрова ГВ (ред.). Состояние онкологической помощи населению России в 2018 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии»; 2019. 236 с. Режим доступа: https://oncology-association.ru/wp-content/uploads/2020/09/sostoyanie_2018.pdf.; Anderson RA, Cameron D, Clatot F, Demeestere I, Lambertini M, Nelson SM, Peccatori F. Anti-Müllerian hormone as a marker of ovarian reserve and premature ovarian insufficiency in children and women with cancer: a systematic review. Hum Reprod Update. 2022;28(3):417–434. https://doi.org/10.1093/humupd/dmac004.; Leone T. Women’s mid-life health in Low and Middle Income Countries: A comparative analysis of the timing and speed of health deterioration in six countries. SSM Popul Health. 2018;7:100341. https://doi.org/10.1016/j.ssmph.2018.100341.; Lambertini M, Peccatori FA, Demeestere I, Amant F, Wyns C, Stukenborg JB et al. Fertility preservation and post-treatment pregnancies in postpubertal cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2020;31(12):1664–1678. https://doi.org/10.1016/j.annonc.2020.09.006.; “The 2022 Hormone Therapy Position Statement of The North American Menopause Society” Advisory Panel. The 2022 hormone therapy position statement of The North American Menopause Society. Menopause. 2022;29(7):767–794. https://doi.org/10.1097/GME.0000000000002028.; Якушевская ОВ, Юренева СВ, Протасова АЭ, Хабас ГН, Ашрафян ЛА. Менопаузальная гормональная терапия и негинекологический рак (часть II). Гинекология. 2019;21(1):86–90. Режим доступа: https://gynecology.orscience.ru/2079-5831/article/view/30140.; Franzoi MA, Agostinetto E, Perachino M, Del Mastro L, de Azambuja E, Vaz-Luis I et al. Evidence-based approaches for the management of sideeffects of adjuvant endocrine therapy in patients with breast cancer. Lancet Oncol. 2021;22(7):e303–e313. https://doi.org/10.1016/S1470-2045(20)30666-5.; Taylor A, Clement K, Hillard T, Sassarini J, Ratnavelu N, Baker-Rand H et al. British Gynaecological Cancer Society and British Menopause Society guidelines: Management of menopausal symptoms following treatment of gynaecological cancer. Post Reprod Health. 2024;30(4):256–279. https://doi.org/10.1177/20533691241286666.; Yang X, Wang C, He X, Wei J, Wang Y, Li X, Xu LP. Hormone therapy for premature ovarian insufficiency patients with malignant hematologic diseases. Climacteric. 2017;20(3):268–273. https://doi.org/10.1080/13697137.2017.1309382.; MacKie RM, Bray CA. Hormone replacement therapy after surgery for stage 1 or 2 cutaneous melanoma. Br J Cancer. 2004;90(4):770–772. https://doi.org/10.1038/sj.bjc.6601595.; Chan JA, Meyerhardt JA, Chan AT, Giovannucci EL, Colditz GA, Fuchs CS. Hormone replacement therapy and survival after colorectal cancer diagnosis. J Clin Oncol. 2006;24(36):5680–5686. https://doi.org/10.1200/JCO.2006.08.0580.; Ji J, Sundquist J, Sundquist K. Use of hormone replacement therapy improves the prognosis in patients with colorectal cancer: A populationbased study in Sweden. Int J Cancer. 2018;142(10):2003–2010. https://doi.org/10.1002/ijc.31228.; Hassan MM, Botrus G, Abdel-Wahab R, Wolff RA, Li D, Tweardy D et al. Estrogen Replacement Reduces Risk and Increases Survival Times of Women With Hepatocellular Carcinoma. Clin Gastroenterol Hepatol. 2017;15(11):1791–1799. https://doi.org/10.1016/j.cgh.2017.05.036.; Brennan A, Rees M. Menopausal hormone therapy in women with benign gynaecological conditions and cancer. Best Pract Res Clin Endocrinol Metab. 2021;35(6):101575. https://doi.org/10.1016/j.beem.2021.101575.; Zhang X, Du Y, Tan X, Wang H, Li Y, Zhang Z, Wang A. The Relationship Between Hormone Replacement Therapy and Risk of Kidney Cancer in Women: A Meta-Analysis. Cancer Control. 2020;27(2):1073274820930194. https://doi.org/10.1177/1073274820930194.; Clague J, Reynolds P, Henderson KD, Sullivan-Halley J, Ma H, Lacey JV Jr et al. Menopausal hormone therapy and lung cancer-specific mortality following diagnosis: the California Teachers Study. PLoS ONE. 2014;9(7):e103735. https://doi.org/10.1371/journal.pone.0103735.; Katcoff H, Wenzlaff AS, Schwartz AG. Survival in women with NSCLC: the role of reproductive history and hormone use. J Thorac Oncol. 2014;9(3):355–361. https://doi.org/10.1097/JTO.0000000000000077.; Ganti AK, Sahmoun AE, Panwalkar AW, Tendulkar KK, Potti A. Hormone replacement therapy is associated with decreased survival in women with lung cancer. J Clin Oncol. 2006;24(1):59–63. https://doi.org/10.1200/JCO.2005.02.9827.; Chlebowski RT, Schwartz AG, Wakelee H, Anderson GL, Stefanick ML, Manson JE et al. Oestrogen plus progestin and lung cancer in postmenopausal women (Women’s Health Initiative trial): a post-hoc analysis of a randomised controlled trial. Lancet. 2009;374(9697):1243–1251. https://doi.org/10.1016/S0140-6736(09)61526-9.; Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. https://doi.org/10.3322/caac.21660.; Oktay K, Harvey BE, Partridge AH, Quinn GP, Reinecke J, Taylor HS et al. Fertility Preservation in Patients With Cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol. 2018;36(19):1994–2001. https://doi.org/10.1200/JCO.2018.78.1914.; Lee YJ, Kim JS, Jo JC, Kim Y, Im HS, Kim H et al. Risk factors of menopause after allogeneic hematopoietic cell transplantation in premenopausal adult women. Eur J Haematol. 2023;111(3):449–457. https://doi.org/10.1111/ejh.14027.; Deli T, Orosz M, Jakab A. Hormone Replacement Therapy in Cancer Survivors – Review of the Literature. Pathol Oncol Res. 2020;26(1):63–78. https://doi.org/10.1007/s12253-018-00569-x.; Botteri E, Støer NC, Sakshaug S, Graff-Iversen S, Vangen S, Hofvind et al. Menopausal hormone therapy and risk of melanoma: Do estrogens and progestins have a different role? Int J Cancer. 2017;141(9):1763–1770. https://doi.org/10.1002/ijc.30878.; Marzagalli M, Casati L, Moretti RM, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE. 2015;10(7):e0134396. https://doi.org/10.1371/journal.pone.0134396.; Якушевская ОВ, Юренева СВ, Протасова АЭ, Хабас ГН, Ашрафян ЛА. Менопаузальная гормональная терапия и негинекологический рак (новообразования органов пищеварения). Акушерство и гинекология: новости, мнения, обучение. 2019;7(1):52–60. https://doi.org/10.24411/2303-9698-2019-11007.; Kim SM, Min BH, Lee J, An JY, Lee JH, Sohn TS et al. Protective Effects of Female Reproductive Factors on Lauren Intestinal-Type Gastric Adenocarcinoma. Yonsei Med J. 2018;59(1):28–34. https://doi.org/10.3349/ymj.2018.59.1.28.; Camargo MC, Goto Y, Zabaleta J, Morgan DR, Correa P, Rabkin CS. Sex hormones, hormonal interventions, and gastric cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2012;21(1):20–38. https://doi.org/10.1158/1055-9965.EPI-11-0834.; Hogan AM, Collins D, Baird AW, Winter DC. Estrogen and gastrointestinal malignancy. Mol Cell Endocrinol. 2009;307(1-2):19–24. https://doi.org/10.1016/j.mce.2009.03.016.; Hoekman EJ, Broeders EABJ, Louwe LA, Nout RA, Jansen FW, de Kroon CD. Ovarian function after ovarian transposition and additional pelvic radiotherapy: A systematic review. Eur J Surg Oncol. 2019;45(8):1328–1340. https://doi.org/10.1016/j.ejso.2019.02.017.; Marjoribanks J, Farquhar C, Roberts H, Lethaby A, Lee J. Long-term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 2017;1(1):CD004143. https://doi.org/10.1002/14651858.CD004143.pub5.; Guo-Chao Zhong, Yan Liu, Nan Chen. Reproductive factors, menopausal hormone therapies and primary liver cancer risk: a systematic review and dose-response meta-analysis of observational studies. Hum Reprod Update. 2016;23(1):126–138. https://doi.org/10.1093/humupd/dmw037.; Godoy G, Gakis G, Smith CL, Fahmy O. Effects of Androgen and Estrogen Receptor Signaling Pathways on Bladder Cancer Initiation and Progression. Bladder Cancer. 2016;2(2):127–137. https://doi.org/10.3233/BLC-160052.; Hsu LH, Chu NM, Kao SH. Estrogen, Estrogen Receptor and Lung Cancer. Int J Mol Sci. 2017;18(8):1713. https://doi.org/10.3390/ijms18081713.; Li W, Lin X, Wang R, Wang F, Xie S, Tse LA. Hormone therapy and lung cancer mortality in women: Systematic review and meta-analysis. Steroids. 2017;118:47–54. https://doi.org/10.1016/j.steroids.2016.12.005.; Zhang GQ, Chen JL, Luo Y, Mathur MB, Anagnostis P, Nurmatov U et al. Menopausal hormone therapy and women’s health: An umbrella review. PLoS Med. 2021;18(8):e1003731. https://doi.org/10.1371/journal.pmed.1003731.; Mendoza N, Ramírez I, de la Viuda E, Coronado P, Baquedano L, Llaneza P et al. Eligibility criteria for Menopausal Hormone Therapy (MHT): a position statement from a consortium of scientific societies for the use of MHT in women with medical conditions. MHT Eligibility Criteria Group. Maturitas. 2022;166:65–85. https://doi.org/10.1016/j.maturitas.2022.08.008.; Hickey M, Szabo RA, Hunter MS. Non-hormonal treatments for menopausal symptoms. BMJ. 2017;359:j5101. https://doi.org/10.1136/bmj.j5101.; Sarri G, Pedder H, Dias S, Guo Y, Lumsden MA. Vasomotor symptoms resulting from natural menopause: a systematic review and network metaanalysis of treatment effects from the National Institute for Health and Care Excellence guideline on menopause. BJOG. 2017;124(10):1514–1523. https://doi.org/10.1111/1471-0528.14619.; Аверкова ВГ, Якушевская ОВ. Альтернативная и комплементарная коррекция климактерических расстройств. Медицинский совет. 2022;16(16):124–129. https://doi.org/10.21518/2079-701X-2022-16-16-124-129.; Chen LR, Ko NY, Chen KH. Isoflavone Supplements for Menopausal Women: A Systematic Review. Nutrients. 2019;11(11):2649. https://doi.org/10.3390/nu11112649.; Bonga KN, Mishra A, Maiti R, Padhy BM, Meher BR, Srinivasan A. Efficacy and Safety of Fezolinetant for the Treatment of Menopause-Associated Vasomotor Symptoms: A Meta-analysis. Obstet Gynecol. 2024;143(3):393–402. https://doi.org/10.1097/AOG.0000000000005508.; Hipkiss AR, Baye E, de Courten B. Carnosine and the processes of ageing. Maturitas. 2016;93:28–33. https://doi.org/10.1016/j.maturitas.2016.06.002.; Berti Zanella P, Donner Alves F, Guerini de Souza C. Effects of beta-alanine supplementation on performance and muscle fatigue in athletes and nonathletes of different sports: a systematic review. J Sports Med Phys Fitness. 2017;57(9):1132–1141. https://doi.org/10.23736/S0022-4707.16.06582-8.; Andreeva E, Tkeshelashvili B. Women dealing with hot flushes: the role of β-alanine. Eur Rev Med Pharmacol Sci. 2020;24(9):5148–5154. https://doi.org/10.26355/eurrev_202005_21209.; Татарова НА, Маржевская АМ, Гаврилова НП, Савина ЛВ. Коррекция эстрогендефицитных состояний у женщин с эндометриозом на фоне терапии аналогами гонадотропин-рилизинг-гормона. Гинекология. 2013;15(6):28–31. Режим доступа: https://gynecology.orscience.ru/2079-5831/article/view/28261.

