-
1Academic Journal
Authors: Cherednichenko, A.K., Tkach, M.R.
Source: Herald of Aeroenginebuilding; № 2 (2013): Herald of aeroenginebuilding
Вестник двигателестроения; № 2 (2013): Вестник двигателестроения
Вісник двигунобудування; № 2 (2013): Вісник двигунобудування
Herald of Aeroenginebuilding; № 2 (2011): Herald of aeroenginebuilding
Вестник двигателестроения; № 2 (2011): Вестник двигателестроения
Вісник двигунобудування; № 2 (2011): Вісник двигунобудуванняSubject Terms: gas turbine engine, regeneration of heat, intermediate heat – carrier, heat-exchanger, coefficient of heat transfer, temperature pressure, 7. Clean energy, газотурбинный двигатель, регенерация тепла, промежуточный теплоноситель, теплообменник, коэффициент теплопередачи, температурный напор
File Description: application/pdf
-
2Academic Journal
Authors: O. Yu. Tkacheva, A. V. Rudenko, A. A. Kataev, P. N. Mushnikov, A. S. Kholkina, Yu. P. Zaikov, О. Ю. Ткачева, А. В. Руденко, А. А. Катаев, П. Н. Мушников, А. С. Холкина, Ю. П. Зайков
Source: Izvestiya. Non-Ferrous Metallurgy; № 2 (2022); 33-42 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 2 (2022); 33-42 ; 2412-8783 ; 0021-3438
Subject Terms: жидкосолевой ядерный реактор, rotational viscometry, shear rate, molten salts of lithium, beryllium and uranium fluorides, fuel salt, intermediate coolant, molten salt nuclear reactor, ротационная вискозиметрия, скорость сдвига, расплавы солей фторидов лития, бериллия и урана, топливная соль, промежуточный теплоноситель
File Description: application/pdf
Relation: https://cvmet.misis.ru/jour/article/view/1356/581; Williams D.F., Britt P.F. Molten salt chemistry workshop: Report for the US department of energy, office of nuclear energy workshop. USA. Oak Ridge National Laboratory, 2017.; Игнатьев В.В., Фейнберг О.С., Загнитько А.В., Мерзляков А.В., Суренков А.И. Жидкосолевые реакторы: Новые возможности, проблемы и решения. Атомная энергия. 2012. Т. 112. Вып. 3. С.135—143.; Fradrickson G., Cao G., Gakhar R., Yoo T.-S. Molten salt reactor. Salt processing — Technology status. USA. Idaho National Laboratory, 2018. No. INL/EXT-18-51033.; Benes O., Konings R.J.M. Thermodynamic properties, and phase diagrams of fluoride salts for nuclear applications. J. Fluor. Chem. 2009. No. 130. P. 22—29.; Holcomb D.E., Cetiner S.M. An overview of liquid-fluoride-salt heat transport systems: report. USA. Oak Ridge National Laboratory, 2010. No. ORNL-TM-2010/156.; Williams D.F., Clarno K.T. Evaluation of salt coolants for reactor applications. Nucl. Technol. 2008. Vol. 163. Iss. 3. P. 330—343.; Williams D.F. Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop. USA. Oak Ridge National Laboratory, 2006. No. ORNL/TM2006/69.; Barnes J., Coutts R., Horne T., Thai J. Characterisation of molten salts for their application to molten salt reactors. PAM review. Energy Sci. Technol. 2019. No. 6. P. 38—55. DOI:10.5130/pamr.v6i0.1546.; Blanke B.C., Bousguet E.N., Curtis M.L., Murphy E.L. Density and viscosity of fused mixtures of lithium, beryllium, and uranium fluorides: AEC research and development report. USA. Mound Laboratory, 1956. No. MLM-1086.; Cohen S.I., Jones T.N. Viscosity measurements on molten fluoride mixtures: AEC research and development report. USA. Oak Ridge National Laboratory, 1957. No. ORNL-2278.; Cantor S., Cooke J.W., Dworkin A.S., Robbins G.D., Thoma R.E., Watson G.M. Physical properties of molten-salt reactor fuel, coolant, and flush salts: Report. USA. Oak Ridge National Laboratory, 1968. No. ORNL-TM-2316.; Cantor S., Ward W.T., Moynihan C.T. Viscosity and density in molten BeF2—LiF solutions. J. Chem. Phys. 1969. Vol. 50. No. 7. P. 2874—2879.; Janz G.J. Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data. J. Phys. Chem. Ref. Data. 1988. Vol. 17. Iss. 2. P. 1—77.; Desyatnik V.N., Nechaev A.I., Chervinskii Y.F. Viscosity of molten mixtures of beryllium fluoride with lithium and sodium fluorides. J. Appl. Chem. 1981. Vol. 54. Iss. 10. P. 2310—2313.; Мерзляков А.В., Игнатьев В.В., Абалин С.С. Измерение кинематической вязкости расплава молярного состава 73LiF—27BeF2 и влияние на вязкость добавок трифторида церия и тетрафторида циркония. Атомная энергия. 2018. Т. 125. No. 2. С. 86—89.; Abe Y., Kosugiyama O., Nagashima A. Viscosity of LiF— BeF2 eutectic mixture (xBeF2 = 0.328) and LiF single salt at elevated temperatures. J. Nucl. Mater. 1981. No. 99. P. 173—183.; Tasidou K.A., Magnusson J., Munro T., Assael M.J. Reference correlations for the viscosity of molten LiF—NaF— KF, LiF—BeF2, and Li2CO3—Na2CO3—K2CO3. J. Phys. Chem. Ref. Data. 2019. Vol. 48. Iss. 4. No. 043102. P. 1—9.; Briggs R.B. Molten-salt reactor program, semiannual progress report. Period ending July 31, 1963. USA. Oak Ridge National Laboratory, 1963. No. ORNL-3529.; Williams D.F., Toth L.M., Clarno K.T. Assessment of candidate molten salt coolants for the advanced high-tempera ture reactor (AHTR): Report. USA. Oak Ridge National Laboratory, 2006. No. ORNL-TM-2006/12.; Rosenthal M.W., Briggs R.B., Kasten P.R. Molten-salt reactor program semiannual progress report. Period ending August 31, 1969. USA. Oak Ridge National Laboratory, 1970. No. ORNL-4449.; Smith A.L., Capelli E., Konings R.J.M., Gheribic A.E. A new approach for coupled modelling of the structural and thermo-physical properties of molten salts. Case of a polymeric liquid LiF—BeF2. J. Molec. Liq. 2020. No. 299. P. 1—24.; Salanne M., Simon C., Turq P., Madden P.A. Simulation of the liquid-vapor interface of molten LiBeF3. Comptes Rendus Chimie. 2007. No. 10. P. 1131—1136.; MacPherson H.G. Molten-salt reactor project quarterly progress report. Period ending January 31, 1959. USA. Oak Ridge National Laboratory, 1959. No. ORNL-2684.; MacPherson H.G. Molten-salt reactor project quarterly progress report. Period ending April 30, 1959. USA. Oak Ridge National Laboratory, 1959. No. ORNL-2723.; Roine A. HSC Chemistry® [Software], Outotec, Pori, 2018.; Yaws C.L. The Yaws handbook of vapor pressure. Antoine coefficients. Kidlington, Oxford: Gulf Professional Publ., 2015.; Olander D.R., Fukuda G.T., Baes Jr.C.F. Equilibrium pressures over BeF2 /LiF (LiF—BeF2) molten mixtures. Fusion Sci. Technol. 2002. Vol. 41. Iss. 2. P. 141—150.; Cantor S. Vapor pressures of BeF2 and NiF2. J. Chem. Eng. Data. 1965. Vol. 10. Iss. 3. P. 237—238.; Il’ina E., Mushnikov P., Pershina S., Rudenko A., Redkin A., Zaikov Yu., Kholkina A., Voronin V. Thermal properties of LiF—BeF2 and LiF—BeF2—UF4 systems as applied to molten salt reactor technologies. J. Molec. Liq. 2021. Vol. 344. Art. 117731.; Wakeham W.A., Nagashima A., Sengers J.V. International union of pure and applied chemistry, commission on thermodynamics. Measurement of the transport properties of fluids. Boston: Blackwell Scientific Publ., 1991.; https://cvmet.misis.ru/jour/article/view/1356
-
3Academic Journal
Authors: Кузнецов, М., Козулина, О., Ермакова, Е., Коротков, Ю., Николаев, А.
