Showing 1 - 20 results of 73 for search '"протеогликаны"', query time: 0.65s Refine Results
  1. 1
    Academic Journal

    Source: Ophthalmology in Russia; Том 21, № 2 (2024); 270-275 ; Офтальмология; Том 21, № 2 (2024); 270-275 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-2

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2356/1212; Larsen CS, Johansen M, Harboe E. Sustained‑release prodrugs comprising inflammation inhibitors linked to polysaccharides Eur. Pat. Appl. EP 331471 A1 19890906.; Kubota T, Okabe H, Hisatomi T, Yamakiri K, Sakamoto T, Tawara A. Ultrastructure of the trabecular meshwork in secondary glaucoma eyes after intravitreal triamcinolone acetonide. J Glaucoma. 2006 Apr;15(2):117–119. doi:10.1097/00061198200604000‑00007.; Тульцева C.Н., Астахов Ю.С. Окклюзии вен сетчатки. СПб.: Изд «Н‑Л», 2017. 101 c.; Zarifa R, Shaikh S, Kester E. Peristence of triamcinolone crystals after intravitreal injection: benign crystalline hyaloidopathy. Indian J Ophthalmol. 2013 Apr;61(4):18–23. doi:10.4103/0301‑4738.112166.; Morla S. Glycosaminoglycans and Glycosaminoglycan Mimetics in Cancer and Inflammation. Int J Mol Sci. 2019 Apr 22;20(8):1963. doi:10.3390/ijms20081963.; Bass MD, Humphries MJ. Cytoplasmic interactions of syndecan‑4 orchestrate adhesion receptor and growth factor receptor signalling. Biochem J. 2002 Nov 15;368(Pt 1):1–15. doi:10.1042/BJ20021228.; Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP. P‑selectin glycoprotein ligand‑1 mediates rolling of human neutrophils on P‑selectin. J Cell Biol. 1995 Feb;128(4):661–671. doi:10.1083/jcb.128.4.661.; Webb LM, Ehrengruber MU, Clark‑Lewis I, Baggiolini M, Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc. Natl. Acad. Sci. USA. 1993;90:7158–7162. doi:10.1073/pnas.90.15.7158.; Götte M. Syndecans in inflammation. FASEB J. 2003 Apr;17(6):575–591. doi:10.1096/fj.02‑0739rev.; Oschatz C, Maas C, Lecher B, Jansen T, Björkqvist J, Tradler T, Sedlmeier R, Burfeind P, Cichon S, Hammerschmidt S, Müller‑Esterl W, Wuillemin WA, Nilsson G, Renné T. Mast cells increase vascular permeability by heparin‑initiated bradykinin formation in vivo. Immunity. 2011 Feb 25;34(2):258–268. doi:10.1016/j.immuni.2011.02.008.; Pretorius D, Richter RP, Anand N, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Published online 2022 Sep 7. doi:10.1016/j.mbplus.2022.100121.; Alexopoulou AN, Multhaupt HA, Couchman JR. Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol. 2007;39(3):505–528. doi:10.1016/j.biocel.2006.10.014.; Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017 Jun;18(6):361–374. doi:10.1038/nrm.2017.16.; Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX, Smith LP, Cheng SS, Overdier KH, Thompson KR, Geraci MW, Douglas IS, Pearse DB, Tuder RM. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012 Aug;18(8):1217–1223. doi:10.1038/nm.2843.; Гветадзе А.А., Королева И.А. Возрастная макулярная дегенерация. Современный взгляд на проблему (обзор литературы). Клиническая офтальмология. 2015;16(1):125–128.; Gallagher JT. Multiprotein signalling complexes: regional assembly on heparan sulphate. Biochem Soc Trans. 2006 Jun;34(Pt 3):438–441. doi:10.1042/BST0340438.; Buczek‑Thomas JA, Rich CB, Nugent MA. Hypoxia Induced Heparan Sulfate Primes the Extracellular Matrix for Endothelial Cell Recruitment by Facilitating VEGF‑Fibronectin Interactions. Int J Mol Sci. 2019 Oct 12;20(20):5065. doi:10.3390/ijms20205065.; Tkachenko E, Rhodes JM, Simons M. Syndecans: new kids on the signaling block. Circ. Res. 2005;96(5):488–500. doi:10.1161/01.RES.0000159708.71142.c8.; Шацких А.В., Тахчиди Х.П., Тахчиди Е.Х., Горбунова К.С. Перспективность использования естественных регуляторов для профилактики избыточного рубцевания при антиглаукомных операциях. Практическая медицина. 2012;1(40):150–153.; Анисимов С.И. Основные механизмы протекции тканей глаза с применением сульфатированных гликозаминогликанов. Экспериментальные исследования. Глаукома. 2007;2:23–27.; Копаенко А.И., Расин О.Г., Расина О.О. Эффективность применения баларпана у пациентов после трансэпителиальной фоторефракционной кератэктомии, Таврический медико‑биологический вестник, 2016;19(1):123–124.; Канюков В.Н., Стадников А.А., Трубина О.М., Рахматуллин Р.Р., Яхина О.М. Гистоэквивалент биопластического материала в офтальмологии. Оренбург, 2014. 191 с.; Серов В.В., Шехтер А.Б. Соединительная ткань. М., 1981. 321 с. Serov VV, Shehter AB. Connective tissue. Moscow, 1981. 321 p. (In Russ.).; Терещенко А.В., Белый Ю.А., Тахчиди Е.Х., Новиков С.В., Майчук Н.В., Усанова Г.Ю. Экспериментальное обоснование применения раствора сульфатированных гликозаминогликанов (сГАГ) в лечении токсической эрозии роговицы у кроликов. Практическая медицина. 2016;1(2):108–112.; Regatieri CV, Dreyfuss JL, Melo GB, Lavinsky D, Hossaka SK, Rodrigues EB, Farah ME, Maia M, Nader HB. Quantitative evaluation of experimental choroidal neovascularization by confocal scanning laser ophthalmoscopy: fluorescein angiogram parallels heparan sulfate proteoglycan expression. Braz J Med Biol Res. 2010 Jul;43(7):627–633. doi:10.1590/s0100‑879x2010007500043.; Новиков С.В., Кислицына Н.М., Веселкова М.П. Композиция для ингибирования и комплексного лечения интраоперационного макулярного отека. Патент RU 2587779. 20.06.2016.; Веселкова М.П., Новиков С.В., Кислицына Н.М., Петерсен Е.В., Трусова И.А., Дух А.С. Экспериментальное исследование влияния сульфатированных гликозаминогликанов на культуру клеток пигментного эпителия сетчатки человека при воздействии ультразвука (предварительные результаты). Современные технологии в офтальмологии 2015;3; Тахчиди Е.Х., Горбунова К.С. Применение сульфатированных гликозаминогликанов в офтальмологии. Вестник Оренбургского государственного университета. 2012;12(148):201–204.; https://www.ophthalmojournal.com/opht/article/view/2356

  2. 2
    Academic Journal

    Source: Odesa National University Herald. Biology; Vol. 15 No. 17 (2010); 42-48
    Вестник Одесского национального университета. Биология; Том 15 № 17 (2010); 42-48
    Вісник Одеського національного університету. Біологія; Том 15 № 17 (2010); 42-48

    File Description: application/pdf

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 66, № 4 (2022); 404-413 ; Доклады Национальной академии наук Беларуси; Том 66, № 4 (2022); 404-413 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2022-66-4

