Showing 1 - 1 results of 1 for search '"противолейкозные оздоровительные мероприятия"', query time: 0.43s Refine Results
  1. 1
    Academic Journal

    Contributors: The study was conducted within the State Task as provided by the approved Research Work Plan of the FSC VIEV for 2022., Работа выполнена в рамках государственного задания в соответствии с утвержденным планом НИР ФГБНУ ФНЦ ВИЭВ РАН на 2022 год.

    Source: Russian Journal of Parasitology; Том 16, № 3 (2022); 282-295 ; Российский паразитологический журнал; Том 16, № 3 (2022); 282-295 ; 2541-7843 ; 1998-8435 ; 10.31016/1998-8435-2022-16-3

    File Description: application/pdf

    Relation: https://vniigis.elpub.ru/jour/article/view/940/710; Валихов А. Ф., Бурба Л. Г., Шишков В. П. Иммунологическое и вирусологическое исследование молока, крови и спермы крупного рогатого скота, инфицированного онкорнавирусом // Труды ВИЭВ. 1983. № 59. С. 71-72.; Гулюкин М. И., Козырева Н. Г., Иванова Л. А., Степанова Т. В., Клименко А. И., Коваленко А. В. Дробин Ю. Д., Василенко В. Н. Межвидовая передача вируса лейкоза крупного рогатого скота в эксперименте // Вопросы вирусологии. 2015. T. 5, № 60. C. 32-37.; Козырева Н. Г. Применение методики мультиплексной ПЦР-РВ в молекулярной диагностике ВЛКРС при перинатальном инфицировании // Международный вестник ветеринарии. 2018. № 4. C. 28-32.; Козырева Н. Г., Абашин И. Ю., Иванова Л. А. Эффективность применения генодиагностического теста в оценке перинатального заражения у молодняка при профилактике лейкоза крупного рогатого скота с целью повышения качества молочной продукции // Российский журнал Проблемы ветеринарной санитарии, гигиены и экологии. 2020. T. 4, № 36. C. 450-455. https://doi.org/10.36871/vet.san.hyg.ecol.202004007.; Козырева Н. Г., Иванова Л. А., Степанова Т. В., Гулюкин М. И. Cпособ диагностики лейкоза крупного рогатого скота методом полимеразной цепной реакции. Патент РФ 2694617, 2018.; Колобов А. В. Место ретровирусов в перинатальной патологии (обзор литературы) // Журнал инфектологии. 2012. T. 4, № 4. C. 13-19.; Садовникова В. Н. Особенности заболеваемости ВИЧ-инфекцией у детей и меры по профилактике перинатальной трансмиссии ВИЧ-инфекции // Педиатрия. 2010. Т. 89. № 1. С. 14-20.; Agresti A., Ponti W., Rocchi M., Meneveri R., Marozzi A., Cavalleri D., Peri E., Poli G., Ginelli E. Use of polymerase chain reaction to diagnose bovine leukemia virus infection in calves at birth. Amer. J. Vet. Res. 1993; 54: 373-378.; Brym P., Ruść A., Kamiński S. Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemiavirus infected cattle. Vet. Immunol. Immunop. 2013; 153: 302-307. https://doi.org/10.1016/j.vetimm.2013.03.004.; Buehring G. C., Choi K. Y., Jensen H. M. Bovine leukemia virus in human breast tissues. Breast Cancer Res. 2001; 3: А14. https://doi.org/10.1186/bcr338.; Buehring G. C., Kramme P. M., Schultz R. D. Evidence for bovine leukemia virus in mammary epithelial cells of infected cows. Lab. Invest. 1994; 71: 359-365.; Chakraborty J., Clark S., Okonta H., Duggan J. A small animal model for mother-to-fetus transmission of ts1, a murine retrovirus. Viral Immunol. 2003; 16 (2): 191-201. https://doi.org/10.1089/088282403322017929.; Dimmock C. K., Chung Y. S., MacKenzie A. R. Factors affecting the natural transmission of bovine leukaemia virus infection in Queensland dairy herds. Austr. Vet. J. 1991; 68: 230-233. https://doi.org/10.1111/j.1751-0813.1991.tb03213.x; Essajee S. M., Pollack H., Rochford G. Oransky I., Krasinski K., Borkowsky W. Early changes in quasispecies repertoire in HIV-infected infants: correlation with disease progression. AIDS Res. Human Retroviruses. 2000; 16 (18): 1949-1957. https://doi.org/10.1089/088922200750054675.; Ferrer J. F., Piper C. E. Role colostrum and milk in the natural transmission of the bovine leukemia virus. Cancer Res. 1981; 41: 4906-4909.; Goulder P. J., Brander C., Tang Y. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature. 2001; 412: 334-338. https://doi.org/10.1038/35085576.; Gutiérrez G., Alvarez I., Merlini R., Rondelli F., Trono K. Dynamics of perinatal bovine leukemia virus infection. BMC Vet. Res. 2014; 10: 82. https://doi.org/10.1186/1746-6148-10-82.; Gutiérrez G., Lomonaco M., Alvarez I., Fernandez F., Trono K. Characterization of colostrum from dams of BLV endemic dairy herds. Vet Microbiol. 