  6. 6
    Academic Journal

    Συνεισφορές: Отсутствует

    Πηγή: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3191/2095; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14970; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14971; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14972; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14973; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14974; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/15164; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/15165; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/15166; Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 2018;62:29–39. DOI:10.1016/j.intimp.2018.06.001.; Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2019;2:e192535. DOI:10.1001/jamanetworkopen.2019.2535.; Common terminology criteria for adverse events (CTCAE) V5. Available: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm; Arnaud-Coffin P, Maillet D, Gan HK, et al. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. International Journal of Cancer 2019;145:639–48. Doi:10.1002/ijc.32132; Li B, Chan HL, Chen P. Immune checkpoint inhibitors: basics and challenges. Curr Med Chem (2019) 26:3009–25. doi:10.2174/0929867324666170804143706.; Wang J, Yang T, Xu J. Therapeutic development of immune checkpoint inhibitors. Adv Exp Med Biol (2020) 1248:619–49. doi:10.1007/978-981-15-3266-5_23; Willsmore ZN, Coumbe B, Crescioli S, Reci S, Gupta A, Harris RJ, et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: treatment of melanoma and immune mechanisms of action. Eur J Immunol (2021) 51:544–56. doi:10.1002/eji.202048747; Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer (2016) 16:275–87. doi:10.1038/nrc.2016.36; Cuyas E, Verdura S, Martin-Castillo B, Alarcon T, Lupu R, Bosch-Barrera J, et al. Tumor cell-intrinsic immunometabolism and precision nutrition in cancer immunotherapy. Cancers (Basel) (2020) 12(7):1757. doi:10.3390/cancers12071757; Lim S, Phillips JB, Madeira DSL, Zhou M, Fodstad O, Owen LB, et al. Interplay between immune checkpoint proteins and cellular metabolism. Cancer Res (2017) 77:1245–9. doi:10.1158/0008-5472.CAN-16-1647; Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol (2021) 14:45. doi:10.1186/s13045-021-01056-8; Barclay J, Creswell J, Leon J. Cancer immunotherapy and the PD-1/PD-L1 checkpoint pathway. Arch Esp Urol (2018) 71:393–9.; Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J (2021) 23:39. doi:10.1208/s12248-021-00574-0; Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science (2018) 359:1350–5. doi:10.1126/science.aar4060; Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer (2019) 18:10. doi:10.1186/s12943-018-0928-4; Liao D, Wang M, Liao Y, Li J, Niu T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol (2019) 10:609. doi:10.3389/fphar.2019.00609; Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res (2013) 1:32–42. doi:10.1158/2326-6066.CIR-13-0013; Waight JD, Chand D, Dietrich S, Gombos R, Horn T, Gonzalez AM, et al. Selective FcgammaR Co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell (2018) 33:1033–47. doi:10.1016/j.ccell.2018.05.005; Qi Y, Chen L, Liu Q, Kong X, Fang Y, Wang J. Research progress concerning dual blockade of lymphocyte-activation gene 3 and programmed death-1/Programmed death-1 ligand-1 blockade in cancer immunotherapy: preclinical and clinical evidence of this potentially more effective immunotherapy strategy. Front Immunol (2020) 11:563258. doi:10.3389/fimmu.2020.; Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernandez-Rubio L, et al. Understanding LAG-3 signaling. Int J Mol Sci (2021) 22(10):5282. doi:10.3390/ijms22105282; Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol (2011) 186:5173–83. doi:10.4049/jimmunol.1002050; Lythgoe MP, Liu D, Annels NE, Krell J, Frampton AE. Gene of the month: lymphocyte-activation gene 3 (LAG-3). J Clin Pathol (2021) 74:543–7. doi:10.1136/jclinpath-2021-207517; Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol (2021) 14:147. doi:10.1186/s13045-021-01161-8; Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res (2014) 74:3418–28. doi:10.1158/0008-5472.CAN-13-2690; Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res (2015) 3:412–23. doi:10.1158/2326-6066.CIR-14-0150; Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science (2016) 353(6307):aah3374. doi:10.1126/science.aah3374; Kang CW, Dutta A, Chang LY, Mahalingam J, Lin YC, Chiang JM, et al. Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci Rep (2015) 5:15659. doi:10.1038/srep15659; Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol (2018) 62:29–39. doi:10.1016/j.intimp.2018.06.001; Rocha M, Correia DSJ, Salgado M, Araujo A, Pedroto I. Management of gastrointestinal toxИКТty from immune checkpoint inhibitor. GE Port J Gastroenterol (2019) 26:268–74. doi:10.1159/000494569; Davies M, Duffield EA. Duffield EA: safety of checkpoint inhibitors for cancer treatment: strategies for patient monitoring and management of immune-mediated adverse events. Immunotargets Ther 2017;6:51–71.; Couey MA, Bell RB, Patel AA, et al. Delayed immune-related events (dire) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. Journal for ImmunoTherapy of Cancer 2019;7:165. doi:10.1186/s40425-019-0645-6; Duma N, Lambertini M. It is time to talk about fertility and immunotherapy. Oncologist 2020;25:277–8. doi:10.1634/theoncologist.2019-0837; Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. Pituitary 2016;19:82–92. doi:10.1007/s11102-015-0671-4; Andrade Vila JH, da Silva JP, Guilhen CJ, et al. Even low dose of mycophenolate mofetil in a mother recipient of heart transplant can seriously damage the fetus. Transplantation 2008;86:369–70. doi:10.1097/TP.0b013e31817cf28a; Merlob P, Stahl B, Klinger G. Tetrada of the possible mycophenolate mofetil embryopathy: a review. Reprod Toxicol 2009;28:105–8. doi:10.1016/j.reprotox.2009.02.007; Burotto M, Gormaz JG, Samtani S, et al. Viable pregnancy in a patient with metastatic melanoma treated with double checkpoint immunotherapy. Semin Oncol 2018;45:164–9.DOI:10.1053/j.seminoncol.2018.03.003; Xu W, Moor RJ, Walpole ET, et al. Pregnancy with successful foetal and maternal outcome in a melanoma patient treated with nivolumab in the first trimester: case report and review of the literature. Melanoma Res 2019;29:333–7. Doi:10.1097/CMR.0000000000000586; Bucheit AD, Hardy JT, Szender JB, et al. Conception and viable twin pregnancy in a patient with metastatic melanoma while treated with CTLA-4 and PD-1 checkpoint inhibition. Melanoma Res 2020;30:423–5. Doi:10.1097/CMR.0000000000000657; Butterfield LH, Kaufman HL, Johnson DH. SITC’s Guide to Managing Immunotherapy Toxicity, 1 edn. New York: Springer Publishing Company, 2019; Sarnes E, Crofford L, Watson M, et al. Incidence and US costs of Corticosteroid-Associated adverse events: a systematic literature review. Clin Ther 2011;33:1413–32. Doi:10.1016/j.clinthera.2011.09.009; Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal Toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol (2018) 4:1721–8. doi:10.1001/jamaoncol.2018.3923; Geisler AN, Phillips GS, Barrios DM, Wu J, Leung D, Moy AP, et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol (2020) 83:1255–68. doi:10.1016/j.jaad.2020.03.132; Quach HT, Johnson DB, LeBoeuf NR, Zwerner JP, Dewan AK. Cutaneous adverse events caused by immune checkpoint inhibitors. J Am Acad Dermatol (2021) 85:956–66. doi:10.1016/j.jaad.2020.09.054; Nadelmann ER, Yeh JE, Chen ST. Management of cutaneous immune-related adverse events in patients with cancer treated with immune checkpoint inhibitors: a systematic review. JAMA Oncol (2022) 8:130–8. doi:10.1001/jamaoncol.2021.4318; Collins LK, Chapman MS, Carter JB, Samie FH. Cutaneous adverse effects of the immune checkpoint inhibitors. Curr Probl Cancer (2017) 41:125–8. doi:10.1016/j.currproblcancer.2016.12.001; Sibaud V. Dermatologic reactions to immune checkpoint inhibitors : skin toxИКТties and immunotherapy. Am J Clin Dermatol (2018) 19:345–61. doi:10.1007/s40257-017-0336-3; Ma B, Anandasabapathy N. Immune checkpoint blockade and skin toxИКТty pathogenesis. J Invest Dermatol (2022) 142:951–9. doi:10.1016/j.jid.2021.06.040; Ellis SR, Vierra AT, Millsop JW, Lacouture ME, Kiuru M. Dermatologic toxИКТties to immune checkpoint inhibitor therapy: a review of histopathologic features. J Am Acad Dermatol (2020) 83:1130–43. doi:10.1016/j.jaad.2020.04.105; Patil PA, Zhang X. Pathologic manifestations of gastrointestinal and hepatobiliary injury in immune checkpoint inhibitor therapy. Arch Pathol Lab Med (2021) 145:571–82. doi:10.5858/arpa.2020-0070-RA; Yamada K, Sawada T, Nakamura M, Yamamura T, Maeda K, Ishikawa E, et al. Clinical characteristics of gastrointestinal immune-related adverse events of immune checkpoint inhibitors and their association with survival. World J Gastroenterol (2021) 27:7190–206. doi:10.3748/wjg.v27.i41.7190; Haanen J, Obeid M, Spain L, Carbonnel F, Wang Y, Robert C, et al. Management of toxИКТties from immunotherapy: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol (2022) 33:1217–38. doi:10.1016/j.annonc.2022.10.001; Rajha E, Chaftari P, Kamal M, Maamari J, Chaftari C, Yeung SJ. Gastrointestinal adverse events associated with immune checkpoint inhibitor therapy. Gastroenterol Rep (Oxf) (2020) 8:25–30. doi:10.1093/gastro/goz065; Wang ZH, Shen L. Management of gastrointestinal adverse events induced by immune-checkpoint inhibitors. Chronic Dis Transl Med (2018) 4:1–7. doi:10.1016/j.cdtm.2017.12.001; Gupta A, De Felice KM, Loftus EJ, Khanna S. Systematic review: colitis associated with anti-CTLA-4 therapy. Aliment Pharmacol Ther (2015) 42:406–17. doi:10.1111/apt.13281; Soularue E, Lepage P, Colombel JF, Coutzac C, Faleck D, Marthey L, et al. Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut (2018) 67:2056–67. doi:10.1136/gutjnl-2018-316948; Bergqvist V, Hertervig E, Gedeon P, Kopljar M, Griph H, Kinhult S, et al. Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis. Cancer Immunol Immunother (2017) 66:581–92. doi:10.1007/s00262-017-1962-6; Ascierto PA, Del VM, Robert C, Mackiewicz A, Chiarion-Sileni V, Arance A, et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol (2017) 18:611–22. doi:10.1016/S1470-2045(17)30231-0; Shojaie L, Ali M, Iorga A, Dara L. Mechanisms of immune checkpoint inhibitor-mediated liver injury. Acta Pharm Sin B (2021) 11:3727–39. doi:10.1016/j.apsb.2021.10.003; Farshidpour M, Hutson W. Immune checkpoint inhibitors induced hepatotoxИКТty; gastroenterologists' perspectives. Middle East J Dig Dis (2022) 14:244–53. doi:10.34172/mejdd.2022.279; Schneider BJ, Naidoo J, Santomasso BD, Lacchetti C, Adkins S, Anadkat M, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol (2021) 39:4073–126. doi:10.1200/JCO.21.01440; Reddy HG, Schneider BJ, Tai AW. Immune checkpoint inhibitor-associated colitis and hepatitis. Clin Transl Gastroenterol (2018) 9:180. doi:10.1038/s41424-018-0049-9; de Filette J, Andreescu CE, Cools F, Bravenboer B, Velkeniers B. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res (2019) 51:145–56. doi:10.1055/a-0843-3366; Chera A, Stancu AL, Bucur O. Thyroid-related adverse events induced by immune checkpoint inhibitors. Front Endocrinol (Lausanne) (2022) 13:1010279. doi:10.3389/fendo.2022.1010279; Tachibana M, Imagawa A. Type 1 diabetes related to immune checkpoint inhibitors. Best Pract Res Clin Endocrinol Metab (2022) 36:101657. doi:10.1016/j.beem.2022.101657; Akturk HK, Kahramangil D, Sarwal A, Hoffecker L, Murad MH, Michels AW. Immune checkpoint inhibitor-induced type 1 diabetes: a systematic review and meta-analysis. Diabetes Med (2019) 36:1075–81. doi:10.1111/dme.14050; Zheng Z, Liu Y, Yang J, Tan C, Zhou L, Wang X, et al. Diabetes mellitus induced by immune checkpoint inhibitors. Diabetes Metab Res Rev (2021) 37:e3366. doi:10.1002/dmrr.3366; Larkin J, Chmielowski B, Lao CD, Hodi FS, Sharfman W, Weber J, et al. Neurologic serious adverse events associated with nivolumab plus ipilimumab or nivolumab alone in advanced melanoma, including a case series of encephalitis. Oncologist (2017) 22:709–18. doi:10.1634/theoncologist.2016-0487; Cuzzubbo S, Javeri F, Tissier M, Roumi A, Barlog C, Doridam J, et al. Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur J Cancer (2017) 73:1–8. doi:10.1016/j.ejca.2016.12.001; Marini A, Bernardini A, Gigli GL, Valente M, Muniz-Castrillo S, Honnorat J, et al. Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology (2021) 96:754–66. doi:10.1212/WNL.0000000000011795; Varricchi G, Galdiero MR, Marone G, Criscuolo G, Triassi M, Bonaduce D, et al. CardiotoxИКТty of immune checkpoint inhibitors. ESMO Open (2017) 2:e247. doi:10.1136/esmoopen-2017-000247; Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation (2004) 109:2749–54. doi:10.1161/01.CIR.0000130926.51766.CC; Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y, Nakaki F, et al. PD-1 defИКТency results in the development of fatal myocarditis in MRL mice. Int Immunol (2010) 22:443–52. doi:10.1093/intimm/dxq026; Tarrio ML, Grabie N, Bu DX, Sharpe AH, Lichtman AH. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol (2012) 188:4876–84. doi:10.4049/jimmunol.1200389; Drobni ZD, Alvi RM, Taron J, Zafar A, Murphy SP, Rambarat PK, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation (2020) 142:2299–311. doi:10.1161/CIRCULATIONAHA.120.049981; Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet (2016) 387:1540–50. doi:10.1016/S0140-6736(15)01281-7; Michel L, Helfrich I, Hendgen-Cotta UB, Mincu RI, Korste S, Mrotzek SM, et al. Targeting early stages of cardiotoxИКТty from anti-PD1 immune checkpoint inhibitor therapy. Eur Heart J (2022) 43:316–29. doi:10.1093/eurheartj/ehab430; Jaworska K, Ratajczak J, Huang L, Whalen K, Yang M, Stevens BK, et al. Both PD-1 ligands protect the kidney from ischemia reperfusion injury. J Immunol (2015) 194:325–33. doi:10.4049/jimmunol.1400497; Liao W, Zheng H, Wu S, Zhang Y, Wang W, Zhang Z, et al. The systemic activation of programmed death 1-PD-L1 axis protects systemic lupus erythematosus model from nephritis. Am J Nephrol (2017) 46:371–9. doi:10.1159/000480641; Vandiver JW, Singer Z, Harshberger C. Severe hyponatremia and immune nephritis following an initial infusion of nivolumab. Target Oncol (2016) 11:553–6. doi:10.1007/s11523-016-0426-9; Wanchoo R, Karam S, Uppal NN, Barta VS, Deray G, Devoe C, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol (2017) 45:160–9. doi:10.1159/000455014; Roberto I, Chiara C, Emanuela F, Davide B, Mario R, Antonio BP, et al. Renal toxИКТty in patients treated with anti-Pd-1 targeted agents for solid tumors. J Onco-Nephrology (2017) 1(2):132–142. doi:10.5301/jo-n.5000019; Wang Y, Tong Z, Zhang W, Zhang W, Buzdin A, Mu X, et al. FDA-Approved and emerging next generation predictive biomarkers for immune checkpoint inhibitors in cancer patients. Front Oncol (2021) 11:683419. doi:10.3389/fonc.2021.683419; Olsen TA, Zhuang TZ, Caulfield S, Martini DJ, Brown JT, Carthon BC, et al. Advances in knowledge and management of immune-related adverse events in cancer immunotherapy. Front Endocrinol (Lausanne) (2022) 13:779915. doi:10.3389/fendo.2022.779915; Remash D, Prince DS, McKenzie C, Strasser SI, Kao S, Liu K. Immune checkpoint inhibitor-related hepatotoxicity: a review. World J Gastroenterol (2021) 27:5376–91. doi:10.3748/wjg.v27.i32.5376; Kostine M, Finckh A, Bingham CO, Visser K, Leipe J, Schulze-Koops H, et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis (2021) 80:36–48. doi:10.1136/annrheumdis-2020-217139; Liu X, Wu W, Fang L, Liu Y, Chen W. TNF-alpha inhibitors and other biologic agents for the treatment of immune checkpoint inhibitor-induced myocarditis. Front Immunol (2022) 13:922782. doi:10.3389/fimmu.2022.922782; Muley SA, Jacobsen B, Parry G, Usman U, Ortega E, Walk D, et al. Rituximab in refractory chronic inflammatory demyelinating polyneuropathy. Muscle Nerve (2020) 61:575–9. doi:10.1002/mus.26804; Chauvet E, Blanchard RG, Manel V, Delmont E, Boucraut J, Garcia-Tarodo S. Autoantibodies to a nodal isoform of neurofascin in pediatric chronic inflammatory demyelinating polyneuropathy. Child Neurol Open (2023) 10:2329048X–221149618X. doi:10.1177/2329048X221149618; Verma N, Jaffer M, Pina Y, Peguero E, Mokhtari S. Rituximab for immune checkpoint inhibitor myasthenia gravis. Cureus (2021) 13:e16337. doi:10.7759/cureus.16337; Lin JS, Wang DY, Mamlouk O, Glass WF, Abdelrahim M, Yee C, et al. Immune checkpoint inhibitor associated reactivation of primary membranous nephropathy responsive to rituximab. J Immunother Cancer (2020) 8(2):e001287. doi:10.1136/jitc-2020-001287; Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol (2014) 15:69–77. doi:10.1016/S1470-2045(13)70551-5; Nastoupil LJ, Chin CK, Westin JR, Fowler NH, Samaniego F, Cheng X, et al. Safety and activity of pembrolizumab in combination with rituximab in relapsed or refractory follicular lymphoma. Blood Adv (2022) 6:1143–51. doi:10.1182/bloodadvances.2021006240; Manos K, Chong G, Keane C, Lee ST, Smith C, Churilov L, et al. Immune priming with avelumab and rituximab prior to r-CHOP in diffuse large b-cell lymphoma: the phase II AvR-CHOP study. Leukemia (2023) 37(5):1092–1102. doi:10.1038/s41375-023-01863-7; Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol (2014) 6:a16295. doi:10.1101/cshperspect.a016295; Rossi JF, Lu ZY, Jourdan M, Klein B. Interleukin-6 as a therapeutic target. Clin Cancer Res (2015) 21:1248–57. doi:10.1158/1078-0432.CCR-14-2291; Smolen JS, Landewe R, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis (2023) 82:3–18. doi:10.1136/ard-2022-223356; Stone JH, Tuckwell K, Dimonaco S, Klearman M, Aringer M, Blockmans D, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med (2017) 377:317–28. doi:10.1056/NEJMoa1613849; Stroud CR, Hegde A, Cherry C, Naqash AR, Sharma N, Addepalli S, et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J Oncol Pharm Pract (2019) 25:551–7. doi:10.1177/1078155217745144; Horisberger A, La Rosa S, Zurcher JP, Zimmermann S, Spertini F, Coukos G, et al. A severe case of refractory esophageal stenosis induced by nivolumab and responding to tocilizumab therapy. J Immunother Cancer (2018) 6:156. doi:10.1186/s40425-018-0481-0; Moi L, Bouchaab H, Mederos N, Nguyen-Ngoc T, Perreau M, Fenwick C, et al. Personalized cytokine-directed therapy with tocilizumab for refractory immune checkpoint inhibitor-related cholangiohepatitis. J Thorac Oncol (2021) 16:318–26. doi:10.1016/j.jtho.2020.09.007; Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, et al. FDA Approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist (2018) 23:943–7. doi:10.1634/theoncologist.2018-0028; Campochiaro C, Farina N, Tomelleri A, Ferrara R, Lazzari C, De Luca G, et al. Tocilizumab for the treatment of immune-related adverse events: a systematic literature review and a multicentre case series. Eur J Intern Med (2021) 93:87–94. doi:10.1016/j.ejim.2021.07.016; Laino AS, Woods D, Vassallo M, Qian X, Tang H, Wind-Rotolo M, et al. Serum interleukin-6 and c-reactive protein are associated with survival in melanoma patients receiving immune checkpoint inhibition. J Immunother Cancer (2020) 8(1):e000842. doi:10.1136/jitc-2020-000842; Reich K, Warren RB, Lebwohl M, Gooderham M, Strober B, Langley RG, et al. Bimekizumab versus secukinumab in plaque psoriasis. N Engl J Med (2021) 385:142–52. doi:10.1056/NEJMoa2102383; Ruggiero A, Potestio L, Camela E, Fabbrocini G, Megna M. Bimekizumab for the treatment of psoriasis: a review of the current knowledge. Psoriasis (Auckl) (2022) 12:127–37. doi:10.2147/PTT.S367744; Merola JF, Landewe R, McInnes IB, Mease PJ, Ritchlin CT, Tanaka Y, et al. Bimekizumab in patients with active psoriatic arthritis and previous inadequate response or intolerance to tumour necrosis factor-alpha inhibitors: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (2023) 401:38–48. doi:10.1016/S0140-6736(22)02303-0; Esfahani K, Miller WJ. Reversal of autoimmune toxИКТty and loss of tumor response by interleukin-17 blockade. N Engl J Med (2017) 376:1989–91. doi:10.1056/NEJMc1703047; Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: from mechanism to autoimmune therapy. Int Immunopharmacol (2020) 80:106221. doi:10.1016/j.intimp.2020.106221; Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev (2009) 229:307–21. doi:10.1111/j.1600-065X.2009.00780.x; Hurwitz AA, Sullivan TJ, Sobel RA, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc Natl Acad Sci U.S.A. (2002) 99:3013–7. doi:10.1073/pnas.042684699; Scarsi M, Paolini L, Ricotta D, Pedrini A, Piantoni S, Caimi L, et al. Abatacept reduces levels of switched memory b cells, autoantibodies, and immunoglobulins in patients with rheumatoid arthritis. J Rheumatol (2014) 41:666–72. doi:10.3899/jrheum.130905; Blair HA, Deeks ED. Abatacept: a review in rheumatoid arthritis. Drugs (2017) 77:1221–33. doi:10.1007/s40265-017-0775-4; Viglietta V, Bourcier K, Buckle GJ, Healy B, Weiner HL, Hafler DA, et al. CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology (2008) 71:917–24. doi:10.1212/01.wnl.0000325915.00112.61; https://www.mimmun.ru/mimmun/article/view/3191

