Εμφανίζονται 1 - 20 Αποτελέσματα από 138 για την αναζήτηση '"протеолитическая активность"', χρόνος αναζήτησης: 0,99δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 60, № 3 (2024); 222-234 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 60, № 3 (2024); 222-234 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2024-60-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/898/749; Тараховский, Ю. С. Интеллектуальные липидные наноконтейнеры в адресной доставке лекарственных веществ / Ю. С. Тараховский. – М.: Изд-во ЛКИ, 2011. – 280 с.; Advanced drug delivery systems for antithrombotic agents / C. F. Greineder [et al.] // Blood. – 2013. – Vol. 122., № 9. – P. 1565–1575. https://doi.org/10.1182/blood-2013-03-453498; Nanomedicine as a strategy to fight thrombotic diseases / M. Varna [et al.] // Future Sci. OA. – 2015. – Vol. 1, № 4. – FSO46. https://doi.org/10.4155/fso.15.46; Liposomal nanocarriers for plasminogen activators / S. Koudelka [et al.] // J. Controlled Release. – 2016. – Vol. 227, № 10. – P. 45–57. https://doi.org/10.1016/j.jconrel.2016.02.019; Liposomes: A Review of Manufacturing Techniques and Targeting Strategies / B. Maherani [et al.] // Curr. Nanosci. – 2011. – Vol. 7, Iss. 3. – P. 436–452. https://doi.org/10.2174/157341311795542453; The role of liposomes in clinical nanomedicine development. What now? Now what? / D. J. A. Crommelin [et al.] // J. Controlled Release. – 2020. – Vol. 318. – P. 256–263. https://doi.org/10.1016/j.jconrel.2019.12.023; Перспективы применения в клинической практике наноразмерных форм лекарственных препаратов / Ю. М. Краснопольский [и др.] // Рос. хим. журн. – 2012. – Т. 56, № 3–4. – С. 11–33.; Получение комплексных препаратов на основе липосомальной формы стрептокиназы и их фармакокинетические характеристики / Е. И. Дубатовка [и др.] // Докл. Нац. акад. наук Беларуси. – 2017. – Т. 61, № 6. – С. 50–57.; Экспериментальное изучение физико-химических, фармакокинетических свойств и степени безопасности комплексного препарата стрептокиназы на основе фибрин-специфичных липосом / И. Л. Лутик [и др.] // Кардиология в Беларуси. – 2019. – Т. 11, №. 5. – С. 729–743.; Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents / B. Vaidya [et al.] // Int. J. Pharm. – 2011. – Vol. 403, № 1–2. – P. 254–261. https://doi.org/10.1016/j.ijpharm.2010.10.028; Fibrinspecific liposomes as a potential method of delivery of the thrombolytic preparation streptokinase / I. E. Adzerikho [et al.] //J. Thromb. Thrombolysis. – 2022. – Т. 53, №. 2. – С. 313–320. https://doi.org/10.1007/s11239-021-02614-0; Влияние липосомальной формы стрептокиназы на образование Д-димеров / Е. И. Дубатовка [и др.] // Докл. Нац. акад. наук Беларуси. – 2016. – Т. 60, № 6. – С. 54–58.; Bradford, M. M. A rapid and sensitive method for the estimation of microgram quantities of protein utilizing the principle of protein-dye binding / M. M. Bradford // Anal. Biochem. – 1976. – Vol. 72, N 1-2. – P. 248–254. https://doi.org/10.1006/abio.1976.9999; Сompton, S.J. Mechanism of dye response and interference in the Bradford protein assay / S. J. Сompton, G. G. Jones // Anal. Biochem. – 1985. – Vol. 151, N 2. – P. 369–374. https://doi.org/10.1016/0003-2697(85)90190-3; Efficiency of targeted delivery of streptokinase based on fibrin-specific liposomes in the in vivo experiment / I. E. Adzerikho [et al.] // Drug Deliv. Transl. Res. – 2023. – Т. 13, №. 3. – С. 811–821. https://doi.org/10.1007/s13346-022-01242-2; The preparation of human fibrinolysin (plasmin) / J. T. Sgouris [et al.] // Vox. Sang. – 1960. – Vol. 5, N 4. – P. 357–376. https://doi.org/10.1111/j.1423-0410.1960.tb03750.x; Temperature-sensitive liposome-mediated delivery of thrombolytic agents / V. Saxena [et al.] // Int. J. Hyperth. – 2015. – Vol. 31, N. 1. – P. 67–73. https://doi.org/10.3109/02656736.2014.991428; The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator / J.-Y. Kim [et al.] // Biomaterials. – 2009. – Vol. 30, № 29. – P. 5751–5756. https://doi.org/10.1016/j.biomaterials.2009.07.021; Wang Y. J., Pearlman R. Stability and Characterization of Protein and Peptide Drugs. Phar-maceutical biotechnology / Y. J. Wang, R. Pearlman. – New York; London : Plenum press, 1993. – 353 p. https://doi.org/10.1007/978-1-4899-1236-7; Шалимов, С. А. Руководство по экспериментальной хирургии / С. А. Шалимов, А. П. Радзиховский, Л. В. Кейсевич. – М. : Медицина, 1989. – 144 с.; Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy / S. Absar [et al.] // Pharm. Res., 2013. – Vol. 30. – P. 1663–1676. https://doi.org/10.1007/s11095-013-1011-x; https://vestichem.belnauka.by/jour/article/view/898

