Εμφανίζονται 1 - 20 Αποτελέσματα από 806 για την αναζήτηση '"пролиферация"', χρόνος αναζήτησης: 0,81δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: Исследование выполнено в рамках фундаментальной темы НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 91-101 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 91-101 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1607/1063; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1607/1918; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1607/1919; ГОСТ ISO 10993-5-2011. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследования на цитотоксичность: методы in vitro. - Введ. 2013.01.01 – М.: Стандарт информ, 2014. – 10 с. – (Система стандартов по информации, библиотечному и издательскому делу).; Gruber S., Nickel A. Toxic or not toxic? The specifications of the standard ISO 10993-5 are not explicit enough to yield comparable results in the cytotoxicity assessment of an identical medical device. Front. Med. Technol. 2023;5:1195529. https://doi.org/10.3389/fmedt.2023.1195529.; Bellucci D., Salvatori R., Anesi A., Chiarini L., Cannillo V. SBF assays, direct and indirect cell culture tests to evaluate the biological performance of bioglasses and bioglass-based composites: Three paradigmatic cases. Materials Science and Engineering: C. 2019;96:757-764. https://doi.org/10.1016/j.msec.2018.12.006.; Braun K., Stürzel C.M., Biskupek J., Kaiser U., Kirchhoff F., Lindén M. Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicology in Vitro. 2018;52:214-221. https://doi.org/10.1016/j.tiv.2018.06.019.; Diemer F., Stark H., Helfgen E.H., Enkling N., Probstmeier R., Winter J., Kraus D. In vitro cytotoxicity of different dental resin-cements on human cell lines. J Mater Sci Mater Med. 2021;32(1):4. https://doi.org/10.1007/s10856-020-06471-w.; Wang Y., Ma B., Yin A., Zhang B., Luo R., Pan J., Wang Y. Polycaprolactone vascular graft with epigallocatechin gallate embedded sandwiched layer-by-layer functionalization for enhanced antithrombogenicity and anti-inflammation. J Control Release. 2020;320:226-238. https://doi.org/10.1016/j.jconrel.2020.01.043.; Zhou J., Wang M., Wei T., Bai L., Zhao J., Wang K., Feng Y. Endothelial cell-mediated gene delivery for in situ accelerated endothelialization of a vascular graft. ACS Appl Mater Interfaces. 2021;13(14):16097-16105. https://doi.org/10.1021/acsami.1c01869.; Kabirian F., Brouki Milan P., Zamanian A., Heying R., Mozafari M. Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Acta Biomater. 2019;92:82-91. https://doi.org/10.1016/j.actbio.2019.05.002.; Lee S.J., Kim M.E., Nah H., Seok J.M., Jeong M.H., Park K., Kwon I.K., Lee J.S., Park S.A. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. J Colloid Interface Sci. 2019;537:333-344. https://doi.org/10.1016/j.jcis.2018.11.039.; Daum R., Visser D., Wild C., Kutuzova L., Schneider M., Lorenz G., et al. Fibronectin adsorption on electrospun synthetic vascular grafts attracts endothelial progenitor cells and promotes endothelialization in dynamic in vitro culture. Cells. 2020;9(3):778. https://doi.org/10.3390/cells9030778.; Guan G., Yu C., Xing M., Wu Y., Hu X., Wang H., Wang L. Hydrogel small-diameter vascular graft reinforced with a braided fiber strut with improved mechanical properties. Polymers. 2019;11:810. https://doi.org/10.3390/polym11050810.; Jirofti N., Mohebbi-Kalhori D., Samimi A., Hadjizadeh A., Kazemzadeh G.H. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater. 2018;13(5):055014. https://doi.org/10.1088/1748-605X/aad4b5.; Fiqrianti I.A., Widiyanti P., Manaf M.A., Savira C.Y., Cahyani N.R., Bella F.R. Poly-L-lactic Acid (PLLA)-chitosan-collagen electrospun tube for vascular graft Application. J Funct Biomater.2018;9(2):32. https://doi.org/10.3390/jfb9020032.; Rosellini E., Barbani N., Lazzeri L., Cascone M.G. Biomimetic and bioactive small diameter tubular scaffolds for vascular tissue engineering. Biomimetics (Basel). 2022;7(4):199. https://doi.org/10.3390/biomimetics7040199.; Jaffe E.A., Nachman R.L., Becker C.G., Minick C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Clin Invest. 1973; 52: 2745–2756. https://doi.org/10.1172/JCI107470.; Ghasemi M., Turnbull T., Sebastian S., Kempson I. The MTT Assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 2021;22:12827. https://doi.org/10.3390/ijms222312827.; Великанова Е.А., Матвеева В.Г., Ханова М.Ю., Антонова Л.В. Влияние напряжения сдвига на свойства колониеформирующих эндотелиальных клеток в сравнении с эндотелиальными клетками коронарных артерий. Комплексные проблемы сердечно-сосудистых заболеваний. 2022; 11(4):90-97. https://doi.org/10.17802/2306-1278-2022-11-4-90-97.; Li W., Zhou J., Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3(5):617-620. https://doi.org/10.3892/br.2015.481.