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1079/1079; Борзенкова, Н. В. Лактоферрин: физико-химические свойства, биологические функции, системы доставки, лекарственные препараты и биологически активные добавки (обзор) / Н. В. Борзенкова, Н. Г. Балабушевич, Н. И. Ларионова // Биофармацевтический журнал. – 2010. – Т. 2, № 3. – С. 3–19.; Mann, D. M. Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin / D. M. Mann, E. Romm, M. Migliorini // J. Biol. Chem. – 1994. – Vol. 269, N 38. – P. 23661–23667. https://doi.org/10.1016/s0021-9258(17)31566-1; Goats producing biosimilar human lactoferrin / D. M. Bogdanovich [et al.] // IOP Conf. Series: Earth and Environmental Science. – 2021. – Vol. 848, N 1. – Art. 012080. https://doi.org/10.1088/1755-1315/848/1/012080; Получение рекомбинантного лактоферрина человека из молока коз-продуцентов и его физиологические эффекты / В. С. Лукашевич [и др.] // Докл. Нац. акад. наук Беларуси. – 2016. – Т. 60, № 1. – С. 72–81.; Антимикробные и антиоксидантные свойства апо-формы рекомбинантного человеческого лактоферрина, выделенного из молока коз-продуцентов / Р. Н. Бирюков [и др.] // Микробные биотехнологии: фундаментальные и прикладные аспекты. – 2017. – Т. 9. – С. 305–317.; Некоторые металлсвязывающие свойства рекомбинантного лактоферрина человека из молока трансгенных коз / Д. А. Семенов [и др.] // Докл. Нац. акад. наук Беларуси. – 2022. – Т. 66, № 1. – С. 43–54. https://doi.org/10.29235/15618323-2022-66-1-43-54; Семенов, Д. А. Новые иммуноаналитические системы на основе рекомбинантного лактоферрина человека / Д. А. Семенов, И. И. Вашкевич, О. В. Свиридов // Докл. Нац. акад. наук Беларуси. – 2021. – Т. 65, № 3. – С. 290–302. https://doi.org/10.29235/1561-8323-2021-65-3-290-302; N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA / P. H. C. van Berkel [et al.] // Biochem. J. – 1997. – Vol. 328, N 1. – P. 145–151. https://doi.org/10.1042/bj3280145; Hermanson, G. T. Bioconjugate techniques / G. T. Hermanson. – 3rd ed. – Academic Press, 2013. – P. 217–218. https://doi.org/10.1016/C2009-0-64240-9; Direct detection of the binding of avidin and lactoferrin fluorescent probes to heparinized surfaces / W. C. Kett [et al.] // Analytical Biochemistry. – 2005. – Vol. 339, N 2. – P. 206–215. https://doi.org/10.1016/j.ab.2005.01.054; Pejler, G. Lactoferrin regulates the activity of heparin proteoglycan-bound mast cell chymase: characterization of the binding of heparin to lactoferrin / G. Pejler // Biochem. J. – 1996. – Vol. 320, N 3. – P. 897–903. https://doi.org/10.1042/bj3200897; Avidin is a heparin-binding protein. Affinity, specificity and structural analysis / W. C. Kett [et al.] // Biochimica et Biophysica Acta. – 2003. – Vol. 1620, N 1–3. – P. 225–234. https://doi.org/10.1016/s0304-4165(02)00539-1; Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19 / C. Mirabelli [et al.] // PNAS. – 2021. – Vol. 118, N 36. – Art. e2105815118. https://doi.org/10.1073/pnas.2105815118; Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans / J. Lang [et al.] // PLoS ONE. – 2011. – Vol. 6, N 8. – Art. e23710. https://doi.org/10.1371/journal.pone.0023710; https://doklady.belnauka.by/jour/article/view/1079

  5. 5
    Academic Journal

    Source: Gene. 2017. Vol. 628. P. 224-229

    Linked Full Text
  6. 6
    Academic Journal

    File Description: application/pdf

    Relation: Influence of inhibitors of transcription factor kappa B on depolimerization of biopolymers in periodontal connective tissue under systemic intlammatory response in rats / A. M. Yelinska, S. V. Denisenko, L. I. Liashenko, V. O. Kostenko // Світ медицини та біології. – 2020. – №1 (71). – С. 180–183.; https://repository.pdmu.edu.ua/handle/123456789/15126

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    File Description: application/pdf

  9. 9
    Academic Journal

    File Description: application/pdf

    Relation: Єлінська А. М. Вплив водорозчинної форми кверцетину на дезінтеграцію органічного матриксу пародонта щурів за умов системного введення ліпополісахариду Salmonella Typhi / А. М. Єлінська, В. О. Костенко // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. – 2019. – Т. 19, вип. 1 (65). – С. 56–60.; https://repository.pdmu.edu.ua/handle/123456789/12499

  10. 10
  11. 11
    Academic Journal

    File Description: application/pdf

    Relation: Єлінська А. М. Механізми дезорганізації сполучної тканини пародонта щурів за умов системного запалення / А. М. Єлінська, В. О. Костенко // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. – 2018. – Т. 18, вип. 1 (61). – С. 175–177.; УДК 616.314.17+611.018.2:599.323.4; https://repository.pdmu.edu.ua/handle/123456789/11328

  12. 12
    Academic Journal

    File Description: application/pdf

    Relation: УДК 616.314.17+611.018.2:599.323.4; https://repository.pdmu.edu.ua/handle/123456789/12279

  13. 13
    Academic Journal

    Source: National Journal glaucoma; Том 14, № 4 (2015); 88-100 ; Национальный журнал Глаукома; Том 14, № 4 (2015); 88-100 ; 2311-6862 ; 2078-4104