  2. 2
    Academic Journal

    Συνεισφορές: The work was performed within the framework of the Program for Basic Research in the Russian Federation for a long-term period (2021–2030) (No. 122030100168-2) using “Human Proteome” Core Facility, Работа выполнена в рамках Программы фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021–2030 годы) (№122030100168-2) с использованием оборудования ЦКП «Протеом человека»

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 1 (2024); 46-60 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 1 (2024); 46-60 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/517/820; https://www.biopreparations.ru/jour/article/view/517/807; https://www.biopreparations.ru/jour/article/view/517/813; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/825; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/826; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/827; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/828; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/829; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/830; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/831; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/842; Lukasheva EV, Babayeva G, Karshieva SS, Zhdanov DD, Pokrovsky VS. L-lysine α-oxidase: enzyme with anticancer properties. Pharmaceuticals (Basel). 2021;14(11):1070. https://doi.org/10.3390/ph14111070; Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, Sokolov NN, Zhdanov DD. Molecular analysis of L-asparaginases for clarification of the mechanism of action and optimization of pharmacological functions. Pharmaceutics. 2022;14(3):599. https://doi.org/10.3390/pharmaceutics14030599; Liska AJ, Shevchenko A. Combining mass spectrometry with database interrogation strategies in proteomics. TrAC Trends Anal Chem. 2003;22(5):291–8. https://doi.org/10.1016/S0165-9936(03)00507-7; Голощапова ЕО, Рунова ОБ, Минеро АС, Фадейкина ОВ, Волкова РА, Дегтерев МБ и др. Разработка и аттестация фармакопейного стандартного образца для подтверждения подлинности первичной структуры очищенного рекомбинантного интерферона бета-1b методом пептидного картирования. БИОпрепараты Профилактика, диагностика, лечение. 2022;22(1):23–37. https://doi.org/10.30895/2221-996X-2022-22-1-23-37; Zhang Y, Ling Z, Du G, Chen J, Kang Z. Improved production of active Streptomyces griseus trypsin with a novel auto-catalyzed strategy. Sci Rep. 2016;6(1):23158. https://doi.org/10.1038/srep23158; Huang CT. Vertebrate serum inhibitors of Aedes aegypti trypsin. Insect Biochem. 1971;1(1):27–38. https://doi.org/10.1016/0020-1790(71)90019-9; Toropygin IYu, Kugaevskaya EV, Mirgorodskaya OA, Elisseeva YuE, Kozmin YuP, Popov IA, et al. The N-domain of angiotensin-converting enzyme specifically hydrolyzes the Arg-5-His-6 bond of Alzheimer’s Aβ-(1-16) peptide and its isoAsp-7 analogue with different efficiency as evidenced by quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(2):231–9. https://doi.org/10.1002/rcm.3357; Li M, Rauf A, Guo Y, Kang X. Real-time label-free kinetics monitoring of trypsin-catalyzed ester hydrolysis by a nanopore sensor. ACS Sens. 2019;4(11):2854–7. https://doi.org/10.1021/acssensors.9b01783; Treetharnmathurot B, Ovartlarnporn C, Wungsintaweekul J, Duncan R, Wiwattanapatapee R. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin. Int J Pharm. 