  6. 6
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 4 (2025); 534-544 ; Акушерство, Гинекология и Репродукция; Vol 19, No 4 (2025); 534-544 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2509/1372; Becker C.M., Bokor A., Heikinheimo O. et al. ESHRE guideline: endometriosis. Hum Reprod Open. 2022;2022(2):hoac009. https://doi.org/10.1093/hropen/hoac009.; Wilbur M.A., Shih I.M., Segars J.H., Fader A.N. Cancer implications for patients with endometriosis. Semin Reprod Med. 2017;35(1):110–6. https://doi.org/10.1055/s-0036-1597120.; Endometriosis. World Health Organization, 2023. Режим доступа: https://www.who.int/news-room/fact-sheets/detail/endometriosis. [Дата обращения: 25.02.2025].; Улумбекова Г.Э., Худова И.Ю. Оценка демографического, социального и экономического эффекта применения гормональной терапии при эндометриозе и аномальных маточных кровотечениях. ОРГЗДРАВ: новости, мнения, обучение. Вестник ВШОУЗ. 2022;8(1):82–113. https://doi.org/10.33029/2411-8621-2022-8-1-82-113.; Smolarz B., Szyłło K., Romanowicz H. Endometriosis: epidemiology, classification, pathogenesis, treatment and genetics (review of literature). Int J Mol Sci. 2021;22(19):10554. https://doi.org/10.3390/ijms221910554.; Sampson J.A. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol.1927;14:422–69. https://doi.org/10.1016/S0002-9378(15)30003-X.; Taylor H.S., Kotlyar A.M., Flores V.A. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet. 2021;397(10276):839–52. https://doi.org/10.1016/S0140-6736(21)00389-5.; Hayat R., Manzoor M., Hussain A. Wnt signaling pathway: a comprehensive review. Cell Biol Int. 2022;46(6):863–77. https://doi.org/10.1002/cbin.11797.; Steinhart Z., Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145(11):dev146589. https://doi.org/10.1242/dev.146589.; Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. https://doi.org/10.4161/org.4.2.5851.; Pataki C.A., Couchman J.R., Brábek J. Wnt signaling cascades and the roles of syndecan proteoglycans. J Histochem Cytochem. 2015;63(7):465–80. https://doi.org/10.1369/0022155415586961.; Zhang Y., Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. https://doi.org/10.1186/s13045-020-00990-3.; Ranes M., Zaleska M., Sakalas S. et al. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol Cell. 2021;81(16):3246–3261. e11. https://doi.org/10.1016/j.molcel.2021.07.013.; Yu F., Yu C., Li F. et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):1–24. https://doi.org/10.1038/s41392-021-00701-5.; Matsuzaki S., Darcha C. Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 2013;8(10):e76808. https://doi.org/10.1371/journal.pone.0076808.; Kawano Y., Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003;116(Pt 13):2627–34. https://doi.org/10.1242/jcs.00623.; Pazhohan A., Amidi F., Akbari-Asbagh F. et al. The Wnt/β-catenin signaling in endometriosis, the expression of total and active forms of β-catenin, total and inactive forms of glycogen synthase kinase-3β, WNT7a and DICKKOPF-1. Eur J Obstet Gynecol Reprod Biol. 2018;220:1–5. https://doi.org/10.1016/j.ejogrb.2017.10.025.; Heinosalo T., Gabriel M., Kallio L. et al. Secreted frizzled-related protein 2 (SFRP2) expression promotes lesion proliferation via canonical WNT signaling and indicates lesion borders in extraovarian endometriosis. Hum Reprod. 2018;33(5):817–31. https://doi.org/10.1093/humrep/dey026.; Yang M., Li L., Huang X. et al. The DNA demethylation-regulated SFRP2 dictates the progression of endometriosis via activation of the Wnt/β-catenin signaling pathway. BMC Mol Cell Biol. 2023;24(1):12. https://doi.org/10.1186/s12860-023-00470-9.; Xu H., Yang J.J., Wang C.H. et al. Effect of Wnt/β-catenin signal pathway on of matrix metalloproteinase-7 and vascular endothelial growth factor gene expressions in endometriosis. Clin Exp Obstet Gynecol. 