    File Description: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/89/90; Orssengo G.J., Pye D.C. Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bulletin of Mathematical Biology 1999; 61(3):551-572.; Swarbrick H.A. Orthokeratology review and update. Clin Exper Optometry: J of the Australian Optometrical Association 2006; 89(3):124-143. doi:10.1111/j.1444-0938.2006.00044.x.; Uchio E., Ohno S., Kudoh J., Aoki K., Kisielewicz L.T. Simulation model of an eyeball based on finite element analysis on a supercomputer. Brit J Ophthalmol 1999; 83(10):1106-1111.; Alastrue V., Calvo B., Pena E., Doblare M. Biomechanical modeling of refractive corneal surgery. J Biomechanical Engineering 2006; 128(1):150-160.; Rada J.A., Shelton S., Norton T.T. The sclera and myopia. Exper Eye Res 2006; 82(2):185-200. doi:10.1016/j.exer.2005.08.009.; Elsheikh A., Wang D. Numerical modelling of corneal biomechanical behaviour. Computer Methods in Biomechanics and Biomedical Engineering 2007; 10(2):85-95. doi:10.1080/10255840600976013.; Eilaghi A., Flanagan J.G., Simmons C.A., Ethier C.R. Effects of scleral stiffness properties on optic nerve head biomechanics. Annals of Biomedical Engineering 2010; 38(4):1586-1592. doi:10.1007/s10439-009-9879-7.; Sigal I.A., Flanagan J.G., Ethier C.R. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 2005; 46(11):4189-4199. doi:10.1167/iovs.05-0541.; Sigal I.A., Flanagan J.G., Tertinegg I., Ethier C.R. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 2004; 45(12):4378-4387. doi:10.1167/iovs.04-0133.; Boyce B.L., Grazier J.M., Jones R.E., Nguyen T.D. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 2008; 29(28):3896-3904. doi:10.1016/j.biomaterials.2008.06.011.; Elsheikh A., Alhasso D., Rama P. Assessment of the epithelium’s contribution to corneal biomechanics. Exper Eye Res 2008; 86(2):445-451. doi:10.1016/j.exer.2007.12.002.; Komai Y., Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 1991; 32(8):2244-2258.; Meek K.M., Fullwood N.J. Corneal and scleral collagens--a microscopist’s perspective. Micron 2001; 32(3):261-272.; Muller L.J., Pels E., Schurmans L.R., Vrensen G.F. A new threedimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exper Eye Res 2004; 78(3):493-501.; Parry D.A., Craig A.S. Electron microscope evidence for an 80 A unit in collagen fibrils. Nature 1979; 282(5735):213-215.; Boote C., Dennis S., Huang Y., Quantock A.J., Meek K.M. Lamellar orientation in human cornea in relation to mechanical properties. J of Structural Biology 2005; 149(1):1-6. doi:10.1016/j.jsb.2004.08.009.; Fullwood N.J., Martin F.L., Bentley A.J., Lee J.P., Lee S.J. Imaging sclera with hard X-ray microscopy. Micron 2011; 42(5):506-511. doi:10.1016/j.micron.2011.01.012.; Boote C., Dennis S., Newton R.H., Puri H., Meek K.M. Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci 2003; 44(7):2941-2948.; Daxer A., Fratzl P. Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 1997; 38(1):121-129.; Aghamohammadzadeh H., Newton R.H., Meek K.M. X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 2004; 12(2):249-256. doi:10.1016/j.str.2004.01.002.; Boote C., Hayes S., Abahussin M., Meek K.M. Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. Invest Ophthalmol Vis Sci 2006; 47(3):901-908. doi:10.1167/iovs.05-0893.; Han M., Giese G., Bille J. Second harmonic generation imaging of collagen fibrils in cornea and sclera. Optics express 2005; 13(15):5791-5797.; Quigley H.A., Dorman-Pease M.E., Brown A.E. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res 1991; 10(9):877-888.; Meek K.M., Boote C. The organization of collagen in the corneal stroma. Exper Eye Res 2004; 78(3):503-512.; Downs J.C., Ensor M.E., Bellezza A.J., Thompson H.W., Hart R.T., Burgoyne C.F. Posterior scleral thickness in perfusion-fixed normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 2001; 42(13):3202-3208.; Eilaghi A., Flanagan J.G., Tertinegg I., Simmons C.A., Wayne Brodland G., Ross Ethier C. Biaxial mechanical testing of human sclera. J Biomechanics 2010; 43(9):1696-1701. doi:10.1016/j.jbiomech.2010.02.031.; Elsheikh A., Geraghty B., Alhasso D., Knappett J., Campanelli M., Rama P. Regional variation in the biomechanical properties of the human sclera. Exper Eye Res 2010; 90(5):624-633. doi:10.1016/j.exer.2010.02.010.; Girard M.J., Downs J.C., Bottlang M., Burgoyne C.F., Suh J.K. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization. J of Biomechanical Engineering 2009; 131(5):051012. doi:10.1115/1.3113683.; Olsen T.W., Aaberg S.Y., Geroski D.H., Edelhauser H.F. Human sclera: thickness and surface area. Am J Ophthalmol 1998; 125(2):237-241.; Norman R.E., Flanagan J.G., Rausch S.M., Sigal I.A. et al. Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Exper Eye Res 2010; 90(2):277-284. doi:10.1016/j.exer.2009.11.001.; Grant C.A., Thomson N.H., Savage M.D., Woon H.W., Greig D. Surface characterisation and biomechanical analysis of the sclera by atomic force microscopy. J of the Mechanical Behavior of Biomedical Materials 2011; 4(4):535-540. doi:10.1016/j. jmbbm.2010.12.011.; Nyquist G.W. Rheology of the cornea: experimental techniques and results. Exper Eye Res 1968; 7(2):183-188.; Elsheikh A., Ross S., Alhasso D., Rama P. Numerical study of the effect of corneal layered structure on ocular biomechanics. Curr Eye Res 2009; 34(1):26-35. doi:10.1080/02713680802535263.; Battaglioli J.L., Kamm R.D. Measurements of the compressive properties of scleral tissue. Invest Ophthalmol Vis Sci 1984; 25(1):59-65.; Greene P.R., McMahon T.A. Scleral creep vs. temperature and pressure in vitro. Exper Eye Res 1979; 29(5):527-537.; Phillips J.R., McBrien N.A. Pressure-induced changes in axial eye length of chick and tree shrew: significance of myofibroblasts in the sclera. Invest Ophthalmol Vis Sci 2004; 45(3):758-763.; Bisplinghoff J.A., McNally C., Manoogian S.J., Duma S.M. Dynamic material properties of the human sclera. J Biomechanics 2009; 42(10):1493-1497. doi:10.1016/j.jbiomech.2009.03.043.; Jue B., Maurice D.M. The mechanical properties of the rabbit and human cornea. Journal of biomechanics 1986; 19(10):847-853.; Kling S., Remon L., Perez-Escudero A., Merayo-Lloves J., Marcos S. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci 2010; 51(8):3961-3968. doi:10.1167/iovs.09-4536.; Pierscionek B.K., Asejczyk-Widlicka M., Schachar R.A. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Brit J Ophthalmol 2007; 91(6):801-803. doi:10.1136/bjo.2006.110221.; Elsheikh A., Anderson K. Comparative study of corneal strip extensometry and inflation tests. Journal of the Royal Society, Interface / the Royal Society 2005; 2(3):177-185. doi:10.1098/rsif.2005.0034.; Woo S.L., Kobayashi A.S., Schlegel W.A., Lawrence C. Nonlinear material properties of intact cornea and sclera. Exper Eye Res 1972; 14(1):29-39.; Greene P.R. Stress-strain behavior for curved exponential strips. Bulletin of Mathematical Biology 1985; 47(6):757-764.; Lari D.R., Schultz D.S., Wang A.S., Lee O.T., Stewart J.M. Scleral mechanics: comparing whole globe inflation and uniaxial testing. Exper Eye Res 2012; 94(1):128-135. doi:10.1016/j.exer.2011.11.017.; Nash I.S., Greene P.R., Foster C.S. Comparison of mechanical properties of keratoconus and normal corneas. Exper Eye Res 1982; 35(5):413-424.; Jayasuriya A.C., Ghosh S., Scheinbeim J.I., Lubkin V., Bennett G., Kramer P. A study of piezoelectric and mechanical anisotropies of the human cornea. Biosensors & Bioelectronics 2003; 18(4): 381-387.; Cheng S., Clarke E.C., Bilston L.E. The effects of preconditioning strain on measured tissue properties. J Biomechanics 2009; 42(9):1360-1362. doi:10.1016/j.jbiomech.2009.03.023.; Clark J.I. Order and disorder in the transparent media of the eye. Exper Eye Res 2004; 78(3):427-432.; Wollensak G., Spoerl E., Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 2003; 29(9):1780-1785.; Buzard K.A. Introduction to biomechanics of the cornea. Refractive & Corneal Surgery 1992; 8(2):127-138.; Palko J.R., Pan X., Liu J. Dynamic testing of regional viscoelastic behavior of canine sclera. Exper Eye Res 2011; 93(6):825-832. doi:10.1016/j.exer.2011.09.018.; Downs J.C., Suh J.K., Thomas K.A., Bellezza A.J., Hart R.T., Burgoyne C.F. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 2005; 46(2):540-546. doi:10.1167/iovs.04-0114.; Girard M., Suh J.K., Hart R.T., Burgoyne C.F., Downs J.C. Effects of storage time on the mechanical properties of rabbit peripapillary sclera after enucleation. Curr Eye Res 2007; 32(5):465-470. doi:10.1080/02713680701273792.; Anderson K., El-Sheikh A., Newson T. Application of structural analysis to the mechanical behaviour of the cornea. Journal of the Royal Society, Interface / the Royal Society 2004; 1(1):3-15. doi:10.1098/rsif.2004.0002.; Hjortdal J.O. Regional elastic performance of the human cornea. J Biomechanics 1996; 29(7):931-942.; Boote C., Hayes S., Young R.D., Kamma-Lorger C.S. et al. Ultra-structural changes in the retinopathy, globe enlarged (rge) chick cornea. Journal of Structural Biology 2009; 166(2):195-204. doi:10.1016/j.jsb.2009.01.009.; Elsheikh A., Wang D., Brown M., Rama P., Campanelli M., Pye D. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res 2007; 32(1):11-19. doi:10.1080/02713680601077145.; Myers K.M., Coudrillier B., Boyce B.L., Nguyen T.D. The inflation response of the posterior bovine sclera. Acta biomaterialia 2010; 6(11):4327-4335. doi:10.1016/j.actbio.2010.06.007.; Girard M.J., Suh J.K., Bottlang M., Burgoyne C.F., Downs J.C. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 2009; 50(11):5226-5237. doi:10.1167/iovs.08-3363.; Smolek M. Elasticity of the bovine sclera measured with real-time holographic interferometry. Am J Optometry and Physiological Optics 1988; 65(8):653-660.; Shin T.J., Vito R.P., Johnson L.W., McCarey B.E. The distribution of strain in the human cornea. J Biomechanics 1997; 30(5): 497-503.; Myers K.M., Cone F.E., Quigley H.A., Gelman S., Pease M.E., Nguyen T.D. The in vitro inflation response of mouse sclera. Exper Eye Res 2010; 91(6):866-875. doi:10.1016/j.exer.2010.09.009.; Girard M.J., Suh J.K., Bottlang M., Burgoyne C.F., Downs J.C. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci 2011; 52(8):5656-5669. doi:10.1167/iovs.10-6927.; Sorsby A., Wilcox K., Ham D. The calcium content of the sclerotic and its variation with age. Brit J Ophthalmol 1935; 19(6): 327-337.; Brubaker R.F., Ezekiel S., Chin L., Young L., Johnson S.A., Beeler G.W. The stress-strain behavior of the corneoscleral envelope of the eye. I. Development of a system for making in vivo measurements using optical interferometry. Exper Eye Res 1975; 21(1):37-46.; Brubaker R.F., Johnson S.A., Beeler G.W. The stress-strain behavior of the corneoscleral envelope of the eye. II. In vivo measurements in rhesus monkey eyes. Exper Eye Res 1977; 24(5):425-435.; Sjontoft E., Edmund C. In vivo determination of Young’s modulus for the human cornea. Bulletin of Mathematical Biology 1987; 49(2):217-232.; Luce D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005; 31(1):156-162. doi:10.1016/j.jcrs.2004.10.044.; Dupps W.J., Jr. Hysteresis: new mechanospeak for the ophthalmologist. J Cataract Refract Surg 2007; 33(9):1499-1501. doi:10.1016/j.jcrs.2007.07.008.; Kling S., Bekesi N., Dorronsoro C., Pascual D., Marcos S. Corneal viscoelastic properties from finite-element analysis of in vivo airpuff deformation. PloS one 2014; 9(8):e104904. doi:10.1371/journal.pone.0104904.; Nguyen T.M., Aubry J.F., Touboul D., Fink M. et al. Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study. Invest Ophthalmol Vis Sci 2012; 53(9):5948-5954. doi:10.1167/iovs.11-9142.; He X., Liu J. A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties. Invest Ophthalmol Vis Sci 2009; 50(11):5148-5154. doi:10.1167/iovs.09-3439.; Hollman K.W., Emelianov S.Y., Neiss J.H., Jotyan G. et al. Strain imaging of corneal tissue with an ultrasound elasticity microscope. Cornea 2002; 21(1):68-73.; Hollman K.W., Shtein R.M., Tripathy S., Kim K. Using an ultrasound elasticity microscope to map three-dimensional strain in a porcine cornea. Ultrasound in Medicine & Biology 2013; 39(8):1451-1459. doi:10.1016/j.ultrasmedbio.2013.02.465.; Manapuram R.K., Aglyamov S.R., Monediado F.M., Mashiatul-la M. et al. In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. Journal of Biomedical Optics 2012; 17(10):100501. doi:10.1117/1.JB0.17.10.100501.; Nahas A., Bauer M., Roux S., Boccara A.C. 3D static elastography at the micrometer scale using Full Field OCT. Biomedical Optics Express 2013; 4(10):2138-2149. doi:10.1364/B0E.4.002138.; Wang S., Larin K.V. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Optics letters 2014; 39(1):41-44. doi:10.1364/OL.39.000041.; Albon J., Purslow P.P., Karwatowski W.S., Easty D.L. Age related compliance of the lamina cribrosa in human eyes. Brit J Ophthalmol 2000; 84(3):318-323.; Krag S., Olsen T., Andreassen T.T. Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci 1997; 38(2):357-363.; Burgoyne C.F., Downs J.C. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma 2008; 17(4):318-328. doi:10.1097/IJG.0b013e31815a343b.; Elsheikh A., Wang D., Rama P., Campanelli M., Garway-Heath D. Experimental assessment of human corneal hysteresis. Curr Eye Res 2008; 33(3):205-213. doi:10.1080/02713680701882519.; Wollensak G., Iomdina E. Crosslinking of scleral collagen in the rabbit using glyceraldehyde. J Cataract Refract Surg 2008; 34(4):651-656. doi:10.1016/j.jcrs.2007.12.030.; Avetisov E.S., Savitskaya N.F., Vinetskaya M.I., Iomdina E.N. A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups. Metabolic, Pediatric, and Systemic Ophthalmology 1983; 7(4):183-188.; Friberg T.R., Lace J.W. A comparison of the elastic properties of human choroid and sclera. Exper Eye Res 1988; 47(3):429-436.; Coudrillier B., Tian J., Alexander S., Myers K.M., Quigley H.A., Nguyen T.D. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 2012; 53(4):1714-1728. doi:10.1167/iovs.11-8009.; Fazio M.A., Grytz R., Morris J.S., Bruno L. et al. Age-related changes in human peripapillary scleral strain. Biomechanics and Modeling in Mechanobiology 2014; 13(3):551-563. doi:10.1007/s10237-013-0517-9.; Geraghty B., Jones S.W., Rama P., Akhtar R., Elsheikh A. Age-related variations in the biomechanical properties of human sclera. Journal of the Mechanical Behavior of Biomedical Materials 2012; 16:181-191. doi:10.1016/j.jmbbm.2012.10.011.; https://www.glaucomajournal.ru/jour/article/view/89