2008;357(1–2):252–9. https://doi.org/10.1016/j.ijpharm.2008.01.016; Senphan T, Benjakul S, Kishimura H. Purification and characterization of trypsin from hepatopancreas of Pacific white shrimp. J Food Biochem. 2015;39(4):388–97. https://doi.org/10.1111/jfbc.12147; Homola J, Yee S, Gauglitz G. Surface plasmon resonance sensors: review. Sensors Actuators B Chem. 1999;54(1):3-15. https://doi.org/10.1016/S0925-4005(98)00321-9; Shumyantseva VV, Kuzikov AV, Masamrekh RA, Bulko TV, Archakov AI. From electrochemistry to enzyme kinetics of cytochrome P450. Biosens Bioelectron. 2018;121:192–204. https://doi.org/10.1016/j.bios.2018.08.040; Filippova TA, Masamrekh RA, Shumyantseva VV, Latsis IA, Farafonova TE, Ilina IY, et al. Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide. Talanta. 2023;257:124341. https://doi.org/10.1016/j.talanta.2023.124341; Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 2002;12(8):1231–45. https://doi.org/10.1101/gr.473902; Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4(9):1265–72. https://doi.org/10.1074/mcp.M500061-MCP200; Chen X, Wei S, Ji Y, Guo X, Yang F. Quantitative proteomics using SILAC: principles, applications, and developments. Proteomics. 2015;15(18):3175–92. https://doi.org/10.1002/pmic.201500108; Vogl DP, Conibear AC, Becker CFW. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chem Biol. 2021;2(5):1441–61. https://doi.org/10.1039/D1CB00045D; Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal. 2015;113:2–20. https://doi.org/10.1016/j.jpba.2015.04.013; Petriz BA, Franco OL. Application of cutting-edge proteomics technologies for elucidating host-bacteria interactions. Adv Protein Chem Struct Biol. 2014;95:1–24. https://doi.org/10.1016/B978-0-12-800453-1.00001-4; Kozmin YP, Manoilov AV, Serebryakova MV, Mirgorodskaya OA. A direct introduction of ¹⁸О isotopes into peptides and proteins for quantitative mass spectroscopy analysis. Russ J Bioorganic Chem. 2011;37(6):719–31. https://doi.org/10.1134/S1068162011060094; Swaney DL, Wenger CD, Coon JJ. Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res. 2010;9(3):1323–9. https://doi.org/10.1021/pr900863u; Mach H, Middaugh CR, Lewis RV. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem. 1992;200(1):74–80. https://doi.org/10.1016/0003-2697(92)90279-G; Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic ¹⁸О labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem. 2004;76(9):2675. https://doi.org/10.1021/ac049600x; Finehout EJ, Cantor JR, Lee KH. Kinetic characterization of sequencing grade modified trypsin. Proteomics. 2005;5(9):2319–21. https://doi.org/10.1002/pmic.200401268; https://www.biopreparations.ru/jour/article/view/517

  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Clinical anatomy and operative surgery; Vol. 3 No. 2 (2004); 10-15
    Клиническая анатомия и оперативная хирургия; Том 3 № 2 (2004); 10-15
    Клінічна анатомія та оперативна хірургія; Том 3 № 2 (2004); 10-15

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://kaos.bsmu.edu.ua/article/view/264360

  7. 7
    Academic Journal

    Συνεισφορές: The article was published as part of the research topic No. FNEN‑2019-0010 of the state assignment of the V. M. Gorbatov Federal Research Center for Food Systems of RAS., Статья подготовлена в рамках выполнения исследований по государственному заданию № FNEN-2019-0010 Федерального научного центра пищевых систем им. В. М. Горбатова Российской академии наук.