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Συνεισφορές: The study was financially supported by the Ministry of Education and Science of the Russia (State Assignment No. FZEG-2023-0009 “Study of the heterogeneity of the tumor microenvironment as a factor in its aggressiveness and resistance to therapy”). The figures were prepared using adapted materials (BioRender.com license at https://www.biorender.com/)., Работа выполнена при финансовой поддержке Минобрнауки России (государственное задание № FZEG-2023-0009 «Изучение гетерогенности микроокружения опухоли как фактора ее агрессивности и резистентности к терапии»). Рисунки были подготовлены с использованием адаптированных материалов BioRender.com (https://www.biorender.com/).

    Πηγή: Advances in Molecular Oncology; Vol 10, No 4 (2023); 8-20 ; Успехи молекулярной онкологии; Vol 10, No 4 (2023); 8-20 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  11. 11
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 22, № 4 (2023); 118-127 ; Сибирский онкологический журнал; Том 22, № 4 (2023); 118-127 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2687/1146; Mandai M., Hamanishi J., Abiko K., Matsumura N., Baba T., Konishi I. Dual Faces of IFNγ in Cancer Progression: A Role of PD-L1 Induction in the Determination of Pro- and Antitumor Immunity. Clin Cancer Res. 2016; 22(10): 2329–34. doi:10.1158/1078-0432.CCR-16-0224.; Mendoza J.L., Escalante N.K., Jude K.M., Sotolongo Bellon J., Su L., Horton T.M., Tsutsumi N., Berardinelli S.J., Haltiwanger R.S., Piehler J., Engleman E.G., Garcia K.C. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 2019; 567 (7746): 56–60. doi:10.1038/s41586-019-0988-7.; Burke J.D., Young H.A. IFN-γ: A cytokine at the right time, is in the right place. Semin Immunol. 2019; 43. doi:10.1016/j.smim.2019.05.002.; Alspach E., Lussier D.M., Schreiber R.D. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb Perspect Biol. 2019; 11(3): 1–20. doi:10.1101/cshperspect.a028480.; Schmiedel B.J., Singh D., Madrigal A., Valdovino-Gonzalez A.G., White B.M., Zapardiel-Gonzalo J., Ha B., Altay G., Greenbaum J.A., McVicker G., Seumois G., Rao A., Kronenberg M., Peters B., Vijayanand P. Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell. 2018; 175(6): 1701–15. doi:10.1016/j.cell.2018.10.022.; Negishi H., Tadatsugu T., Yanai H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb Perspect Biol. 2017; 10(11): 1–15. doi:10.1101/cshperspect.a028423.; Jorgovanovic D., Song M., Wang L., Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res. 2020; 8; 49. doi:10.1186/s40364-020-00228-x.; Song M., Ping Y., Zhang K., Yang L., Li F., Zhang C., Cheng S., Yue D., Maimela N.R., Qu J., Liu S., Sun T., Li Z., Xia J., Zhang B., Wang L., Zhang Y. Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non-Small Cell Lung Cancer. Cancer Res. 2019; 79(14): 3737–48. doi:10.1158/0008-5472.CAN-19-0596.; Zaidi M.R. The Interferon-Gamma Paradox in Cancer. J Interferon Cytokine Res. 2019; 39(1): 30–8. doi:10.1089/jir.2018.0087.; Mojic M., Takeda K., Hayakawa Y. The Dark Side of IFN-γ: Its Role in Promoting Cancer Immunoevasion. Int J Mol Sci. 2018; 19(1): 89. doi:10.3390/ijms19010089.; Kang K., Park S.H., Chen J., Qiao Y., Giannopoulou E., Berg K., Hanidu A., Li J., Nabozny G., Kang K., Park-Min K.H., Ivashkiv L.B. Interferon-γ Represses M2 Gene Expression in Human Macrophages by Disassembling Enhancers Bound by the Transcription Factor MAF. Immunity. 2017; 47(2): 235–50. doi:10.1016/j.immuni.2017.07.017.; Bhat P., Leggatt G., Waterhouse N., Frazer I.H. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017; 8(6). doi:10.1038/cddis.2017.67.; Paul S., Chhatar S., Mishra A., Lal G. Natural killer T cell activation increases iNOS+CD206-M1 macrophage and controls the growth of solid tumor. J Immunother Canc. 2019; 7(1): 1–13. doi:10.1186/s40425-019-0697-7.; Fang P., Li X., Dai J., Cole L., Camacho J.A., Zhang Y., Ji Y., Wang J., Yang X.F., Wang H. Immune cell subset diferentiation and tissue infammation. J Hematol Oncol. 2018; 11(1): 97. doi:10.1186/s13045-018-0637-x.; Ni L., Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018; 7: 4509–16. doi:10.1002/cam4.1700.; Gocher A.M., Workman C.J., Vignali D.A.A. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2022; 22(3): 158–72. doi:10.1038/s41577-021-00566-3.; Ong C., Lyons A.B., Woods G.M., Flies A.S. Inducible IFN- γ expression for MHC-I upregulation in devil facial tumor cells. Front Immunol. 2019; 9: 1–9. doi:10.3389/fmmu.2018.03117.; Wang Q.S., Shen S.Q., Sun H.W., Xing Z.X., Yang H.L. Interferongamma induces autophagy-associated apoptosis through in-duction of cPLA2- dependent mitochondrial ROS generation in colorectal cancer cells. Biochem Biophys Res Commun. 2018; 498(4): 1058–65. doi:10.1016/j.bbrc.2018.03.118.; Spear P., Barber A., Rynda-Apple A., Sentman C.L. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-gamma and GM-CSF. J Immunol. 2012; 188: 6389‐98. doi:10.4049/jimmunol.1103019.; Fang C., Weng T., Hu S., Yuan Z., Xiong H., Huang B., Cai Y., Li L., Fu X. IFN-γ-induced ER stress impairs autophagy and triggers apoptosis in lung cancer cells. Oncoimmunology. 2021; 10(1). doi:10.1080/2162402X.2021.1962591.; Kammertoens T., Friese C., Arina A., Idel C., Briesemeister D., Rothe M., Ivanov A., Szymborska A., Patone G., Kunz S., Sommermeyer D., Engels B., Leisegang M., Textor A., Fehling H.J., Fruttiger M., Lohoff M., Herrmann A., Yu H., Weichselbaum R., Uckert W., Hübner N., Gerhardt H., Beule D., Schreiber H., Blankenstein T. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature. 2017; 545(7652): 98–102. doi:10.1038/nature22311.; Liu Y., Liang X., Yin X., Lv J., Tang K., Ma J., Ji T., Zhang H., Dong W., Jin X., Chen D., Li Y., Zhang S., Xie H.Q., Zhao B., Zhao T., Lu J., Hu Z.W., Cao X., Qin F.X., Huang B. Blockade of IDO-kynurenineAhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells. Nat Commun. 2017; 8. doi:10.1038/ncomms15207.; Glasner A., Levi A., Enk J., Isaacson B., Viukov S., Orlanski S., Scope A., Neuman T., Enk C.D., Hanna J.H., Sexl V., Jonjic S., Seliger B., Zitvogel L., Mandelboim O. NKp46 Receptor-Mediated Interferon-γ Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis. Immunity. 2018; 48(1): 107–19. doi:10.1016/j.immuni.2017.12.007. Erratum in: Immunity. 2018; 48(2): 396–8.; Исаева В.Г., Гривцова Л.Ю., Жовтун Л.П., Самборский С.М., Фалалеева Н.А. Противоопухолевый эффект рекомбинантного интерферона гамма в экспериментальной модели билатеральной солидной карциномы Эрлиха. Успехи молекулярной онкологии. 2022; 9(2): 111–9. doi: 10.10.17650/2313-805X-2022‑9‑2‑111‑119.; Kaplan D.H., Shankaran V., Dighe A.S., Stockert E., Aguet M., Old L.J., Schreiber R.D. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA. 1998; 95(13): 7556–61. doi:10.1073/pnas.95.13.7556.; Mucci A., Antonarelli G., Caserta C., Vittoria F.M., Desantis G., Pagani R., Greco Be, Casucci M., Escobar G., Passerini L., Lachmann N., Sanvito F., Barcella M., Merelli I., Naldini L., Gentner B. Myeloid cellbased delivery of IFN-γ reprograms the leukemia microenvironment and induces anti-tumoral immune responses. EMBO Mol Med. 2021; 13(10). doi:10.15252/emmm.202013598.; Lo U.G., Pong R.C., Yang D., Gandee L., Hernandez E., Dang A., Lin C.J., Santoyo J., Ma S., Sonavane R., Huang J., Tseng S.F., Moro L., Arbini A.A., Kapur P., Raj G.V., He D., Lai C.H., Lin H., Hsieh J.T. IFNγInduced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Res. 2019; 79(6): 1098–112. doi:10.1158/0008-5472.CAN-18-2207.; Lo U.G., Bao J., Cen J., Yeh H.C., Luo J., Tan W., Hsieh J.T. Interferon-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion. Am J Clin Exp Urol. 2019; 7(1): 31–45.; Korentzelos D., Wells A., Clark A.M. Interferon-γ increases sensitivity to chemotherapy and provides immunotherapy targets in models of metastatic castration-resistant prostate cancer. Sci Rep. 2022; 12(1): 6657. doi:10.1038/s41598-022-10724-9.; Xu Y.H., Li Z.L., Qiu S.F. IFN-γ Induces Gastric Cancer Cell Proliferation and Metastasis Through Upregulation of Integrin β3-Mediated NF-κB Signaling. Transl Oncol. 2018; 11(1): 182–92. doi:10.1016/j.tranon.2017.11.008.; Dillinger B., Ahmadi-Erber S., Lau M., Hoelzl M.A., Erhart F., Juergens B., Fuchs D., Heitger A., Ladisch S., Dohnal A.M. IFN-γ and tumor gangliosides: implications for the tumor microenvironment. Cell Immunol. 2018; 325: 33–40. doi:10.1016/j.cellimm.2018.01.014.; Tong S., Cinelli M.A., El-Sayed N.S., Huang H., Patel A., Silverman R.B., Yang S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci Rep. 2022; 12(1): 1701. doi:10.1038/s41598-022-05394-6.; Talmadge J.E., Black P.L., Tribble H., Pennington R., Bowersox O., Schneider M., Phillips H. Preclinical approaches to the treatment of metastatic disease: therapeutic properties of rH TNF, rM IFN-gamma, and rH IL-2. Drugs Exp Clin Res. 1987; 13(6): 327–37.; Giannopoulos A., Constantinides C., Fokaeas E., Stravodimos C., Giannopoulou M., Kyroudi A., Gounaris A. The immunomodulating efect of interferon-gamma intravesical instillations in preventing bladder cancer recurrence. Clin Cancer Res. 2003; 9(15): 5550–8.; Marth C., Windbichler G.H., Hausmaninger H., Petru E., Estermann K., Pelzer A., Mueller-Holzner E. Interferon-gamma in combination with carboplatin and paclitaxel as a safe and efective frst-line treatment option for advanced ovarian cancer: results of a phase I/II study. Int J Gynecol Cancer. 2006; 16(4): 1522–8. doi:10.1111/j.1525-1438.2006.00622.x.; Пыльцин С.П., Златник Е.Ю., Лазутин Ю.Н., Сергостьянц Г.З., Закора Г.И., Лейман И.А., Анистратов П.А. Влияние ингарона на иммунный статус больных аденокарциномой легкого в процессе адъювантного лечения. Медицинская иммунология. 2014; 16(6): 559–66. doi:10.15789/1563-0625-2014-6-559-566.; Арджа А.Ю., Непомнящая Е.М., Златник Е.Ю., Ульянова Е.П., Вереникина Е.В., Женило О.Е., Никитина В.П., Меньшенина А.П., Сагакянц А.Б., Черникова Е.Н., Якубова Д.Ю., Шульгина О.Г. Особенности экспрессии некоторых иммуногистохимических маркеров у больных раком яичников IIIC-IV стадии как критерий эффективности применения химиоиммунотерапии. Наука молодых. 2020; 8(4): 582–90. doi:10.23888/HMJ202084582-590.; Thibaut R., Bost P., Milo I., Cazaux M., Lemaître F., Garcia Z., Amit I., Breart B., Cornuot C., Schwikowski B., Bousso P. Bystander IFN-γ activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat Cancer. 2020; 1(3): 302–14. doi:10.1038/s43018-020-0038-2.; Garris C.S., Arlauckas S.P., Kohler R.H., Trefny M.P., Garren S., Piot C., Engblom C., Pfrschke C., Siwicki M., Gungabeesoon J., Freeman G.J., Warren S.E., Ong S., Browning E., Twitty C.G., Pierce R.H., Le M.H., Algazi A.P., Daud A.I., Pai S.I., Zippelius A., Weissleder R., Pittet M.J. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12. Immunity. 2018; 49(6): 1148–61. doi:10.1016/j.immuni.2018.09.024.; Park A., Yang Y., Lee Y., Kim M.S., Park Y.J., Jung H., Kim T.D., Lee H.G., Choi I., Yoon S.R. Indoleamine-2,3-Dioxygenase in Thyroid Cancer Cells Suppresses Natural Killer Cell Function by Inhibiting NKG2D and NKp46 Expression via STAT Signaling Pathways. J Clin Med. 2019; 8(6): 842. doi:10.3390/jcm8060842.; Xu Y.P., Lv L., Liu Y., Smith M.D., Li W.C., Tan X.M., Cheng M., Li Z., Bovino M., Aubé J., Xiong Y. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efcacy. J Clin Invest. 2019; 129(10): 4316–31. doi:10.1172/JCI129317.; Mimura K., Teh J.L., Okayama H., Shiraishi K., Kua L.F., Koh V., Smoot D.T., Ashktorab H., Oike T., Suzuki Y., Fazreen Z., Asuncion B.R., Shabbir A., Yong W.P., So J., Soong R., Kono K. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018; 109(1): 43–53. doi:10.1111/cas.13424.; Sceneay J., Goreczny G.J., Wilson K., Morrow S., DeCristo M.J., Ubellacker J.M., Qin Y., Laszewski T., Stover D.G., Barrera V., Hutchinson J.N., Freedman R.A., Mittendorf E.A., McAllister S.S. Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efcacy in Triple-Negative Breast Cancer. Cancer Discov. 2019; 9(9): 1208–27. doi:10.1158/2159-8290.CD-18-1454.; Gao J., Shi L.Z., Zhao H., Chen J., Xiong L., He Q., Chen T., Roszik J., Bernatchez C., Woodman S.E., Chen P.L., Hwu P., Allison J.P., Futreal A., Wargo J.A., Sharma P. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016; 167(2): 397–404. doi:10.1016/j.cell.2016.08.069.; Grasso C.S., Tsoi J., Onyshchenko M., Abril-Rodriguez G., Ross-Macdonald P., Wind-Rotolo M., Champhekar A., Medina E., Torrejon D.Y., Shin D.S., Tran P., Kim Y.J., Puig-Saus C., Campbell K., Vega-Crespo A., Quist M., Martignier C., Luke J.J., Wolchok J.D., Johnson D.B., Chmielowski B., Hodi F.S., Bhatia S., Sharfman W., Urba W.J., Slingluff C.L. Jr., Diab A., Haanen J.B.A.G., Algarra S.M., Pardoll D.M., Anagnostou V., Topalian S.L., Velculescu V.E., Speiser D.E., Kalbasi A., Ribas A. Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell. 2020; 38(4): 500–15. doi:10.1016/j.ccell.2020.08.005.; Zhang M., Huang L., Ding G., Huang H., Cao G., Sun X., Lou N., Wei Q., Shen T., Xu X., Cao L., Yan Q. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafcking and enhances anti-PD1 efcacy in pancreatic cancer. J Immunother Cancer. 2020; 8(1). doi:10.1136/jitc-2019-000308.; Zhang S., Kohli K., Black R.G., Yao L., Spadinger S.M., He Q., Pillarisetty V.G., Cranmer L.D., Van Tine B.A., Yee C., Pierce R.H., Riddell S.R., Jones R.L., Pollack S.M. Systemic Interferon-γ Increases MHC Class I Expression and T-cell Infltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol Res. 2019; 7(8): 1237–43. doi:10.1158/2326-6066.CIR-18-0940.; Ayers M., Lunceford J., Nebozhyn M., Murphy E., Loboda A., Kaufman D.R., Albright A., Cheng J.D., Kang S.P., Shankaran V., Piha-Paul S.A., Yearley J., Seiwert T.Y., Ribas A., McClanahan T.K. IFN-γ-related mRNA profle predicts clinical response to PD-1 blockade. J Clin Invest. 2017; 127(8): 2930–40. doi:10.1172/JCI91190.; Higgs B.W., Morehouse C.A., Streicher K., Brohawn P.Z., Pilataxi F., Gupta A., Ranade K. Interferon Gamma Messenger RNA Signature in Tumor Biopsies Predicts Outcomes in Patients with Non-Small Cell Lung Carcinoma or Urothelial Cancer Treated with Durvalumab. Clin Cancer Res. 2018; 24(16): 3857–66. doi:10.1158/1078-0432.CCR-17-3451.; Liu L., Du X., Fang J., Zhao J., Guo Y., Zhao Y., Zou C., Yan X., Li W. Development of an Interferon Gamma Response-Related Signature for Prediction of Survival in Clear Cell Renal Cell Carcinoma. J Infamm Res. 2021; 14: 4969–85. doi:10.2147/JIR.S334041.; Reijers I.L.M., Dimitriadis P., Rozeman E.A., Krijgsman O., Cornelissen S., Bosch L.J.W., Broeks A., Menzies A., van de Wiel B.A., Scolyer R.A., Long G.V., Blank C.U. The interferon-gamma (IFN-y) signature from baseline tumor material predicts pathologic response after neoadjuvant ipilimumab (IPI) + nivolumab (NIVO) in stage III melanoma. J Clin Oncol. 2022; 40(16): 9539. doi:10.1200/JCO.2022.40.16_suppl.9539.; Cui C., Xu C., Yang W., Chi Z., Sheng X., Si L., Xie Y., Yu J., Wang S., Yu R., Guo J., Kong Y. Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma. NPJ Genom Med. 2021; 6(1): 7. doi:10.1038/s41525-021-00169-w.; Tecalco-Cruz A.C., Macías-Silva M., Ramírez-Jarquín J.O., Méndez-Ambrosio B. Identifcation of genes modulated by interferon gamma in breast cancer cells. Biochem Biophys Rep. 2021; 27. doi:10.1016/j.bbrep.2021.101053.; Boutsikou E., Domvri K., Hardavella G., Tsiouda D., Zarogoulidis K., Kontakiotis T. Tumour necrosis factor, interferon-gamma and interleukins as predictive markers of antiprogrammed cell-death protein-1 treatment in advanced non-small cell lung cancer: a pragmatic approach in clinical practice. Ther Adv Med Oncol. 2018; 10: 1–8. doi:10.1177/1758835918768238.; https://www.siboncoj.ru/jour/article/view/2687

  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Συνεισφορές: This work is supported by the Russian Foundation for Basic Research (RFBR), project number 20-015- 00498 А of 19.02.2020., Работа поддержана Российским фондом фундаментальных исследований (РФФИ), проект № 20- 015-00498 А от 19.02.2020.