  14. 14
    Academic Journal

    Source: National Journal glaucoma; Том 14, № 3 (2015); 80-86 ; Национальный журнал Глаукома; Том 14, № 3 (2015); 80-86 ; 2311-6862 ; 2078-4104

    File Description: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/76/77; Eysteinsson T., Jonasson F., Sasaki H., Arnarsson A. et al. Central corneal thickness, radius of the corneal curvature and intraocular pressure in normal subjects using non-contact techniques: Reykjavik Eye Study. Acta ophthalmologica Scandinavica 2002; 80(1): 11-15.; Liu J., Roberts C.J. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 2005; 31(1): 146-155. doi:10.1016/j.jcrs.2004.09.031.; Liu J.H., Kripke D.F., Twa M.D., Hoffman R.E. et al. Twentyfour-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci 1999; 40(12): 2912-2917.; Kaufmann C., Bachmann L.M., Robert Y.C., Thiel M.A. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol 2006; 124(8): 1104-1108. doi:10.1001/archopht.124.8.1104.; Komai Y., Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 1991; 32(8): 2244-2258.; Shimmyo M., Orloff P.N. Corneal thickness and axial length. Am J Ophthalmol 2005; 139(3): 553-554. doi:10.1016/j.ajo.2004.08.061.; Kampmeier J., Radt B., Birngruber R., Brinkmann R. Thermal and biomechanical parameters of porcine cornea. Cornea 2000; 19(3): 355-363.; Pinsky P.M., van der Heide D., Chernyak D. Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 2005; 31(1): 136-145. doi:10.1016/j.jcrs.2004.10.048.; Olsen T. On the calculation of power from curvature of the cornea. Brit J Ophthalmol 1986; 70(2): 152-154.; Boote C., Dennis S., Huang Y., Quantock A.J., Meek K.M. Lamellar orientation in human cornea in relation to mechanical properties. J Structural Biol 2005; 149(1): 1-6. doi:10.1016/j.jsb.2004.08.009.; Olsen T.W., Sanderson S., Feng X., Hubbard W.C. Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci 2002; 43(8): 2529-2532.; Haider K.M., Mickler C., Oliver D., Moya F.J., Cruz O.A., Davitt B.V. Age and racial variation in central corneal thickness of preschool and school-aged children. J Pediatric Ophthalmology and Strabismus 2008; 45(4): 227-233.; Aghaian E., Choe J.E., Lin S., Stamper R.L. Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology 2004; 111(12): 2211-2219. doi:10.1016/j.ophtha.2004.06.013.; Chen M.J., Liu Y.T., Tsai C.C., Chen Y.C., Chou C.K., Lee S.M. Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. J Chinese Medical Association: JCMA 2009; 72(3): 133-137. doi:10.1016/S1726-4901(09)70038-3.; Harper C.L., Boulton M.E., Bennett D., Marcyniuk B. et al. Diurnal variations in human corneal thickness. Br J Ophthalmol 1996; 80(12): 1068-1072.; Dubbelman M., Weeber H.A., van der Heijde R.G., VolkerDieben H.J. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scandinavica 2002; 80(4): 379-383.; Olsen T.W., Aaberg S.Y., Geroski D.H., Edelhauser H.F. Human sclera: thickness and surface area. Am J Ophthalmol 1998; 125(2): 237-241.; Doughty M.J., Jonuscheit S. An assessment of regional differences in corneal thickness in normal human eyes, using the Orbscan II or ultrasound pachymetry. Optometry 2007; 78(4): 181-190. doi:10.1016/j.optm.2006.08.018.; Watson P.G., Young R.D. Scleral structure, organisation and disease. A review. Exper Eye Res 2004; 78(3): 609-623.; Brown C.T., Vural M., Johnson M., Trinkaus-Randall V. Agerelated changes of scleral hydration and sulfated glycosaminoglycans. Mechanisms of Ageing and Development 1994; 77(2): 97-107.; Vannas S., Teir H. Observations on structures and age changes in the human sclera. Acta ophthalmologica 1960; 38: 268-279.; Rada J.A., Achen V.R., Penugonda S., Schmidt R.W., Mount B.A. Proteoglycan composition in the human sclera during growth and aging. Invest Ophthalmol Vis Sci 2000; 41(7): 1639-1648.; Kanai A., Kaufman H.E. Electron microscopic studies of corneal stroma: aging changes of collagen fibers. Annals of Ophthalmology 1973; 5(3): 285-287 passim.; Malik N.S., Moss S.J., Ahmed N., Furth A.J., Wall R.S., Meek K.M. Ageing of the human corneal stroma: structural and biochemical changes. Biochimica et biophysica Acta 1992; 1138(3): 222-228.; Scott J.E., Orford C.R., Hughes E.W. Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochemical J 1981; 195(3): 573-581.; Chakravarti S., Zhang G., Chervoneva I., Roberts L., Birk D.E. Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea. Developmental dynamics: an official publication of the American Association of Anatomists 2006; 235(9): 2493-2506. doi:10.1002/dvdy.20868.; Koga T., Inatani M., Hirata A., Inomata Y. et al. Expression of a chondroitin sulfate proteoglycan, versican (PG-M), during development of rat cornea. Curr Eye Res 2005; 30(6): 455-463. doi:10.1080/02713680590959376.; Keeley F.W., Morin J.D., Vesely S. Characterization of collagen from normal human sclera. Exper Eye Res 1984; 39(5): 533-542.; Lee P.P., Walt J.W., Rosenblatt L.C., Siegartel L.R., Stern L.S., Glaucoma Care Study G. Association between intraocular pressure variation and glaucoma progression: data from a United States chart review. Am J Ophthalmol 2007; 144(6): 901-907. doi:10.1016/j.ajo.2007.07.040.; Lee R.E., Davison P.F. The collagens of the developing bovine cornea. Exper Eye Res 1984; 39(5): 639-652.; Ben-Zvi A., Rodrigues M.M., Krachmer J.H., Fujikawa L.S. Immunohistochemical characterization of extracellular matrix in the developing human cornea. Curr Eye Res 1986; 5(2): 105-117.; Drubaix I., Legeais J.M., Malek-Chehire N., Savoldelli M. et al. Collagen synthesized in fluorocarbon polymer implant in the rabbit cornea. Exper Eye Res 1996; 62(4): 367-376. doi:10.1006/exer.1996.0042.; Rucklidge G.J., Milne G., McGaw B.A., Milne E., Robins S.P. Turnover rates of different collagen types measured by isotope ratio mass spectrometry. Biochimica et Biophysica Acta 1992; 1156(1): 57-61.; Ihanamaki T., Salminen H., Saamanen A.M., Pelliniemi L.J. et al. Age-dependent changes in the expression of matrix components in the mouse eye. Exper Eye Res 2001; 72(4): 423-431. doi:10.1006/exer.2000.0972.; Sorsby A., Wilcox K., Ham D. The calcium content of the sclerotic and its variation with age. Brit J Ophthalmol 1935; 19(6): 327-337.; Manschot W.A. Senile scleral plaques and senile scleromalacia. Brit J Ophthalmol 1978; 62(6): 376-380.; Hogan M.J., Alvarado J. Ultrastructure of the deep corneolimbal region. Documenta Ophthalmologica Advances in Ophthalmology 1969; 26: 9-30.; Hirano K., Nakamura M., Kobayashi M., Kobayashi K., Hoshino T., Awaya S. Long-spacing collagen in the human corneal stroma. Japan J Ophthalmol 1993; 37(2): 148-155.; Yan D., McPheeters S., Johnson G., Utzinger U., Vande Geest J.P. Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci 2011; 52(2): 821-829. doi:10.1167/iovs.09-4651.; Girard M.J., Suh J.K., Bottlang M., Burgoyne C.F., Downs J.C. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 2009; 50(11): 5226-5237. doi:10.1167/iovs.08-3363.; Sheppard J., Hayes S., Boote C., Votruba M., Meek K.M. Changes in corneal collagen architecture during mouse postnatal development. Invest Ophthalmol Vis Sci 2010; 51(6): 2936-2942. doi:10.1167/iovs.09-4612.; Boote C., Hayes S., Young R.D., Kamma-Lorger C.S. et al. Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. J Structural Biol 2009; 166(2): 195-204. doi:10.1016/j.jsb.2009.01.009.; McBrien N.A., Cornell L.M., Gentle A. Structural and ultra-structural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 2001; 42(10): 2179-2187.; McBrien N.A., Gentle A. Role of the sclera in the development and pathological complications of myopia. Progress in Retinal and Eye Research 2003; 22(3): 307-338.; Daxer A., Misof K., Grabner B., Ettl A., Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci 1998; 39(3): 644-648.; Bailey A.J. Structure, function and ageing of the collagens of the eye. Eye 1987; 1(Pt 2): 175-183. doi:10.1038/eye.1987.34.; Tanaka S., Avigad G., Brodsky B., Eikenberry E.F. Glyca-tion induces expansion of the molecular packing of collagen. J Molecular Biol 1988; 203(2): 495-505.; https://www.glaucomajournal.ru/jour/article/view/76