    Πηγή: Food systems; Vol 5, No 1 (2022); 47-54 ; Пищевые системы; Vol 5, No 1 (2022); 47-54 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2022-5-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/148/172; Langholm Jensen J., Mølgaard A., Navarro Poulsen J.-C., Harboe M. K., Simonsen J. B., Lorentzen A. M. et al. (2013). Camel and bovine chymosin: The relationship between their structures and cheese-making properties. Acta Crystallographica Section D. Biological Crystallography, 69(5), 901–913. https://doi.org/10.1107/S0907444913003260; Guinee, T. P., Wilkinson, M. G. (1992). Rennet coagulation and coagulants in cheese manufacture. Journal of Society of Dairy Technology, 45(4), 94–10. https://doi.org/10.1111/j.1471–0307.1992.tb01791.x; Dekker, P. (2019). Dairy Enzymes. Chapter in a book: Industrial Enzyme Applications. (Ed. by Vogel A. and May O.), 1st Ed. — Weinheim: WileyVCH Verlag GmbH & Co., 2019; Abd El-Salam, B. A. E.-Y., Ibrahim, O. A. E.-H., El-Sayed, H. A. E.-R. (2017). Purification and characterization of milk clotting enzyme from artichoke (Cynara cardunculus L.) flowers as coagulant on white soft cheese. International Journal of Dairy Science, 12(4), 254–265. https://doi.org/10.3923/ijds.2017.254.265; Kumar, A., Sharma, J., Mohanty, A. K., Grover, S., Batish, V. K. (2006). Purification and characterization of milk clotting enzyme from goat (Capra hircus). Comparative Biochemistry and Physiology — B Biochemistry and Molecular Biology, 145(1), 108–113. https://doi.org/10.1016/j.cbpb.2006.06.010; Jacob, M. Milchgerinnungsenzyme verschiedener herkunft und ihr einfluss auf käseausbeute und käsequalität. Dissertation. Dresden: Technische Universität Dresden., 2011. Электронный ресурс: http://d-nb.info/1067190643/34 Дата обращения 28.02.2022; Vishwanatha, K. S., Appu Rao, A. G., Singh, S. A. (2010). Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC5341. Applied Microbiology and Biotechnology, 85(6), 1849–1859. https://doi.org/10.1007/s00253–009–2197-z; Yuqiu, L., Tan, H., Da, L., Zhoulin, L., Yanping, C., Yuanyuan, J. et al. (2015). Screening and Characterization of a Mutant Fungal Aspartic Proteinase from Mucor pusillus. The Open Biotechnology Journal, 9, 119–126. http://doi.org/10.2174/1874070701509010119; Shamtsyan, M., Dmitriyeva, T., Kolesnikov, B., Denisova, N. (2014). Novel milk-clotting enzyme produced by Coprinus lagopides basidial mushroom. LWT — Food Science and Technology, 58(2), 343–347. http://doi.org/10.1016/j.lwt.2013.10.009; Zikiou, A., Zidoune, M.N. (2019). Enzymatic extract from flowers of Algerian spontaneous Cynara cardunculus: Milk-clotting properties and use in the manufacture of a Camembert-type cheese. International Journal of Dairy Technology, 72(1), 89–99. https://doi.org/10.1111/1471–0307.12563; Brutti, C. B., Pardo, M. F., Caffini, N. O., Natalucci, C. L. (2012). Onopordum acanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT — Food Science and Technology, 45(2), 172–179. https://doi.org/10.1016/j.lwt.2011.09.001; Kobayashi, H., Kusakabe, I., Murakami, K. (1983). Purification and Characterization of Two Milk-clotting Enzymes from Irpex lacteus. Agricultural and Biological Chemistry, 47(3), 551–558. https://doi.org/10.1080/00021369.1983.10865677; Montgomery D. C. (2013). Design and analysis of experiments. 8th Ed. Wiley., 2013; Working together to produce more cheese from milk. Электронный ресурс: http://sdt-static.s3.amazonaws.com/media/uploads/2019/05/13/1CHR%20HANSEN190508%20SDT%20Presentation%20CHR%20Hansen.pdf Дата обращения 28.02.2022; Fermentation Chymosin: RENIFER Электронный ресурс: http://proquiga.es/en/feed-additives/rennet-coagulants/chymosin/gmx-niv39.htm Дата обращения 28.02.2022; Harboe, M., Hubert, L., Van den Brink, H. La chymosine produite par fermentation. Chapter in book: Présures et coagulants de substitution. Comment faire le bon choix? (Ed. by J.-C. Collin). Editions Quae. 2015; Kappeler, S. R., van der Brink, H. J. M., Rahbek-Nielsen, H., Farah, Z., Puhan, Z., Hansen, E.B. et al. (2006). Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochemical and Biophysical Research Communications, 342(2), 647–654. https://doi.org/10.1016/j.bbrc.2006.02.014; HA-LA BIOTEC. CHY-MAX® SUPREME — A PRODUÇÃO DE QUEIJO EM UM NOVO PATAMAR. Электронный ресурс: http://halabiotec.com.br/wp-content/uploads/2019/06/Ha-La_Biotec_147.pdf Дата обращения 28.02.2022; Harboe, M., Broe, M. L. Qvist, K. B. (2010). The Production, Action and Application of Rennet and Coagulants. Chapter in a book: Technology of cheesemaking. (ed. Law B. A., Tamime A. Y.), 2nd Ed. Chichester: Blackwell Publishing Ltd., 2010; Jacob, M., Jaros, D., Rohm, H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64(1), 14–33. https://doi.org/10.1111/j.1471–0307.2010.00633.x; Roller, S., Goodenough, P. W. (2012). Food enzymes. Chapter in book: Genetic Modification in the Food Industry. A Strategy for Food Quality Improvement (Ed. by S. Roller, S. Harlander). Springer. 