    Πηγή: Siberian journal of oncology; Том 21, № 2 (2022); 109-117 ; Сибирский онкологический журнал; Том 21, № 2 (2022); 109-117 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2096/975; Darvin P., Toor S.M., Sasidharan Nair V., Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018; 50(12): 1–11. doi:10.1038/s12276-018-0191-1.; Longo V., Brunetti O., Azzariti A., Galetta D., Nardulli P., Leonetti F., Silvestris N. Strategies to Improve Cancer Immune Checkpoint Inhibitors Efficacy, Other Than Abscopal Effect: A Systematic Review. Cancers (Basel). 2019; 11(4): 539. doi:10.3390/cancers11040539.; Kambayashi Y., Fujimura T., Hidaka T., Aiba S. Biomarkers for Predicting Efficacies of Anti-PD1 Antibodies. Front Med. 2019; 6: 174. doi:10.3389/fmed.2019.00174.; Davis A.A., Patel V.G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer. 2019; 7(1): 278. doi:10.1186/s40425-019-0768-9.; Aguiar P.N. Jr., Santoro I.L., Tadokoro H., de Lima Lopes G., Filardi B.A., Oliveira P., Mountzios G., de Mello R.A. The role of PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: a network meta-analysis. Immunotherapy. 2016; 8(4): 479–88. doi:10.2217/imt-2015-0002.; Munhoz R.R., Postow M.A. Recent advances in understanding antitumor immunity. F1000Res. 2016; 5: 2545. doi:10.12688/f1000research.9356.1.; McGranahan N., Furness A.J., Rosenthal R., Ramskov S., Lyngaa R., Saini S.K., Jamal-Hanjani M., Wilson G.A., Birkbak N.J., Hiley C.T., Watkins T.B., Shafi S., Murugaesu N., Mitter R., Akarca A.U., Linares J., Marafioti T., Henry J.Y., Van Allen E.M., Miao D., Schilling B., Schadendorf D., Garraway L.A., Makarov V., Rizvi N.A., Snyder A., Hellmann M.D., Merghoub T., Wolchok J.D., Shukla S.A., Wu C.J., Peggs K.S., Chan T.A., Hadrup S.R., Quezada S.A., Swanton C. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016; 351(6280): 1463–9. doi:10.1126/science.aaf1490.; Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., Miller M.L., Rekhtman N., Moreira A.L., Ibrahim F., Bruggeman C., Gasmi B., Zappasodi R., Maeda Y., Sander C., Garon E.B., Merghoub T., Wolchok J.D., Schumacher T.N., Chan T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015; 348(6230): 124–8. doi:10.1126/science.aaa1348.; Snyder A., Makarov V., Merghoub T., Yuan J., Zaretsky J.M., Desrichard A., Walsh L.A., Postow M.A., Wong P., Ho T.S., Hollmann T.J., Bruggeman C., Kannan K., Li Y., Elipenahli C., Liu C., Harbison C.T., Wang L., Ribas A., Wolchok J.D., Chan T.A. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014; 371(23): 2189–99. doi:10.1056/NEJMoa1406498.; Le D.T., Durham J.N., Smith K.N., Wang H., Bartlett B.R., Aulakh L.K., Lu S., Kemberling H., Wilt C., Luber B.S., Wong F., Azad N.S., Rucki A.A., Laheru D., Donehower R., Zaheer A., Fisher G.A., Crocenzi T.S., Lee J.J., Greten T.F., Duffy A.G., Ciombor K.K., Eyring A.D., Lam B.H., Joe A., Kang S.P., Holdhoff M., Danilova L., Cope L., Meyer C., Zhou S., Goldberg R.M., Armstrong D.K., Bever K.M., Fader A.N., Taube J., Housseau F., Spetzler D., Xiao N., Pardoll D.M., Papadopoulos N., Kinzler K.W., Eshleman J.R., Vogelstein B., Anders R.A., Diaz L.A. Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017; 357(6349): 409–13. doi:10.1126/science.aan6733.; Ascierto M.L., Kmieciak M., Idowu M.O., Manjili R., Zhao Y., Grimes M., Dumur C., Wang E., Ramakrishnan V., Wang X.Y., Bear H.D., Marincola F.M., Manjili M.H.A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat. 2012; 131(3): 871–80. doi:10.1007/s10549-011-1470-x.; Simeone E., Gentilcore G., Giannarelli D., Grimaldi A.M., Caracò C., Curvietto M., Esposito A., Paone M., Palla M., Cavalcanti E., Sandomenico F., Petrillo A., Botti G., Fulciniti F., Palmieri G., Queirolo P., Marchetti P., Ferraresi V., Rinaldi G., Pistillo M.P., Ciliberto G., Mozzillo N., Ascierto P.A. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother. 2014; 63(7): 675–83. doi:10.1007/s00262-014-1545-8.; Chowell D., Morris L.G.T., Grigg C.M., Weber J.K., Samstein R.M., Makarov V., Kuo F., Kendall S.M., Requena D., Riaz N., Greenbaum B., Carroll J., Garon E., Hyman D.M., Zehir A., Solit D., Berger M., Zhou R., Rizvi N.A., Chan T.A. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018; 359(6375): 582–7. doi:10.1126/science.aao4572.; Van Allen E.M., Miao D., Schilling B., Shukla S.A., Blank C., Zimmer L., Sucker A., Hillen U., Foppen M.H.G., Goldinger S.M., Utikal J., Hassel J.C., Weide B., Kaehler K.C., Loquai C., Mohr P., Gutzmer R., Dummer R., Gabriel S., Wu C.J., Schadendorf D., Garraway L.A. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015; 350(6257): 207–11. doi:10.1126/science.aad0095.; Bradburn M.J., Clark T.G., Love S.B., Altman D.G. Survival analysis part II: multivariate data analysis--an introduction to concepts and methods. Br J Cancer. 2003; 89(3): 431–6. doi:10.1038/sj.bjc.6601119.; Johnson D.B., Estrada M.V., Salgado R., Sanchez V., Doxie D.B., Opalenik S.R., Vilgelm A.E., Feld E., Johnson A.S., Greenplate A.R., Sanders M.E., Lovly C.M., Frederick D.T., Kelley M.C., Richmond A., Irish J.M., Shyr Y., Sullivan R.J., Puzanov I., Sosman J.A., Balko J.M. Melanomaspecific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016; 7: 10582. doi:10.1038/ncomms10582.; Roemer M.G.M., Redd R.A., Cader F.Z., Pak C.J., Abdelrahman S., Ouyang J., Sasse S., Younes A., Fanale M., Santoro A., Zinzani P.L., Timmerman J., Collins G.P., Ramchandren R., Cohen J.B., De Boer J.P., Kuruvilla J., Savage K.J., Trneny M., Ansell S., Kato K., Farsaci B., Sumbul A., Armand P., Neuberg D.S., Pinkus G.S., Ligon A.H., Rodig S.J., Shipp M.A. Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. J Clin Oncol. 2018; 36(10): 942–50. doi:10.1200/JCO.2017.77.3994.; Wulfkuhle J.D., Yau C., Wolf D.M., Gallagher R.I., Swigart L.B., Hirst G.L., Campbell M., Nanda R., Liu M.C., Pusztai L., Esserman L., Berry D.A., Veer L., Petricoin E. Quantitative MHC II protein expression levels in tumor epithelium to predict response to the PD1 inhibitor pembrolizumab in the I-SPY 2 Trial. J Clin Oncol. 2019; 37(15).; Rodig S.J., Gusenleitner D., Jackson D.G., Gjini E., Giobbie-Hurder A., Jin C., Chang H., Lovitch S.B., Horak C., Weber J.S., Weirather J.L., Wolchok J.D., Postow M.A., Pavlick A.C., Chesney J., Hodi F.S. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 2018; 10(450). doi:10.1126/scitranslmed.aar3342.; Johnson D.B., Nixon M.J., Wang Y., Wang D.Y., Castellanos E., Estrada M.V., Ericsson-Gonzalez P.I., Cote C.H., Salgado R., Sanchez V., Dean P.T., Opalenik S.R., Schreeder D.M., Rimm D.L., Kim J.Y., Bordeaux J., Loi S., Horn L., Sanders M.E., Ferrell P.B. Jr., Xu Y., Sosman J.A., Davis R.S., Balko J.M. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018; 3(24). doi:10.1172/jci.insight.120360.; De Angulo G., Yuen C., Palla S.L., Anderson P.M., ZweidlerMcKay P.A. Absolute lymphocyte count is a novel prognostic indicator in ALL and AML: implications for risk stratification and future studies. Cancer. 2008; 112(2): 407–15. doi:10.1002/cncr.23168.; Jiang T., Qiao M., Zhao C., Li X., Gao G., Su C., Ren S., Zhou C. Pretreatment neutrophil-to-lymphocyte ratio is associated with outcome of advanced-stage cancer patients treated with immunotherapy: a metaanalysis. Cancer Immunol Immunother. 2018; 67(5): 713–27. doi:10.1007/s00262-018-2126-z.; Martens A., Wistuba-Hamprecht K., Yuan J., Postow M.A., Wong P., Capone M., Madonna G., Khammari A., Schilling B., Sucker A., Schadendorf D., Martus P., Dreno B., Ascierto P.A., Wolchok J.D., Pawelec G., Garbe C., Weide B. Increases in Absolute Lymphocytes and Circulating CD4+ and CD8+ T Cells Are Associated with Positive Clinical Outcome of Melanoma Patients Treated with Ipilimumab. Clin Cancer Res. 2016; 22(19): 4848–58. doi:10.1158/1078-0432.CCR-16-0249.; Subrahmanyam P.B., Dong Z., Gusenleitner D., Giobbie-Hurder A., Severgnini M., Zhou J., Manos M., Eastman L.M., Maecker H.T., Hodi F.S. Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J Immunother Cancer. 2018; 6(1): 18. doi:10.1186/s40425-018-0328-8.; Reuben J.M., Lee B.N., Li C., Gomez-Navarro J., Bozon V.A., Parker C.A., Hernandez I.M., Gutierrez C., Lopez-Berestein G., Camacho L.H. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer. 2006; 106(11): 2437–44. doi:10.1002/cncr.21854.; Kelderman S., Heemskerk B., van Tinteren H., van den Brom R.R., Hospers G.A., van den Eertwegh A.J., Kapiteijn E.W., de Groot J.W., Soetekouw P., Jansen R.L., Fiets E., Furness A.J., Renn A., Krzystanek M., Szallasi Z., Lorigan P., Gore M.E., Schumacher T.N., Haanen J.B., Larkin J.M., Blank C.U. Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunol Immunother. 2014; 63(5): 449–58. doi:10.1007/s00262-014-1528-9.; Xia A., Zhang Y., Xu J., Yin T., Lu X.J. T Cell Dysfunction in Cancer Immunity and Immunotherapy. Front Immunol. 2019; 10: 1719. doi:10.3389/fimmu.2019.01719.; Arce Vargas F., Furness A.J.S., Litchfield K., Joshi K., Rosenthal R., Ghorani E., Solomon I., Lesko M.H., Ruef N., Roddie C., Henry J.Y., Spain L., Ben Aissa A., Georgiou A., Wong Y.N.S., Smith M., Strauss D., Hayes A., Nicol D., O’Brien T., Mårtensson L., Ljungars A., Teige I., Frendéus B.; TRACERx Melanoma; TRACERx Renal; TRACERx Lung consortia, Pule M., Marafioti T., Gore M., Larkin J., Turajlic S., Swanton C., Peggs K.S., Quezada S.A. Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies. Cancer Cell. 2018; 33(4): 649–63. doi:10.1016/j.ccell.2018.02.010.; Fujii S., Shimizu K., Shimizu T., Lotze M.T. Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ. Blood. 2001; 98(7): 2143–51. doi:10.1182/blood.v98.7.2143.; Wherry E.J., Blattman J.N., Murali-Krishna K., van der Most R., Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol. 2003; 77(8): 4911–27. doi:10.1128/jvi.77.8.4911-4927.2003.; Gros A., Robbins P.F., Yao X., Li Y.F., Turcotte S., Tran E., Wunderlich J.R., Mixon A., Farid S., Dudley M.E., Hanada K., Almeida J.R., Darko S., Douek D.C., Yang J.C., Rosenberg S.A. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014; 124(5): 2246–59. doi:10.1172/JCI73639.; Katsurada M., Nagano T., Tachihara M., Kiriu T., Furukawa K., Koyama K., Otoshi T., Sekiya R., Hazama D., Tamura D., Nakata K., Katsurada N., Yamamoto M., Kobayashi K., Nishimura Y. Baseline Tumor Size as a Predictive and Prognostic Factor of Immune Checkpoint Inhibitor Therapy for Non-small Cell Lung Cancer. Anticancer Res. 2019; 39(2): 815–25. doi:10.21873/anticanres.13180.; Qu J., Wang L., Jiang M., Zhao D., Wang Y., Zhang F., Li J., Zhang X. A Review About Pembrolizumab in First-Line Treatment of Advanced NSCLC: Focus on KEYNOTE Studies. Cancer Manag Res. 2020; 12: 6493–6509. doi:10.2147/CMAR.S257188.; Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015; 15(8): 486–99. doi:10.1038/nri3862.; Francisco L.M., Sage P.T., Sharpe A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010; 236: 219–42. doi:10.1111/j.1600-065X.2010.00923.x.; Joller N., Lozano E., Burkett P.R., Patel B., Xiao S., Zhu C., Xia J., Tan T.G., Sefik E., Yajnik V., Sharpe A.H., Quintana F.J., Mathis D., Benoist C., Hafler D.A., Kuchroo V.K. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014; 40(4): 569–81. doi:10.1016/j.immuni.2014.02.012.; Kurtulus S., Sakuishi K., Ngiow S.F., Joller N., Tan D.J., Teng M.W., Smyth M.J., Kuchroo V.K., Anderson A.C. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015; 125(11): 4053–62. doi:10.1172/JCI81187.; Sugiyama D., Nishikawa H., Maeda Y., Nishioka M., Tanemura A., Katayama I., Ezoe S., Kanakura Y., Sato E., Fukumori Y., Karbach J., Jäger E., Sakaguchi S. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci U S A. 2013; 110(44): 17945–50. doi:10.1073/pnas.1316796110.; Egen J.G., Allison J.P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity. 2002; 16(1): 23–35. doi:10.1016/s1074-7613(01)00259-x.; Quigley M., Pereyra F., Nilsson B., Porichis F., Fonseca C., Eichbaum Q., Julg B., Jesneck J.L., Brosnahan K., Imam S., Russell K., Toth I., Piechocka-Trocha A., Dolfi D., Angelosanto J., Crawford A., Shin H., Kwon D.S., Zupkosky J., Francisco L., Freeman G.J., Wherry E.J., Kaufmann D.E., Walker B.D., Ebert B., Haining W.N. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med. 2010; 16(10): 1147–51. doi:10.1038/nm.2232.; Chauvin J.M., Pagliano O., Fourcade J., Sun Z., Wang H., Sander C., Kirkwood J.M., Chen T.H., Maurer M., Korman A.J., Zarour H.M. TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients. J Clin Invest. 2015; 125(5): 2046–58. doi:10.1172/JCI80445.; He Q.F., Xu Y., Li J., Huang Z.M., Li X.H., Wang X. CD8+ T-cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy. Brief Funct Genomics. 2019; 18(2): 99–106. doi:10.1093/bfgp/ely006.; Fourcade J., Sun Z., Benallaoua M., Guillaume P., Luescher I.F., Sander C., Kirkwood J.M., Kuchroo V., Zarour H.M. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010; 207(10): 2175–86. doi:10.1084/jem.20100637.; Piao Y.R., Piao L.Z., Zhu LH, Jin Z.H., Dong X.Z. Prognostic value of T cell immunoglobulin mucin-3 in prostate cancer. Asian Pac J Cancer Prev. 2013; 14(6): 3897–901. doi:10.7314/apjcp.2013.14.6.3897.; Yuan J., Jiang B., Zhao H., Huang Q. Prognostic implication of TIM-3 in clear cell renal cell carcinoma. Neoplasma. 2014; 61(1): 35–40.; Jiang J., Jin M.S., Kong F., Cao D., Ma H.X., Jia Z., Wang Y.P., Suo J., Cao X. Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS One. 2013; 8(12). doi:10.1371/journal.pone.0081799.; Cao Y., Zhou X., Huang X., Li Q., Gao L., Jiang L., Huang M., Zhou J. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS One. 2013; 8(1). doi:10.1371/journal.pone.0053834.; Chen J., Chen Z. The effect of immune microenvironment on the progression and prognosis of colorectal cancer. Med Oncol. 2014; 31(8): 82. doi:10.1007/s12032-014-0082-9.; Kotaskova J., Tichy B., Trbusek M., Francova H.S., Kabathova J., Malcikova J., Doubek M., Brychtova Y., Mayer J., Pospisilova S. High expression of lymphocyte-activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment-free survival. J Mol Diagn. 2010; 12(3): 328–34. doi:10.2353/jmoldx.2010.090100.; Chen Q., Daniel V., Maher D.W., Hersey P. Production of IL-10 by melanoma cells: examination of its role in immunosuppression; mediated by melanoma. Int J Cancer. 1994; 56(5): 755–60. doi:10.1002/ijc.2910560524.; Koustas E., Sarantis P., Papavassiliou A.G., Karamouzis M.V. The Resistance Mechanisms of Checkpoint Inhibitors in Solid Tumors. Biomolecules. 2020; 10(5): 666. doi:10.3390/biom10050666.; Raskovalova T., Lokshin A., Huang X., Su Y., Mandic M., Zarour H.M., Jackson E.K., Gorelik E. Inhibition of cytokine production and cytotoxic activity of human antimelanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase A type I signaling. Cancer Res. 2007; 67(12): 5949–56. doi:10.1158/0008-5472.CAN-06-4249.; Ohta A., Sitkovsky M. Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol. 2014; 5: 304. doi:10.3389/fimmu.2014.00304.; Munn D.H., Mellor A.L. Indoleamine 2,3-dioxygenase and tumorinduced tolerance. J Clin Invest. 2007; 117(5): 1147–54. doi:10.1172/JCI31178.; Holmgaard R.B., Zamarin D., Munn D.H., Wolchok J.D., Allison J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013; 210(7): 1389–402. doi:10.1084/jem.20130066.; Woo S.R., Turnis M.E., Goldberg M.V., Bankoti J., Selby M., Nirschl C.J., Bettini M.L., Gravano D.M., Vogel P., Liu C.L., Tangsombatvisit S., Grosso J.F., Netto G., Smeltzer M.P., Chaux A., Utz P.J., Workman C.J., Pardoll D.M., Korman A.J., Drake C.G., Vignali D.A. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72(4): 917–27. doi:10.1158/0008-5472.CAN-11-1620.; Fourcade J., Sun Z., Pagliano O., Guillaume P., Luescher I.F., Sander C., Kirkwood J.M., Olive D., Kuchroo V., Zarour H.M. CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res. 2012; 72(4): 887–96. doi:10.1158/0008-5472.CAN-11-2637.; Curran M.A., Montalvo W., Yagita H., Allison J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010; 107(9): 4275–80. doi:10.1073/pnas.0915174107.; Shayan G., Srivastava R., Li J., Schmitt N., Kane L.P., Ferris R.L. Adaptive resistance to anti-PD1 therapy by tim-3 upregulation is mediated by the PI3k-akt pathway in head and neck cancer. Oncoimmunology. 2017; 6(1). doi:10.1080/2162402X.2016.1261779.; Wei H., Zhao L., Li W., Fan K., Qian W., Hou S., Wang H., Dai M., Hellstrom I., Hellstrom K.E., Guo Y. Combinatorial PD-1 blockade and CD137 activation has therapeutic efficacy in murine cancer models and synergizes with cisplatin. PLoS One. 2013; 8(12). doi:10.1371/journal.pone.0084927.; Chen S., Lee L.F., Fisher T.S., Jessen B., Elliott M., Evering W., Logronio K., Tu G.H., Tsaparikos K., Li X., Wang H., Ying C., Xiong M., VanArsdale T., Lin J.C. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res. 2015; 3(2): 149–60. doi:10.1158/2326-6066.CIR-14-0118.; Weinberg A.D., Rivera M.M., Prell R., Morris A., Ramstad T., Vetto J.T., Urba W.J., Alvord G., Bunce C., Shields J. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol. 2000; 164(4): 2160–9. doi:10.4049/jimmunol.164.4.2160.; Rafei-Shamsabadi D., Lehr S., von Bubnoff D., Meiss F. Successful combination therapy of systemic checkpoint inhibitors and intralesional interleukin-2 in patients with metastatic melanoma with primary therapeutic resistance to checkpoint inhibitors alone. Cancer Immunol Immunother. 2019; 68(9): 1417–28. doi:10.1007/s00262-019-02377-x.; Hou D.Y., Muller A.J., Sharma M.D., DuHadaway J., Banerjee T., Johnson M., Mellor A.L., Prendergast G.C., Munn D.H. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyltryptophan correlates with antitumor responses. Cancer Res. 2007; 67(2): 792–801. doi:10.1158/0008-5472.CAN-06-2925.; Gangadhar T.C., Hamid O., Smith D.C., Bauer T.M., Wasser J.S., Luke J.J., Balmanoukian A.S., Kaufman D.R., Zhao Yu., Maleski J., Leopold L., Gajewski T.F. Preliminary results from a Phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers. J Immunother cancer. 2015; 3(2). doi:10.1186/2051-1426-3-S2-O7.; https://www.siboncoj.ru/jour/article/view/2096