  15. 15
  16. 16
    Academic Journal

    Contributors: Российский фонд фундаментальных исследований, д.б.н. В.И. Кашуба, к.б.н. Л.А. Мостович

    Source: Advances in Molecular Oncology; Том 3, № 1 (2016); 53-60 ; Успехи молекулярной онкологии; Том 3, № 1 (2016); 53-60 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X.2016.3.1

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/55/56; Sarrazin S., Lamanna W.C., Esko J.D. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011;3(7):pii:a004952.; Theocharis A.D., Skandalis S.S., Tzanakakis G.N., Karamanos N.K. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 2010;277:3904–23.; Dietrich C.P., Nader H.B., Straus A.H. Structural differences of heparan sulfates according to the tissue and species of origin. Biochem Biophys Res Commun 1983;111(3):865–71.; Gharbaran R. Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Crit Rev Oncol Hematol 2015;94(1):1–17.; Liu W., Litwack E.D., Stanley M.J. et al. Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypican have distinct functions. J Biol Chem 1998;273:22825–32.; Beauvais D.M., Burbach B.J., Rapraeger A.C. The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol 2004;167:171–81.; Shi X., Liang W., Yang W., et al. Decorin is responsible for progression of non-smallcell lung cancer by promoting cell proliferation and metastasis. Tumour Biol 2015;36(5):3345–54.; Iozzo R.V., Sanderson R.D. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 2011;15(5):1013–31.; Gotte M., Kersting C., Ruggiero M. et al. Predictive value of syndecan-1 expression for the response to neoadjuvant chemotherapy of primary breast cancer. Anticancer Res 2006;26:621–7.; Juuti A., Nordling S., Lundin J. et al. Syndecan-1 expression – a novel prognostic marker in pancreatic cancer. Oncology 2005;68(2–3):97–106.; Wiksten J.P., Lundin J., Nordling S. et al. Epithelial and stromal syndecan-1 expression as predictor of outcome in patients with gastric cancer. Int J Cancer 2001;95:1–6.; Hasengaowa, Kodama J., Kusumoto T. et al. Prognostic significance of syndecan-1 expression in human endometrial cancer. Ann Oncol 2005;16(7):1109–15.; Kusumoto T., Kodama J., Seki N. et al. Clinical significance of syndecan-1 and versican expression in human epithelial ovarian cancer. Oncol Rep 2010;23:917–25.; Ibrahim S.A., Hassan H., Vilardo L. et al. Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PloS One 2013;8(12):e85737.; Kim S.Y., Choi E.J., Yun J.A. et al. Syndecan-1 Expression Is Associated with Tumor Size and EGFR Expression in Colorectal Carcinoma: a Clinicopathological Study of 230 Cases. Int J Med Sci 2015;12(2):92–9.; Shimada K., Anai S., Fujii T. et al. Syndecan-1 (CD138) contributes to prostate cancer progression by stabilizing tumourinitiating cells. J Pathol 2013;231(4): 495–504.; Zellweger T., Ninck C., Mirlacher M. et al. Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer. Prostate 2003;55(1):20–9.; Xu Y., Yuan J., Zhang Z. et al. Syndecan-1 expression inhuman glioma is correlated with advanced tumor progression and poor prognosis. Mol Biol Rep 2012;39(9):8979–85.; Theocharis A.D., Skandalis S.S., Tzanakakis G., Karamanos N.K. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 2010;277(19):3904–23.; Iozzo R.V., Moscatello D.K., McQuillan D.J., Eichstetter I. Decorin is a biological ligand for the epidermal growth factor receptor. J Biol Chem 1999;274(8): 4489–92.; Merline R., Moreth K., Beckmann J. et al. Signaling by the matrix proteoglycan decorin controls inflammation and Cancer through PD CD4 and microRNA-21. Sci Signal 2011;4(199):ra75.; Albig A.R., Roy T., Becenti D.J., Schiemann W.P. Transcriptome analysis of endothelialcell gene expression induced by growth on matrigel matrices: identificationand characterization of MAGP-2 and lumican as novel regulators of angiogenesis. Angiogenesis 2007;10(3):197–216.; Matsuda Y., Yamamoto T., Kudo M. et al. Expression and roles of lumican in lung adenocarcinoma and squamous cell carcinoma. Int J Oncol 2008;33:1177–85.; Ishiwata T., Cho K., Kawahara K. et al. Role of lumican in cancer cells and adjacent stromal tissues in human pancreatic cancer. Onc Rep 2007;18(3):537–43.; Eshchenko T.Y., Rykova V.I., Chernakov A.E. et al. Expression of different proteoglycans in human breast tumors. Biochemistry (Mosc) 2007;72(9):1016–20.; Suhovskih A.V., Mostovich L.A., Kunin I.S. et al. Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncol 2013;2013:680136.; Suhovskih A.V., Aidagulova S.V., Kashuba V.I., Grigorieva E.V. Proteoglycans as potential microenvironmental biomarkers for colon cancer. Cell Tissue Res 2015;361(3):833–44.; Skandalis S.S., Theocharis A.D., Theocharis D.A. et al. Matrix proteoglycans are markedly affected in advanced laryngeal squamous cell carcinoma. Biochim Biophys Acta 2004;1689(2):152–61.; Gulyás M., Hjerpe A. Proteoglycans and WT1 as markers for distinguishing adenocarcinoma, epithelioid mesothelioma, and benign mesothelium. J Pathol 2003;199(4):479–87.; García-Suárez O., García B., FernándezVega I. et al. Neuroendocrine tumors show altered expression of chondroitin sulfate, glypican 1, glypican 5, and syndecan 2 depending on their differentiation grade. Front Oncol 2014;4:15.; Nackaerts K., Verbeken E., Deneffe G. et al. Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer 1997;74(3):335–45.; Kokenyesi R. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix. J Cell Biochem 2001;83(2):259–70.; https://umo.abvpress.ru/jour/article/view/55

  17. 17
    Academic Journal

    Source: Ophthalmology in Russia; Том 13, № 1 (2016); 10-19 ; Офтальмология; Том 13, № 1 (2016); 10-19 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2016-1