2012; Preetha, S., Boopathy, R. (1997). Purification and characterization of a milk-clotting protease from Rhizomucor miehei. World Journal of Microbiology and Biotechnology, 13(5), 573–578. http://doi.org/10.1023/A:1018525711573; PHYSIOLOGY AND MAINTENANCE — Vol. II — Industrial Use of Enzymes — Matti Leisola, Jouni Jokela, Ossi Pastinen, Ossi Turunen, Hans E. Schoemaker. Электронный ресурс: http://www.eolss.net/SampleChapters/C03/E6–54–02–10.pdf Дата обращения 28.02.2022; Yegin, S., Dekker, P. (2013). Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Science and Technology, 93(6), 565–594. https://doi.org/10.1007/s13594–013–0137–2; Nestorovski, T., Velkoska-Markovska, L., Srbinovska, S., MiskoskaMilevska, E., Petanovska-Ilievska, B., Popovski, Z.T. (2019). Different Approaches in Analyzing Chymosin Purity. Journal of Agricultural, Food and Environmental Sciences, 73(3), 24–29; Andrén, A. (2011). Cheese: rennets and coagulants. Encyclopedia of dairy science. Pp. 574–578. http://dx.doi.org/10.1016/b978–0–12–374407–4.00069–8; Moschopoulou E. Microbial Milk Coagulants. Chapter 11 in book: Microbial Enzyme Technology in Food Applications (Ed. by R. C. Ray and C. M. Rosell). Boca Raton. CRC Press. 2017; Garg, S. K., Johri, B. N. (1994). Rennet: current trends and future research. Food Reviews International, 10(3), 313–355. https://doi.org/10.1080/87559129409541005; Smith, J. L., Billings, G. E., Yada, R. Y. (1991). Chemical modification of amino groups in mucor miehei aspartyl proteinase, porcine pepsin, and chymosin. I. Structure and function. Agricultural and Biological Chemistry, 55(8), 2009–2016. https://doi.org/10.1080/00021369.1991.10870915; Garcia, H. S., Lopez-Hernandez, A., Hill, C. G. (2017). Enzyme Technology — Dairy Industry Applications. Comprehensive Biotechnology (Ed. Moo-Young M.) 3rd Ed. Pergamon. 2017. https://doi.org/10.1016/B978–0–08–088504–9.00005–2; Trono, D. (2019). Recombinant Enzymes in the Food and Pharmaceutical Industries. Chapter in a book: Advances in Enzyme Technology. (Ed. by Singh R. S., Singhania R. R., Pandey A., Larroche C.). Elsevier B. V. 2019; Meito Microbial Rennet (MR) from Rhizomucor pusillus Lindt / Rhizomucor miehei Mucorpepsin (milk-clotting enzyme) EC3.4.23.23 Электронный ресурс: http://www.meito-sangyo.co.jp/kaseihin/rennet/mr.html Дата обращения 28.02.2022; Thunell, R. K., Duersch, J. W., Ernstrom, C. A. (1979). Thermal inactivation of residual milk clotting enzymes in whey. Journal of Dairy Science, 62(3), 373–377. https://doi.org/10.3168/jds.S0022–0302(79)83254–3; Higashi, T., Kobayashi Y., Iwasaki S. (1982). Microbial rennet having increased milk coagulating activity and method and method for production thereof. US Patent US4530906A. Электронный ресурс: https://patents.google.com/patent/US4530906A/en Дата обращения 28.02.2022; Мягконосов Д. С., Смыков И. Т., Абрамов Д. В., Делицкая И. Н., Овчинникова Е. Г. (2021). Влияние молокосвертывающих ферментов животного и микробного происхождения на качество и срок хранения мягких сыров. Пищевые системы, 4(4), 286–293. https://doi.org/10.21323/2618–9771–2021–4–4–286–293; Мягконосов Д. С., Мордвинова В. А., Абрамов Д. В., Овчинникова Е. Г., Муничева Т. Э. (2020). Технологические свойства молокосвертывающих ферментов разного происхождения. Часть I. Влияние вида МФП на процессы в сыродельной ванне. Сыроделие и маслоделие, 3, 16–19. https://doi.org/10.31515/2073–4018–2020–3–16–19; Мягконосов Д. С., Мордвинова В. А., Абрамов Д. В., Овчинникова Е. Г., Муничева Т. Э. (2020). Технологические свойства молокосвертывающих ферментов разного происхождения. Часть II. Влияние вида используемого МФП на процессы протеолиза при созревании сыров. Сыроделие и маслоделие, 5, 10–13. https://doi.org/10.31515/2073–4018–2020–5–10–13; Myagkonosov, D. S., Mordvinova, V. A., Delitskaya, I. N., Abramov, D. V., Ovchinnikova E. G. (2020). The influence of milk-clotting enzymes on the functional properties of pizza-cheeses. Food Systems, 3(3), 42–50. https://doi.org/10.21323/2618–9771–2020–3–3–42–50; https://www.fsjour.com/jour/article/view/148