  16. 16
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 11, № 4 (2021); 97-109 ; Опухоли головы и шеи; Том 11, № 4 (2021); 97-109 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2017-0-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/722/508; International Agency for Research on Cancer. Cancer tuday. Estimated number of new cases in 2020, worldwide, both sexes, all ages. Avaliable at: https://gco.iarc.fr/today/online-analysispie?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0.; International Agency for Research on Cancer – Estimated number of deaths in 2020, worldwide, both sexes, all ages. Avaliable at: https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=total&sex=0&cancer=39&type=1&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0.; Seebacher N.A., Stacy A.E., Porter G.M. et al. Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res 2019;38(1):156. DOI:10.1186/s13046-019-1094-2.; Lacouture M.E., Anadkat M.J., Bensadoun R.J. et al. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support Care Cancer 2011;19(8):1079–95.; Lacouture M.E., Sibaud V., Gerber P.A. et al. Prevention and management of dermatological toxicities related to anticancer agents: ESMO Clinical Practice Guidelines. Ann Oncol 2021;32(2):157–70. DOI:10.1016/j.annonc.2020.11.005.; Peuvrel L., Bachmeyer C., Reguiai Z. et al. Semiology of skin toxicity associated with epidermal growth factor receptor (EGFR) inhibitors. Support Care Cancer 2012;20(5):909–21. DOI:10.1007/s00520-012-1404-0.; Boone S.L., Rademaker A., Liu D. et al. Impact and management of skin toxicity associated with anti-epidermal growth factor receptor therapy: survey results. Oncology 2007;72(3–4):152–9. DOI:10.1159/000112795.; Rosen A.C., Case E.C., Dusza S.W. et al. Impact of dermatologic adverse events on quality of life in 283 cancer patients: a questionnaire study in a dermatology referral clinic. Am J Clin Dermatol 2013;14(4):327–33. DOI:10.1007/s40257-013-0021-0.; Шатохина Е.А., Круглова Л.С., Полонская А.С. Лечение акнеподобной сыпи, индуцированной моноклональными антителами к рецептору эпидермального фактора роста (EGFR). Медицинский совет 2020;(20):157–64. DOI:10.21518/2079-701X2020-20-157-164.; Petrelli F., Borgonovo K., Cabiddu M. et al. Relationship between skin rash and outcome in non-small-cell lung cancer patients treated with anti-EGFR tyrosine kinase inhibitors: a literaturebased meta-analysis of 24 trials. Lung Cancer 2012;78(1):8–15. DOI:10.1016/j.lungcan.2012.06.009.; Liu H.B., Wu Y., Lv T.F. et al. Skin rash could predict the response to EGFR tyrosine kinase inhibitor and the prognosis for patients with non-small cell lung cancer: a systematic review and metaanalysis. PLoS One 2013;8(1):e55128. DOI:10.1371/journal.pone.0055128.; Lacouture M.E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 2006;6(10):803–12. DOI:10.1038/nrc1970.; Nanney L.B., Stoscheck C.M., King L.E. et al. Immunolocalization of epidermal growth factor receptors in normal developing human skin. J Invest Dermatol 1990;94(6):742–8. DOI:10.1111/1523-1747.ep12874601.; Nanney L.B., Magid M., Stoscheck C.M., King L.E. Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages. J Invest Dermatol 1984;83(5):385–93. DOI:10.1111/1523-1747.ep12264708.; Han S.S., Lee M., Park G.H. et al. Investigation of papulopustular eruptions caused by cetuximab treatment shows altered differentiation markers and increases in inflammatory cytokines. Br J Dermatol 2010;162(2):371–9. DOI:10.1111/j.1365-2133.2009.09536.x.; Lichtenberger B.M., Gerber P.A., Holcmann M. et al. Epidermal EGFR controls cutaneous host defense and prevents inflammation. Sci Transl Med 2013;5(199):199ra111. DOI:10.1126/scitranslmed.3005886.; Busam K.J., Capodieci P., Motzer R. et al. Cutaneous side-effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol 2001;144(6):1169–76. DOI:10.1046/j.1365-2133.2001.04226.x.; Galimont-Collen A.F., Vos L.E., Lavrijsen A.P. et al. Classification and management of skin, hair, nail and mucosal side-effects of epidermal growth factor receptor (EGFR) inhibitors. Eur J Cancer 2007;43(5):845–51. DOI:10.1016/j.ejca.2006.11.016.; Nardone B., Nicholson K., Newman M. et al. Histopathologic and immunohistochemical characterization of rash to human epidermal growth factor receptor 1 (HER1) and HER1/2 inhibitors in cancer patients. Clin Cancer Res 2010;16(17):4452–60. DOI:10.1158/1078-0432.CCR-10-0421.; Ho P.H., Lin I.C., Yang X. et al. Using a novel scoring system for paronychia related to oncologic treatments (SPOT) for assessing paronychia severity and its correlation with pain index and quality of life. J Eur Acad Dermatol Venereol 2019;33:204–12. DOI:10.1111/jdv.15121.; Gerber P.A., Kukova G., Buhren B.A., Homey B. Density of Demodex folliculorum in patients receiving epidermal growth factor receptor inhibitors. Dermatology 2011;222(2):144–7. DOI:10.1159/000323001.; Miettinen P.J., Berger J.E., Meneses J. et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 1995;376(6538):337–41. DOI:10.1038/376337a0.; Segaert S., Van Cutsem E. Clinical signs, pathophysiology and management of skin toxicity during therapy with epidermal growth factor receptor inhibitors. Ann Oncol 2005;16(9):1425–33. DOI:10.1093/annonc/mdi279.; Gerber P.A., Buhren B.A., Cevikbas F. et al. Preliminary evidence for a role of mast cells in epidermal growth factor receptor inhibitor-induced pruritus. J Am Acad Dermatol 2010;63(1):163–5. DOI:10.1016/j.jaad.2009.09.023.; Bragado R., Bello E., Requena L. et al. Increased expression of vascular endothelial growth factor in pyogenic granulomas. Acta Derm Venereol 1999;79:422–5. DOI:10.1080/000155599750009834.; Perrotte P., Matsumoto T., Inoue K. et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999;5(2):257–65.; Murillas R., Larcher F., Conti C.J. et al. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure. EMBO J 1995;14(21):5216–23.; Threadgill D.W., Dlugosz A.A., Hansen L.A. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 1995;269(5221):230–4. DOI:10.1126/science.7618084.; Королева И. А., Болотина Л. В., Гладков О. А. и др. Практические рекомендации по лекарственному лечению дерматологических реакций у пациентов, получающих противоопухолевую лекарственную терапию. Злокачественные опухоли: практические рекомендации RUSSCO #3s2 2020;10(42):88–101. https://www.rosoncoweb.ru/standarts/RUSSCO/2020/2020-42.pdf.; Robert C., Soria J.C., Spatz A. et al. Cutaneous side-effects of kinase inhibitors and blocking antibodies. Lancet Oncol 2005;6(7):491–500. DOI:10.1016/S1470-2045(05)70243-6.; Lynch T.J., Kim E.S., Eaby B. et al. Epidermal growth factor receptor inhibitor-associated cutaneous toxicities: an evolving paradigm in clinical management. Oncologist 2007;12(5):610-21. DOI:10.1634/theoncologist.12-5-610.; Шатохина Е.А., Круглова Л.С., Полонская А.С., Носикова П.Г. Акнеподобная сыпь – дерматологическое нежелательное явление терапии моноклональными антителами к EGFR. Фарматека 2020;27(8):56–60. DOI:10.18565pharmateca.2020.8.56-60.; Bonner J.A., Ang K. More on severe cutaneous reaction with radiotherapy and cetuximab. N Engl J Med 2007;357(18):1872–3. DOI:10.1056/NEJMc076359.; Bernier J., Bonner J., Vermorken J.B. et al. Consensus guidelines for the management of radiation dermatitis and coexisting acne-like rash in patients receiving radiotherapy plus EGFR inhibitors for the treatment of squamous cell carcinoma of the head and neck. Ann Oncol 2008;19(1):142–9. DOI:10.1093/annonc/mdm400.; Wheatley-Price P., Ding K., Seymour L. et al. Erlotinib for advanced non-smallcell lung cancer in the elderly: an analysis of the National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 2008;26(14):2350–7. DOI:10.1200/JCO.2007.15.2280.; Bigot F., Boudou-Rouquette P., Arrondeau J. et al. Erlotinib pharmacokinetics: a critical parameter influencing acute toxicity in elderly patients over 75 years-old. Invest New Drugs 2017;35(2):242–6. DOI:10.1007/s10637-016-0400-5.; Jatoi A., Green E.M., Rowland K.M. et al. Clinical predictors of severe cetuximabinduced rash: observations from 933 patients enrolled in north central cancer treatment group study N0147. Oncology 2009;77(2):120–3. DOI:10.1159/000229751.; Osio A., Mateus C., Soria J.C. et al. Cutaneous side-effects in patients on longterm treatment with epidermal growth factor receptor inhibitors. Br J Dermatol 2009;161(3):515–21. DOI:10.1111/j.1365-2133.2009.09214.x.; Tsimboukis S., Merikas I., Karapanagiotou E.M. et al. Erlotinib-induced skin rash in patients with non-small-cell lung cancer: pathogenesis, clinical significance, and management. Clin Lung Cancer 2009;10(2): 106–11. DOI:10.3816/CLC.2009.n.013.; Ensslin C.J., Rosen A.C., Wu S., Lacouture M.E. Pruritus in patients treated with targeted cancer therapies: systematic review and meta-analysis. J Am Acad Dermatol 2013;69(5):708–20. DOI:10.1016/j.jaad.2013.06.038.; Hu J.C., Sadeghi P., Pinter-Brown L.C. et al. Cutaneous side effects of epidermal growth factor receptor inhibitors: clinical presentation, pathogenesis, and management. J Am Acad Dermatol 2007;56(2):317–26. DOI:10.1016/j.jaad.2006.09.005.; Melichar B., Nemcová I. Eye complications of cetuximab therapy. Eur J Cancer Care (Engl) 2007;16(5):439–43. DOI:10.1111/j.1365-2354.2006.00763.x.; Lacouture M.E., Lai S.E. The PRIDE (Papulopustules and/or paronychia, Regulatory abnormalities of hair growth, Itching, and Dryness due to Epidermal growth factor receptor inhibitors) syndrome. Br J Dermatol 2006;155(4): 852–4. DOI:10.1111/j.1365-2133.2006.07452.x.; Pérez-Soler R., Delord J.P., Halpern A. et al. HER1/EGFR inhibitor-associated rash: future directions for management and investigation outcomes from the HER1/EGFR inhibitor rash management forum. Oncologist 2005;10(5):345–56. DOI:10.1634/theoncologist.10-5-345.; Roé E., García Muret M.P., Marcuello E. et al. Description and management of cutaneous side effects during cetuximab or erlotinib treatments: a prospective study of 30 patients. J Am Acad Dermatol 2006;55(3):429–37. DOI:10.1016/j.jaad.2006.04.062.; Porzio G., Aielli F., Verna L. et al. Efficacy of pregabalin in the management of cetuximab-related itch. J Pain Symptom Manage 2006;32(5):397–8. DOI:10.1016/j.jpainsymman.2006.07.006.; Sollena P., Mannino M., Tassone F. et al. Efficacy of topical beta-blockers in the management of EGFR-inhibitor induced paronychia and pyogenic granuloma-like lesions: case series and review of the literature. Drugs Context 2019;8:212613. DOI:10.7573/dic.212613.; Yen C.F., Hsu C.K., Yang H.S. et al. Treatment of epidermal growth factor receptor inhibitor-induced severe paronychia with pyogenic granuloma-like lesions with topical betaxolol: an openlabel observation study. Int J Dermatol 2020;59(3):326–32. DOI:10.1111/ijd.14730.; Denda M., Fuziwara S., Inoue K. Beta2adrenergic receptor antagonist accelerates skin barrier recovery and reduces epidermal hyperplasia induced by barrier disruption. J Invest Dermatol 2003;121(1):142–8. DOI:10.1046/j.1523-1747.2003.12310.x.; Sibaud V., Casassa E., D’Andrea M. Are topical beta-blockers really effective “in real life” for targeted therapy-induced paronychia. Support Care Cancer 2019;27(7):2341–3. DOI:10.1007/s00520-019-04690-8.; Panariello L., Donnarumma M., Cinelli E., Fabbrocini G. Case series showing the efficacy of 5-aminolaevulinic acid photodynamic therapy for epidermal growth factor receptor inhibitor-induced paronychia and pyogenic granuloma-like lesions. Br J Dermatol 2019;180(3):676–7. DOI:10.1111/bjd.17270.; https://ogsh.abvpress.ru/jour/article/view/722