Subject Terms: НЕФТЬ, ВОДОНЕФТЯНАЯ ЭМУЛЬСИЯ, ОБЕЗВОЖИВАНИЕ, ПРОМЕЖУТОЧНЫЙ ТЕПЛОНОСИТЕЛЬ, ДЕЭМУЛЬСАТОР, ЖАРОВАЯ ТРУБА
File Description: text/html
-
4Academic Journal
Authors: Кузнецова, И., Ермакова, Е., Козулина, О., Кузнецов, М.
Subject Terms: НЕФТЬ, ВОДОНЕФТЯНАЯ ЭМУЛЬСИЯ, ОБЕЗВОЖИВАНИЕ, ПРОМЕЖУТОЧНЫЙ ТЕПЛОНОСИТЕЛЬ, ЖАРОВАЯ ТРУБА
File Description: text/html
-
5Academic Journal
Authors: Нечаев, Николай, Бойков, Лев
Subject Terms: низкопотенциальная теплота, теплоуловитель, промежуточный теплоноситель
File Description: text/html
-
6Academic Journal
Source: Збірник наукових праць НУК; № 5-6 (2013): Збірник наукових праць НУК
Сборник научных трудов НУК; № 5-6 (2013): Сборник научных трудов НУК
Collection of Scientific Publications NUS; № 5-6 (2013): Collection of Scientific Publications of NUSSubject Terms: cooling unit, heat recovery, heat exchanger, storage tank, pasteurizer, intermediate heat-carrier, 7. Clean energy, холодильна установка, утилізація тепла, теплообмінник, бак-акумулятор, пастеризатор, проміжний теплоносій, холодильная установка, утилизация тепла, теплообменник, бак-аккумулятор, пастеризатор, промежуточный теплоноситель
File Description: application/pdf
Access URL: http://jnn.nuos.edu.ua/article/view/23969
-
7Academic Journal
Source: Вестник Казанского технологического университета.
Subject Terms: НЕФТЬ, ВОДОНЕФТЯНАЯ ЭМУЛЬСИЯ, ОБЕЗВОЖИВАНИЕ, ПРОМЕЖУТОЧНЫЙ ТЕПЛОНОСИТЕЛЬ, ДЕЭМУЛЬСАТОР, ЖАРОВАЯ ТРУБА
File Description: text/html
-
8Academic Journal
Source: Вестник Казанского технологического университета.
Subject Terms: НЕФТЬ, ВОДОНЕФТЯНАЯ ЭМУЛЬСИЯ, ОБЕЗВОЖИВАНИЕ, ПРОМЕЖУТОЧНЫЙ ТЕПЛОНОСИТЕЛЬ, ЖАРОВАЯ ТРУБА
File Description: text/html
-
9Academic Journal
Source: Технико-технологические проблемы сервиса.
File Description: text/html
-
10Book
Authors: Безродний, М. К., Волков, С. С., Мокляк, В. Ф., Безродный, М. К., Bezrodniy, M., Volkov, S., Mokliak, V.
Subject Terms: термосифон, thermosyphon, теплообмін, гідродинаміка, тепловий потік, плівка, кипіння, конденсація, проміжний теплоносій, режим, криза тепло переносу, теплообмен, гидродинамика, тепловой поток, пленка, кипение, конденсация, промежуточный теплоноситель, heat transfer, fluid dynamics, heat flux, film boiling, condensation, the intermediate heat transfer fluid, mode of heat transfer crisis
Relation: К.: Вища шк.; Безродный М.К. Двухфазные термосифоны в промышленной теплотехнике/ М. К. Безродный, С. С. Волков, В. Ф. Мокляк. –К: Вища школа, 1991. – 75 с.; http://dspace.nuft.edu.ua/jspui/handle/123456789/1107
Availability: http://dspace.nuft.edu.ua/jspui/handle/123456789/1107