  8. 8
    Academic Journal

    Πηγή: Bukovinian Medical Herald; Vol. 14 No. 1 (53) (2010); 22-24 ; Буковинский медицинский вестник; Том 14 № 1 (53) (2010); 22-24 ; Буковинський медичний вісник; Том 14 № 1 (53) (2010); 22-24 ; 2413-0737 ; 1684-7903

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://e-bmv.bsmu.edu.ua/article/view/243221

  9. 9
  10. 10
    Academic Journal

    Πηγή: Bukovinian Medical Herald; Vol. 14 No. 1 (53) (2010); 22-24
    Буковинский медицинский вестник; Том 14 № 1 (53) (2010); 22-24
    Буковинський медичний вісник; Том 14 № 1 (53) (2010); 22-24

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://e-bmv.bsmu.edu.ua/article/view/243221

  11. 11
  12. 12
  13. 13
  14. 14
    Conference
  15. 15
    Academic Journal

    Συγγραφείς: Hetsko, N. V., Krynytska, I. Y.

    Πηγή: Medical and Clinical Chemistry; No. 1 (2020); 83-90 ; Медицинская и клиническая химия; № 1 (2020); 83-90 ; Медична та клінічна хімія; № 1 (2020); 83-90 ; 2414-9934 ; 2410-681X ; 10.11603/mcch.2410-681X.2020.v.i1

    Περιγραφή αρχείου: application/pdf

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Харченко С. В. Зміни загальної протеолітичної активності у підшлунковій залозі на різних стадіях опікової хвороби / С. В. Харченко // Вісник проблем біології і медицини. – 2018. – Вип. 2 (144). – С. 245–247.; https://repository.pdmu.edu.ua/handle/123456789/16394