  17. 17
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 9 (2022); 117-125 ; Медицинский Совет; № 9 (2022); 117-125 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6924/6221; Снеговой А.В., Aapro M., Давиденко И.С., Давыдкин И.Л., Королева И.А., Ларионова В.Б. и др. Практические рекомендации по лечению анемии у онкологических больных. Злокачественные опухоли. 2015;(4s):316-326. Режим доступа: https://www.malignanttumors.org/jour/article/view/198/207.; Coleman R., Abrahamsson P.A., Hadji P. (eds.). Handbook of cancer- related bone disease. Bristol: BioScientifica; 2012. 260 p.; Ларионова В.Б., Крысанов И.С., Снеговой А.В., Зейналова П.А., Крысанова В.С., Ермакова В.Ю. Рациональная тактика поддерживающей терапии анемии, индуцированной химиотерапией: фармакоэкономический анализ применения эритропоэзстимулирующих препаратов у пациентов с онкологическими заболеваниями в условиях здравоохранения Российской Федерации. Онкогематология. 2018;13(2):48-61. https//doi.org/10.17650/1818-8346-2018-13-2-48-61.; Ludwig H., Van Belle S., Barrett-Lee P., Birgegard G., Bokemeyer C., Gascon P. et al. The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. Eur J Cancer. 2004;40(15):2293-2306. https://doi.org/10.1016/j.ejca.2004.06.019.; Grotto H.Z. Anaemia of cancer: an overview of mechanisms involved in its pathogenesis. Med Oncol. 2008;25(1):12-21. https://doi.org/10.1007/s12032-007-9000-8.; Abboud S., Haile D.J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000;275(26):19906-199012. https://doi.org/10.1074/jbc.M000713200.; Singh P.K., Parsek M.R., Greenberg E.P., Welsh M.J. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417(6888):552-555. https://doi.org/10.1038/417552a.; Egrie J.C., Browne J.K. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer. 2001;84(Suppl. 1):3-10. https://doi.org/10.1054/bjoc.2001.1746.; Macdougall I.C. Novel erythropoiesis-stimulating agents: a new era in anemia management. Clin J Am Soc Nephrol. 2008;3(1):200-207. https://doi.org/10.2215/CJN.03840907.; Oberhoff C., Neri B., Amadori D., Petry K.U., Gamucci T., Rebmann U. et al. Recombinant human erythropoietin in the treatment of chemotherapy-induced anemia and prevention of transfusion requirement associated with solid tumors: a randomized, controlled study. Ann Oncol. 1998;9(3):255-260. https://doi.org/10.1023/a:1008296622469.; Бабичева Л.Г., Поддубная И.В. Лечение анемии в онкологии: роль нового стимулятора эритропоэза Аранесп (дарбэпоэтин альфа). Современная онкология. 2007;9(3):69-74. Режим доступа: https://modernonco.orscience.ru/1815-1434/article/view/26695.; Glaspy J. Update on safety of ESAs in cancer-induced anemia. J Natl Compr Canc Netw. 2012;10(5):659-666. https://doi.org/10.6004/jnccn.2012.0065.; Снеговой А.В., Ларионова В.Б., Манзюк Л.В., Кононенко И.Б. Анемии в онкологии: современные возможности поддерживающей терапии. Клиническая онкогематология. 2016;9(3):326-335. https://doi.org/10.21320/2500-2139-2016-9-3-326-35.; Cella D. The Functional Assessment of Cancer Therapy-Anemia (FACT-An) Scale: a new tool for the assessment of outcomes in cancer anemia and fatigue. Semin Hematol. 1997;34(3 Suppl. 2):13-19. Available at: https://pubmed.ncbi.nlm.nih.gov/9253779/.; Schrijvers D., De Samblanx H., Roila F. Erythropoiesis-stimulating agents in the treatment of anaemia in cancer patients: ESMO Clinical Practice Guidelines for use. Ann Oncol. 2010;21 Suppl. 5:v244-247. https://doi.org/10.1093/annonc/mdq202.; Cella D. Quality of life and clinical decisions in chemotherapy-induced anemia. Oncology (Williston Park). 2006;20(8 Suppl. 6):25-28. Available at: https://www.cancernetwork.com/view/quality-life-and-clinical-decisions-chemotherapy-induced-anemia.; Rodgers G.M. 3rd, Becker P.S., Blinder M., Cella D., Chanan-Khan A., Cleeland C. et al. Cancer- and chemotherapy-induced anemia. J Natl Compr Canc Netw. 2012;10(5):628-653. https://doi.org/10.6004/jnccn.2012.0064.; Zhang G., Yang P., Guo P., Miele L., Sarkar F.H., Wang Z., Zhou Q. Unraveling the mystery of cancer metabolism in the genesis of tumor-initiating cells and development of cancer. Biochim Biophys Acta. 2013;1836(1):49-59. https://doi.org/10.1016/j.bbcan.2013.03.001.; Франциянц Е.М., Саманева Н.Ю., Владимирова Л.Ю., Сторожакова А.Э., Калабанова Е.А., Кабанов С.Н., Тишина А.В. Содержание факторов роста и прогрессирования в крови больных местнораспространенным раком молочной железы в процессе неоадъювантной химиотерапии. ЮжноРоссийский онкологический журнал/South Russian Journal of Cancer 2021;2(3):6-12. https://doi.org/10.37748/2686-9039-2021-2-3-1.; Кит О.И., Геворкян Ю.А., Солдаткина Н.В., Тимошкина Н.Н., Харагезов Д.А., Каймакчи Д.О. и др. Современные прогностические факторы при колоректальном раке. Колопроктология. 2021;20(2):42-49. https://doi.org/10.33878/2073-7556-2021-20-2-42-49.; Schwab M., Zanger U.M., Marx C., Schaeffeler E., Klein K., Dippon J. et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol. 2008;26(13):2131-2138. https://doi.org/10.1200/JCO.2006.10.4182.; Nisman B., Barak V., Hubert A., Kaduri L., Lyass O., Baras M., Peretz T. Prognostic factors for survival in metastatic breast cancer during first-line paclitaxel chemotherapy. Anticancer Res. 2003;23(2C):1939-1942. Available at: https://pubmed.ncbi.nlm.nih.gov/12820483/.; Березин П.Г., Милованов В.В., Иванников А.А. Роль эритропоэтинов в лечении анемии у онкологических больных. Research'n Practical Medicine Journal. 2017;4(2):37-42. https://doi.org/10.17709/2409-2231-2017-4-2-5.; Steinmetz H.T. The role of intravenous iron in the treatment of anemia in cancer patients. Ther Adv Hematol. 2012;3(3):177-191. https://doi.org/10.1177/2040620712440071.; Petrelli F., Borgonovo K., Cabiddu M., Lonati V., Barni S. Addition of iron to erythropoiesis-stimulating agents in cancer patients: a meta-analysis of randomized trials. J Cancer Res Clin Oncol. 2012;138(2):179-187. https://doi.org/10.1007/s00432-011-1072-3.; Hoff C.M., Lassen P., Eriksen J.G., Hansen H.S., Specht L., Overgaard M. et al. Does transfusion improve the outcome for HNSCC patients treated with radiotherapy? - results from the randomized DAHANCA 5 and 7 trials. Acta Oncol. 2011;50(7):1006-1014. https://doi.org/10.3109/0284186X.2011.592650.; Klein H.G., Spahn D.R., Carson J.L. Red blood cell transfusion in clinical practice. Lancet. 2007;370(9585):415-426. https://doi.org/10.1016/S0140-6736(07)61197-0.; Amato A., Pescatori M. Perioperative blood transfusions for the recurrence of colorectal cancer. Cochrane Database Syst Rev. 2006;2006(1):CD005033. https://doi.org/10.1002/14651858.CD005033.pub2.; Bohlius J., Wilson J., Seidenfeld J., Piper M., Schwarzer G., Sandercock J. et al. Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients. J Natl Cancer Inst. 2006;98(10):708-714. https://doi.org/10.1093/jnci/djj189.; Bennett C.L., Silver S.M., Djulbegovic B., Samaras A.T., Blau C.A., Gleason K.J. et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA. 2008;299(8):914-924. https://doi.org/10.1001/jama.299.8.914.; Bohlius J., Schmidlin K., Brillant C., Schwarzer G., Trelle S., Seidenfeld J. et al. Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomised trials. Lancet. 2009;373(9674):1532-1542. https://doi.org/10.1016/S0140-6736(09)60502-X.; Glaspy J., Osterborg A., Ludwig H., Fleishman A., Lillie T., Crawford J. et al. Evaluation of the association between (Hb) events and safety outcomes in cancer patients with chemotherapy induced anemia: an integrated analysis of patient-level data from 6 randomized, placebo-controlled trials of darbepoetin. Eur J Cancer Supplements 2007;5(4):147-148. https://doi.org/10.1016/s1359-6349(07)70639-0.; Большакова С.А., Бычков Ю.М., Казарова М.В. Собственный опыт использования эпоэтина-а (Эральфон®) в лечении анемии, индуцированной воздействием цитостатиков. Современная онкология. 2017;19(1):80-84. Режим доступа: https://modernonco.orscience.ru/1815-1434/article/view/27129.; Macdougall I.C., Eckardt K.U. Novel strategies for stimulating erythropoiesis and potential new treatments for anaemia. Lancet. 2006;368(9539):947-953. https://doi.org/10.1016/s0140-6736(06)69120-4.; Jamal N.M., Krzyzanski W., Cheung W., Lau C.Y., Messner H.A. Evaluation of epoetin alpha (rHuEPO) and darbepoetin alpha (DARB) on human burst-colony formation (BFU-E) in culture. J Int Med Res. 2006;34(1):42-51. https://doi.org/10.1177/147323000603400105.; Papatheofanis F.J., McKenzie R.S., Mody S.H., Suruki R.Y., Piech C.T. Dosing patterns, hematologic outcomes, and costs of erythropoietic agents in predialysis chronic kidney disease patients with anemia. Curr Med Res Opin. 2006;22(5):837-842. https://doi.org/10.1185/030079906X100113.