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/292/302; Иомдина Е. Н., Бауэр С. М., Котляр К. Е. Биомеханика глаза: теоретические аспекты и клинические приложения. Москва: Реальное время; 2015.; Eysteinsson T., Jonasson F., Sasaki H., Arnarsson A., et al. Central corneal thickness, radius of the corneal curvature and intraocular pressure in normal subjects using non-contact techniques: Reykjavik Eye Study. Acta Ophthalmol Scand. 2002;80 (1):11‑15.; Kaufmann C., Bachmann L. M., Robert Y. C., Thiel M. A. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol. 2006;124 (8):1104‑1108.; Liu J. H., Kripke D. F., Twa M. D., Hoffman R. E., et al. Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci. 1999;40 (12):2912‑2917.; Buzard K. A. Introduction to biomechanics of the cornea. Refract Corneal Surg. 1992;8 (2): 127‑138.; D. M. M. The cornea and the sclera. In: Davson Y, ed The Eye: Vegetative Physiology and Biochemistry. Orlando, Florida: AcademicPress; 1984. p. 1‑58.; Boote C., Dennis S., Huang Y., Quantock A. J., Meek K. M. Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol. 2005;149 (1):1‑6.; Borcherding M. S., Blacik L. J., Sittig R. A., Bizzell J. W., Breen M., Weinstein H. G. Proteoglycans and collagen fibre organization in human corneoscleral tissue. Exp Eye Res. 1975;21 (1):59‑70.; Komai Y., Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991;32 (8):2244‑2258.; Olsen T. On the calculation of power from curvature of the cornea. Br J Ophthalmol. 1986;70 (2):152‑154.; Shimmyo M., Orloff P. N. Corneal thickness and axial length. Am J Ophthalmol. 2005;139 (3):553‑554.; Olsen T. W., Aaberg S. Y., Geroski D. H., Edelhauser H. F. Human sclera: thickness and surface area. Am J Ophthalmol. 1998;125 (2):237‑241.; Haider K. M., Mickler C., Oliver D., Moya F. J., Cruz O. A., Davitt B. V. Age and racial variation in central corneal thickness of preschool and school-aged children. J Pediatr Ophthalmol Strabismus. 2008;45 (4):227‑233.; Aghaian E., Choe J. E., Lin S., Stamper R. L. Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology. 2004;111 (12):2211‑2219.; Chen M. J., Liu Y. T., Tsai C. C., Chen Y. C., Chou C. K., Lee S. M. Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. J Chin Med Assoc. 2009;72 (3):133‑137.; Harper C. L., Boulton M. E., Bennett D., Marcyniuk B., et al. Diurnal variations in human corneal thickness. Br J Ophthalmol. 1996;80 (12):1068‑1072.; Dubbelman M., Weeber H. A., van der Heijde R. G., Volker-Dieben H. J. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scand. 2002;80 (4):379‑383.; Katsube N., Wang R., Okuma E., Roberts C. Biomechanical response of the cornea to phototherapeutic keratectomy when treated as a fluid-filled porous material. J Refract Surg. 2002;18 (5):593‑597.; Roberts C. Biomechanics of the cornea and wavefront-guided laser refractive surgery. J Refract Surg. 2002;18 (5):589‑592.; Аветисов Э. С. Близорукость. Москва: Медицина; 1999.; Doughty M. J., Jonuscheit S. An assessment of regional differences in corneal thickness in normal human eyes, using the Orbscan II or ultrasound pachymetry. Optometry. 2007;78 (4):181‑190.; Olsen T. W., Sanderson S., Feng X., Hubbard W. C. Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci. 2002;43 (8):2529‑2532.; Vurgese S., Panda-Jonas S., Jonas J. B. Scleral thickness in human eyes. PLoS One. 2012;7 (1):e29692.; Нестеров А. П., Бунин А. Я., Кацнельсон Л. А. Внутриглазное давление. Физиология и патология. Москва: Наука; 1974.; Страхов В. В., Алексеев В. В. Динамическая ригидометрия. Вестник Офтальмологии. 1995;1:18‑20.; Pallikaris I. G., Kymionis G. D., Ginis H. S., Kounis G. A., Tsilimbaris M. K. Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci. 2005;46 (2):409‑414.; Friedman E., Ivry M., Ebert E., Glynn R., Gragoudas E., Seddon J. Increased scleral rigidity and age-related macular degeneration. Ophthalmology. 1989;96 (1):104‑108.; Акпатров А. И., Кустов В. Н. О зависимости между коэффи¬циентом ригидности и объемом глаза. Вестник офтальмологии. 1978;6:15‑17.; Пинтер Л. А. Активный и пассивный компоненты ригидности глаза. Вестник Офтальмологии. 1978;3:9‑10.; Faragher R. G., Mulholland B., Tuft S. J., Sandeman S., Khaw P. T. Aging and the cornea. Br J Ophthalmol. 1997;81 (10):814‑817.; Сарвазян А. П., Лырчиков А. Г. Связь объемно-упругих свойств мягких биологических тканей с содержанием воды, белка и жира. В кн: Медицинская биомеханика. Рига. p. 75‑77.; Dische Z. Biochemistry of connective tissue of the vertebrate eye. Int Rev Connect Tissue Res. 1970;5:209‑279.; Vo T. D., Blumenfeld O. O., Coleman D. J. The biochemical composition of the human sclera and its relationship to the pathogenesis of degenerative myopia. Proc of 3rd Intern Conference on Myopia. 1987. p. 206‑214.; Иомдина Е. Н. Биомеханические и биохимические нарушения склеры при прогрессирующей близорукости и методы их коррекции. В кн: С. Э. Аветисов, Т. П. Кащенко, А. М. Шамшинова «Зрительные функции и их коррекция у детей». Москва: Медицина; 2006. p. 163‑183.; Brown C. T., Vural M., Johnson M., Trinkaus-Randall V. Age-related changes of scleral hydration and sulfated glycosaminoglycans. Mech Ageing Dev. 1994;77 (2):97‑107.; Watson P. G., Young R. D. Scleral structure, organisation and disease. A review. Exp Eye Res. 2004;78 (3):609‑623.; Rada J. A., Achen V. R., Penugonda S., Schmidt R. W., Mount B. A. Proteoglycan composition in the human sclera during growth and aging. Invest Ophthalmol Vis Sci. 2000;41 (7):1639‑1648.; Kanai A., Kaufman H. E. Electron microscopic studies of corneal stroma: aging changes of collagen fibers. Ann Ophthalmol. 1973;5 (3):285‑287 passim.; Malik N. S., Moss S. J., Ahmed N., Furth A. J., Wall R. S., Meek K. M. Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta. 1992;1138 (3):222‑228.; Scott J. E., Orford C. R., Hughes E. W. Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochem J. 1981;195 (3): 573‑581.; Chakravarti S., Zhang G., Chervoneva I., Roberts L., Birk D. E. Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea. Dev Dyn. 2006;235 (9):2493‑2506.; Koga T., Inatani M., Hirata A., Inomata Y., et al. Expression of a chondroitin sulfate proteoglycan, versican (PG-M), during development of rat cornea. Curr Eye Res. 2005;30 (6):455‑463.; Затулина Н. И., Сеннова Л. Г. Об эластических волокнах дренажной системы глаза человека. Офтальмологический журнал. 1983;8:497‑499.; Marshall G. E. Human scleral elastic system: an immunoelectron microscopic study. Br J Ophthalmol. 1995;79 (1):57‑64.; Moses R. A., Grodzki W. J., Jr., Starcher B. C., Galione M. J. Elastin content of the scleral spur, trabecular mesh, and sclera. Invest Ophthalmol Vis Sci. 1978;17 (8):817‑818.; Weale R. A. A biography of the eye. Development, growth, age. London: H. K. Lewis Co. LTD; 1982.; Hassan A. U., Hassan G., Rasool Z., Hassan S. Clinical outcomes of elastin fibre defects. Journal of Cytology and Histology 2013;4 (1):166‑169.; Иомдина Е. Н., Игнатьева Н. Ю., Арутюнян Л. Л., Шехтер А. Б. и др. Изучение коллагеновых и эластических структур склеры глаз при глаукоме с помощью нелинейно-оптической (мультифотонной) микроскопии и гистологии (предварительное сообщение). Российский офтальмологический журнал. 2015;8 (1):50‑58.; Keeley F. W., Morin J. D., Vesely S. Characterization of collagen from normal human sclera. Exp Eye Res. 1984;39 (5):533‑542.; Серов В. В., Пауков В. С. Ультраструктурная патология. Москва: Медицина; 1975.; Серов В. В., Шехтер А. Б. Соединительная ткань: функциональная морфология и общая патология. Москва: Медицина; 1981.; Аветисов Э. С., Хорошилова-Маслова И. П., Андреева Л. Д. Ультраструктурные изменения склеры при миопии. Вестник Офтальмологии. 1980;6:36‑42.; Bailey A. J. Structure, function and ageing of the collagens of the eye. Eye (Lond). 1987;1 (Pt 2):175‑183.; Fung Y. C. Biomechanics. Mechanical Properties of Living Tissues. NewYork: Springer-Verlag; 1990.; Lee P. P., Walt J. W., Rosenblatt L. C., Siegartel L. R., Stern L. S., Glaucoma Care Study G. Association between intraocular pressure variation and glaucoma progression: data from a United States chart review. Am J Ophthalmol. 2007;144 (6):901‑907.; Lee R. E., Davison P. F. The collagens of the developing bovine cornea. Exp Eye Res. 1984;39 (5):639‑652.; Vannas S., Teir H. Observations on structures and age changes in the human sclera. Acta Ophthalmol (Copenh). 1960;38:268‑279.; Ben-Zvi A., Rodrigues M. M., Krachmer J. H., Fujikawa L. S. Immunohistochemical characterization of extracellular matrix in the developing human cornea. Curr Eye Res. 1986;5 (2):105‑117.; Rucklidge G. J., Milne G., McGaw B. A., Milne E., Robins S. P. Turnover rates of different collagen types measured by isotope ratio mass spectrometry. Biochim Biophys Acta. 1992;1156 (1):57‑61.; Ihanamaki T., Salminen H., Saamanen A. M., Pelliniemi L. J., et al. Age-dependent changes in the expression of matrix components in the mouse eye. Exp Eye Res. 2001;72 (4):423‑431.; Manschot W. A. Senile scleral plaques and senile scleromalacia. Br J Ophthalmol. 1978;62 (6):376‑380.; Sorsby A., Wilcox K., Ham D. The Calcium Content of the Sclerotic and Its Variation with Age. Br J Ophthalmol. 1935;19 (6):327‑337.; Hogan M. J., Alvarado J. Ultrastructure of the deep corneolimbal region. Doc Ophthalmol. 1969;26:9‑30.; Hirano K., Nakamura M., Kobayashi M., Kobayashi K., Hoshino T., Awaya S. Longspacing collagen in the human corneal stroma. Jpn J Ophthalmol. 1993;37 (2):148‑155.; Yan D., McPheeters S., Johnson G., Utzinger U., Vande Geest J. P. Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci. 2011;52 (2):821‑829.; Girard M. J., Suh J. K., Bottlang M., Burgoyne C. F., Downs J. C. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci. 2009;50 (11):5226‑5237.; Sheppard J., Hayes S., Boote C., Votruba M., Meek K. M. Changes in corneal collagen architecture during mouse postnatal development. Invest Ophthalmol Vis Sci. 2010;51 (6):2936‑2942.; Boote C., Hayes S., Young R. D., Kamma-Lorger C. S., et al. Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. J Struct Biol. 2009;166 (2):195‑204.; McBrien N. A., Cornell L. M., Gentle A. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci. 2001;42 (10):2179‑2187.; McBrien N. A., Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22 (3):307‑338.; Daxer A., Misof K., Grabner B., Ettl A., Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci. 1998;39 (3):644‑648.; Fratzl P. Collagen. Potsdam: Springer; 2008.; Malik N. S., Meek K. M. Vitamins and analgesics in the prevention of collagen ageing. Age Ageing. 1996;25 (4):279‑284.; https://www.ophthalmojournal.com/opht/article/view/292