2015; 177 (3-4): 366-369. https://doi.org/10.1016/j.vetmic.2015.03.001.; Hron T., Elleder D., Gifford R. J. Deltaretroviruses have circulated since at least the Paleogene and infected a broad range of mammalian species. Retrovirology. 2019; 16: 33. https://doi.org/10.1186/s12977-019-0495-9.; Hutchinson H. C. Transmission and Progression of Bovine Leukemia Virus. Michigan State University, 2020.; Juliarena A. M., Barrios C. N., Ceriani M., Esteban E. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. J. Dairy Sci. 2016; 99 (6): 4586-4589. http://dx.doi.org/10.3168/jds.2015-10480.; Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. of Molecular Evolution. 1980; 16: 111-120.; Kinoshita K., Hino S., Amagaski T. et al. Demonstration of adult T-cell leukemia virus antigen in milk from three sero-positive mothers. Gann. 1984; 75 (2): 103-105.; Lassauzet M. L., Johnson W. O., Thurmond M. C., Stevens F. Protection of colostral antibodies against bovine leukemia virus infection in calves on a California dairy. Can. J. Vet. Res. 1989; 53: 424-430.; Lassauzet M. L., Thurmond M. C., Johnson W. O., Holmberg C. A. Factors associated with in utero or periparturient transmission of bovine leukemia virus in calves on a California dairy. Can. J. Vet. Res. 1991; 55 (3): 264-268.; Lo C.-W., Borjigin L., Saito S., Fukunaga K., Saitou E., Okazaki K., Mizutani T., Wada S., Takeshima S.-N., Aida Y. BoLADRB3 Polymorphism is Associated with Differential Susceptibility to Bovine Leukemia VirusInduced Lymphoma and Proviral Load. Viruses. 2020; 12 (3): 352. https://doi.org/10.3390/v12030352.; Martin-Latil S., Gnadig N. F., Mallet A. et al. Transcytosis of HTLV-1 across a tight human epithelial barrier and infection of subepithelial dendritic cells. Blood. 2012; 120 (3): 572-580. https://doi.org/10.1182/blood-2011-08-374637.; Mekata H., Sekiguchi S., Konnai S., Kirino Y., Honkawa K., Nonaka N., Horii Y., Norimine J. Evaluation of the natural perinatal transmission of bovine leukaemia virus. Vet. Rec. 2014; 176 (10): 254. https://doi.org/10.1136/vr.102464.; Mekata H., Yamamoto M., Kirino Y., Sekiguchi S., Konnai S., Horii Y., Norimine J. New hematological key for bovine leukemia virus-infected Japanese Black cattle. J. Vet. Med. Sci. 2018; 80 (2): 316-319. https://doi.org/10.1292/jvms.17-0455.; Ohno A., Takeshima Sh.-N., Matsumoto Y., Aida Y. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014. Virus Res. 2015; 210: 283-90. https://doi.org/10.1016/j.virusres.2015.08.020.; Ruggiero V., Norby B., Benitez O. et al. Controlling bovine leukemia virus in dairy herds by identifying and removing cows with the highest proviral load and lymphocyte counts. J. Dairy Sci. 2019; 102: 9165-9175. https://doi.org/10.3168/jds.2018-16186.; Ruiz V., Porta N. G., Lomónaco M., Trono K., Alvarez I. Bovine Leukemia Virus Infection in Neonatal Calves. Risk Factors and Control Measures. Front. Vet. Sci. 2018; 5: 267. https://doi.org/10.3389/fvets.2018.00267.; Rzhetsky A., Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 1993; 10 (5): 1073-1095.; Sajiki Y., Konnai S., Nishimori A. et al. Intrauterine infection with bovine leukemia virus in pregnant dam with high viral load. J. Vet. Med. Sci. 2017; 79: 2036-2039. https://doi.org/10.1292/jvms.17-0391.; Saitou N., Nei M. The neighbor-joining method: a new method for reconstruction of phylogenetic trees. Mol. Biol. Evol. 1987; 4 (4): 406-425.; Somura Y., Sugiyama E., Fujikawa H., Murakami K. Comparison of the copy numbers of bovine leukemia virus in the lymph nodes of cattle with enzootic bovine leukosis and cattle with latent infection. Arch. Virol. 2014; 159: 2693-2697.; Sultanov A., Rola-Łuszczak M., Mamanova S. et al. Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. Pathogens. 2022; 11: 180. https://doi.org/10.3390/pathogens11020180.; Tajima F., Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. and Evol. 1984; 1 (3): 269-285.; Van der Maaten M. J., Miller J. M., Schmerr M. J. F. Effect of colostral antibody on of bovine leukemia virus infection of neonatal calves. Amer. J. Vet. Res. 1981; 42 (6): 1498-1500.; https://vniigis.elpub.ru/jour/article/view/940