  18. 18
    Academic Journal

    Πηγή: Malignant tumours; Том 12, № 1 (2022); 13-20 ; Злокачественные опухоли; Том 12, № 1 (2022); 13-20 ; 2587-6813 ; 2224-5057

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/931/669; Bellera, C. A., Rainfray, M., Mathoulin‑Pélissier, S., Mertens, C., Delva, F., Fonck, M., &Soubeyran, P. L. (2012). Screening older cancer patients: First evaluation of the G ‑ 8 geriatric screening tool. Annals of Oncology, 23 (8), 2166–2172. https://doi.org/10.1093/annonc/mdr587; Fe Biello, Alessia Mennitto, Abdurraouf Mahmoud, Francesca Platini, Daniela Ferrante, Riccardo Bruna, Andrea Patriarca, Maura Nicolosi, Eleonora Ferrara, Paola maria Maggiora, Alessia Rua, Clara Deambrogi, David James Pinato, Marco Krengli, Gianluca Gaidano, Alessandra Gennari. Impact of the G8 score on the outcome of a cohort of elderly patients with solid or hematological malignancies. Journal of Clinical Oncology 39, no. 15_suppl (May 20, 2021) 12038 ‑12038. doi:10.1200/JCO.2021.39.15_suppl.12038; Wing‑Lok Chan, Tiffany Ma, Kwok‑Leung Cheung, Horace Choi, Josiah Wong, Ka‑On Lam, Kwok‑Keung Yuen, Mai-Yee Luk, Dora Kwong The predictive value of G8 and the Cancer and aging research group chemotherapy toxicity tool in treatment‑related toxicity in older Chinese patients with cancer. Geriatric Oncology. Volume 12, Issue 4, P557‑562, May 01,2021. doi 10.1371/journal.pone.0115060; Daneng Li, Can‑Lan Sun, Heeyoung Kim etal. Geriatric assessment‑ driven intervention (GAIN) on chemotherapy toxicity in older adults with cancer: A randomized controlled trial.; Decoster, L., Van Puyvelde, K., Mohile, S., Wedding, U., Basso, U., Colloca, G., Rostoft, S., Overcash, J., Wildiers, H., Steer, C., Kimmick, G., Kanesvaran, R., Luciani, A., Terret, C., Hurria, A., Kenis, C., Audisio, R., &Extermann, M. (2015). Screening tools for multidimensional health problems warranting a geriatric assessment in older cancer patients: An update on SIOG recommendations. Annals of Oncology, 26 (2), 288–300. https://doi.org/10.1093/annonc/mdu210; Extermann, M., &Hurria, A. (2007). Comprehensive geriatric assessment for older patients with cancer. Journal of Clinical Oncology, 25 (14), 1824–1831. https://doi.org/10.1200/JCO.2007.10.6559; Freyer, G., Geay, J. F., Touzet, S., Provencal, J., Weber, B., Jacquin, J. P., Ganem, G., Tubiana‑Mathieu, N., Gisserot, O., &Pujade‑Lauraine, E. (2005). Comprehensive geriatric assessment predicts tolerance to chemotherapy and survival in elderly patients with advanced ovarian carcinoma: A GINECO study. Annals of Oncology, 16 (11), 1795–1800. https://doi.org/10.1093/annonc/mdi368; Hamaker, M. E., te Molder, M., Thielen, N., van Munster, B. C., Schiphorst, A. H., & van Huis, L. H. (2018). The effect of a geriatric evaluation on treatment decisions and outcome for older cancer patients – A systematic review. Journal of Geriatric Oncology, 9 (5), 430–440. https://doi.org/10.1016/j.jgo.2018.03.014; Katz, S. (1983). Assessing self‑maintenance: Activities of daily living, mobility, and instrumental activities of daily living. Journal of the American Geriatrics Society, 31 (12), 721–727. https://doi.org/10.1111/j.1532‑5415.1983.tb03391.x; Lund, C. M., Vistisen, K. K., Olsen, A. P., Bardal, P., Schultz, M., Dolin, T. G., Rønholt, F., Johansen, J. S., & Nielsen, D. L. (2021). The effect of geriatric intervention in frail older patients receiving chemotherapy for colorectal cancer: a randomised trial (GERICO). British Journal of Cancer, 124 (12), 1949–1958. https://doi.org/10.1038/s41416‑021‑01367‑01; Mohile, S. G., Dale, W., Somerfield, M. R., &Hurria, A. (2018). Practical assessment and management of vulnerabilities in older patients receiving chemotherapy: Asco guideline for geriatric oncology summary. Journal of Oncology Practice, 14 (7), 442–446. https://doi.org/10.1200/JOP.18.00180; Muss, H. B. (2009). Cancer in the Elderly: a Societal Perspective from the United States Clinical Oncology, 21 (2), 92–98. https://doi.org/10.1016/j.clon.2008.11.008; Soubeyran, P., Bellera, C., Goyard, J., Heitz, D., Curé, H., Rousselot, H., Albrand, G., Servent, V., Jean, O. Saint, van Praagh, I., Kurtz, J.‑E., Périn, S., Verhaeghe, J.‑L., Terret, C., Desauw, C., Girre, V., Mertens, C., Mathoulin‑Pélissier, S., &Rainfray, M. (2014). Screening for Vulnerability in Older Cancer Patients: The ONCODAGE Prospective Multicenter Cohort Study. PLoS ONE, 9 (12), e115060. https://doi.org/10.1371/journal.pone.0115060; Spina, M., Balzarotti, M., Uziel, L., Ferreri, A. J. M., Fratino, L., Magagnoli, M., Talamini, R., Giacalone, A., Ravaioli, E., Chimienti, E., Berretta, M., Lleshi, A., Santoro, A., &Tirelli, U. (2012). Modulated Chemotherapy According to Modified Comprehensive Geriatric Assessment in 100 Consecutive Elderly Patients with Diffuse Large B-Cell Lymphoma. The Oncologist, 17 (6), 838–846. https://doi.org/10.1634/theoncologist.2011‑0417; Supriya G Mohile, Mostafa R Mohamed, HuiwenXu, Eva Culakova, KahPohLoh, Allison Magnuson, Marie A Flannery, Spencer Obrecht, Nikesha Gilmore, Erika Ramsdale, Richard F Dunne, Tanya Wildes, Sandy Plumb, AmitaPatil, Megan Wells, Lisa Lowenstein, Michelle Janelsins, Karen Mustian, Judith O Hopkins, Jeffrey Berenberg, Navin Anthony, William Dale, Evaluation of geriatric assessment and management on the toxic effects of cancer treatment (GAP70 +): a cluster‑randomised study. The Lancet, Volume 398, Issue 10314,2021, Pages 1894-1904, ISSN 0140‑6736, https://doi.org/10.1016/S0140‑6736(21)01789‑X; Wildiers H., Heeren P., Puts M., et al. International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer. J ClinOncol. 2014; 32: 2595 ‑2603. https://doi.org/10.1200/JCO.2013.54.8347; Мудров В. А. Алгоритм применения ROC‑анализа в биомедицинских исследованиях с помощью пакета программ SPSS. ЭНИ Забайкальский медицинский вестник, № 1/2021; https://www.malignanttumors.org/jour/article/view/931

  19. 19
  20. 20
    Academic Journal

    Πηγή: Creative surgery and oncology; Том 12, № 2 (2022); 118-122 ; Креативная хирургия и онкология; Том 12, № 2 (2022); 118-122 ; 2076-3093 ; 2307-0501

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/692/495; Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. DOI:10.3322/caac.21708; Arneth B. Comparison of Burnet’s clonal selection theory with tumor cell-clone development. Theranostics. 2018;8(12):3392–9. DOI:10.7150/thno.24083; Rady I., Siddiqui I.A., Rady M., Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017;402:16–31. DOI:10.1016/j.canlet.2017.05.010; Memariani H., Memariani M., Shahidi-Dadras M., Nasiri S., Akhavan M.M., Moravvej H. Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol. 2019;103(8):3265–76. DOI:10.1007/s00253-019-09698-y; Guha S., Ferrie R.P., Ghimire J., Ventura C.R., Wu E., Sun L., et al. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol. 2021;193:114769. DOI:10.1016/j.bcp.2021.114769; Memariani H., Memariani M., Moravvej H., Shahidi-Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur J Clin Microbiol Infect Dis. 2020;39(1):5–17. DOI:10.1007/s10096-019-03674-0; Memariani H., Memariani M. Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol. 2020;104(15):6513–26. DOI:10.1007/s00253-020-10701-0; Memariani H., Memariani M. Melittin as a promising anti-protozoan peptide: curent knowledge and future prospects. AMB Express. 2021;11(1):69. DOI:10.1186/s13568-021-01229-1; Paray B.A., Ahmad A., Khan J.M., Taufiq F., Pathan A., Malik A., et al. The role of the multifunctional antimicrobial peptide melittin in gene delivery. Drug Discov Today. 2021;26(4):1053–9. DOI:10.1016/j.drudis.2021.01.004; Павлов В.Н., Рахматуллина И.Р., Фархутдинов Р.Р., Пушкарев В.А., Данилко К.В., Галимова Э.Ф. и др. Свободно-радикальное окисление и канцерогенез: дискуссионные вопросы. Креативная хирургия и онкология. 2017;7(2):54–61. DOI:10.24060/2076-3093-2017-7-2-54-61; Jamasbi E., Mularski A., Separovic F. Model membrane and cell studies of antimicrobial activity of melittin analogues. Curr Top Med Chem. 2016;16(1):40–5. DOI:10.2174/1568026615666150703115919; Park M.H., Choi M.S., Kwak D.H., Oh K.W., Yoon D.Y., Han S.B., et al. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-кB. Prostate. 2011;71(8):801–12. DOI:10.1002/pros.21296; Jeong Y.J., Choi Y., Shin J.M., Cho H.J., Kang J.H., Park K.K., et al. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem Toxicol. 2014;68:218–25. DOI:10.1016/j.fct.2014.03.022; Badr-Eldin S.M., Alhakamy N.A., Fahmy U.A., Ahmed O.A.A., Asfour H.Z., Althagafi A.A., et al. Cytotoxic and pro-apoptotic effects of a sub-toxic concentration of fluvastatin on OVCAR3 ovarian cancer cells after its optimized formulation to melittin nano-conjugates. Front Pharmacol. 2021;11:642171. DOI:10.3389/fphar.2020.642171; Yu X., Chen L., Liu J., Dai B., Xu G., Shen G., et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat Commun. 2019;10(1):574. DOI:10.1038/s41467-019-08538-x; https://www.surgonco.ru/jour/article/view/692