  18. 18
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 1, № 4 (2016); 99-103 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/250/251; Булатов А.А., Савельев В.И., Калинин А.В. Применение костных морфогенетических белков в эксперименте и клинике // Травматология и ортопедия России. - 2005. - № 1 (34). - С. 46-54; Бывальцев В.А., Степанов И.А., Белых Е.Г., Гиерс М., Прул М. Цитокиновые механизмы дегенерации межпозвонкового диска // Сибирский медицинский журнал. - 2015. - № 5. - С. 17-21; Belykh E, Giers M, Bardonova L, Theodore N, Preul M, Byvaltsev V (2015). The role of bone morphogenetic proteins 2, 7, and 14 in approaches for intervertebral disk restoration. World Neurosurg., 84 (4), 870-877.; Coulson-Thomas V, Gesteira TF (2014). Dimeth-ylmethylene Blue Assay (DMMB). Bio-protocol, 4 (18), e1236. Available at: http://www.bio-protocol.org/e1236.; Farndale RW, Buttle DJ, Barrett AJ (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta., (883), 173-177.; Gantenbein B, Illien-Jünger S, Chan SC, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S (2015). Organ culture bioreactors - platforms to study human intervertebral disc degeneration and regenerative therapy. Curr. Stem. Cell Res. Ther, 10 (4), 339-352.; Haschtmann D, Ferguson SJ, Stoyanov JV (2012). BMP-2 and TGF-ß3 do not prevent spontaneous degeneration in rabbit disc explants but induce ossification of the annulus fibrosus. Eur. Spine J., 21 (9), 1724-1733.; Huang YC, Urban JP, Luk KD (2014). Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol., 10 (9), 561-566.; Kraemer J (2009). Intervertebral disk diseases: causes, diagnosis, treatment, prophylaxis, 368.; Le Maitre CL, Richardson SM, Baird P, Freemont AJ, Hoyland JA (2005). Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc. J. Pathol, 207 (4), 445-452.; Lo KW, Ulery BD, Ashe KM, Laurencin CT (2012). Studies of bone morphogenetic protein-based surgical repair. Adv. Drug. Deliv. Rev., 64 (12), 1277-1291.; Louis KS, Siegel AC (2011). Cell viability analysis using trypan blue: manual and automated methods. Methods Mol. Biol., (740), 7-12.; Nolan JS, Packer L (1974). Monolayer culture techniques for normal human diploid fibroblasts. Meth. Enzymol., 32 (B), 561-568.; Raj PP (2008). Intervertebral disc: anatomyphysiology-pathophysiology-treatment, Pain Pract., (8), 18-44.; Tomaszewski KA, Walocha JA, Mizia E, Gla-dysz T, Glowacki R, Tomaszewska R (2015). Age- and degeneration-related variations in cell density and glycosaminoglycan content in the human cervical intervertebral disc and its endplates. Pol. J. Pathol., 66 (3), 296-309.; Urban JP, Smith S, Fairbank JC (2004). Nutrition of the intervertebral disc, Spine (Phila Pa 1976), (29), 2700-2709.; https://www.actabiomedica.ru/jour/article/view/250

  19. 19
  20. 20