2016;43(4):573–7.; Zhang L., Xiong W., Xiong Y. et al. Intracellular Wnt/beta-catenin signaling underlying 17beta-estradiol-induced matrix metalloproteinase 9 expression in human endometriosis. Biol Reprod. 2016;94(3):70. https://doi.org/10.1095/biolreprod.115.135574.; Wang Y., Hanifi-Moghaddam P., Hanekamp E.E. et al. Progesterone inhibition of Wnt/β-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res. 2009;15(18):5784–93. https://doi.org/10.1158/1078-0432.CCR-09-0814.; Zhu X., Li Y., Zhou R. et al. Knockdown of E-cadherin expression of endometrial epithelial cells may activate Wnt/β-catenin pathway in vitro. Arch Gynecol Obstet. 2018;297(1):117–23. https://doi.org/10.1007/s00404-017-4560-0.; Yamamoto S., Nishimura O., Misaki K. et al. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell. 2008;15(1):23–36. https://doi.org/10.1016/j.devcel.2008.05.007.; Lv Y., Zhang L., Ma J. et al. CTHRC1 overexpression promotes ectopic endometrial stromal cell proliferation, migration and invasion via activation of the Wnt/β-catenin pathway. Reprod Biomed Online. 2020;40(1):26–32. https://doi.org/10.1016/j.rbmo.2019.10.001.; Liu Y.-J., Du J., Li J. et al. CTHRC1, a novel gene with multiple functions in physiology, disease and solid tumors (Review). Oncol Lett. 2023;25(6):266. https://doi.org/10.3892/ol.2023.13852.; Zhang R., Lu H., Lyu Y.Y. et al. E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway. Sci Rep. 2017;7:44744. https://doi.org/10.1038/srep44744.; Ruan F., Ma J., Xu K. Silencing of CTHRC1 inhibits proliferation and metastasis of endometriotic stromal cells. Int J Clin Exp Pathol. 2016;9(10):10028–35.; Hu X., Bian Y., Wen X. et al. Collagen triple helix repeat containing 1 promotes endometrial cancer cell migration by activating the focal adhesion kinase signaling pathway. Exp Ther Med. 2020;20(2):1405–14. https://doi.org/10.3892/etm.2020.8833.; Chen J.-J., Xiao Z.-J., Meng X. et al. MRP4 sustains Wnt/β-catenin signaling for pregnancy, endometriosis and endometrial cancer. Theranostics. 2019;9(1):5049–64. https://doi.org/10.7150/thno.32097.; De P., Aske J.C., Dale A. et al. Addressing activation of WNT beta-catenin pathway in diverse landscape of endometrial carcinogenesis. Am J Transl Res. 2021;13(11):12168–80.; Ярмолинская М.И., Адамян Л.В. Эндометриоз-ассоциированный болевой синдром и спаечный процесс – новые аспекты патогенеза и возможности терапии. Проблемы репродукции. 2023;29(2):93–100. https://doi.org/10.17116/repro20232902193.; Guo S.W. Fibrogenesis resulting from cyclic bleeding: the Holy Grail of the natural history of ectopic endometrium. Hum Reprod. 2018;33(3):353–6. https://doi.org/10.1093/humrep/dey015.; Katoh M., Igarashi M., Fukuda H. et al. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328(2):198–206. https://doi.org/10.1016/j.canlet.2012.09.017.; Shao X., Wei X. FOXP1 enhances fibrosis via activating Wnt/β-catenin signaling pathway in endometriosis. Am J Transl Res. 2018;10(11):3610–8.; Shi L., Xue X., Tian H. et al. WEE1 promotes endometriosis via the Wnt/β-catenin signaling pathway. Reprod Biol Endocrinol. 2021;19(1):161. https://doi.org/10.1186/s12958-021-00844-8.; Liu Y., Liang S., Yang F. et al. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther. 2020;11(1): 346. https://doi.org/10.1186/s13287-020-01856-8.; Li J., Dai Y., Zhu H. et al. Endometriotic mesenchymal stem cells significantly promote fibrogenesis in ovarian endometrioma through the Wnt/β-catenin pathway by paracrine production of TGF-β1 and Wnt1. Hum Reprod. 2016;31(6):1224–35. https://doi.org/10.1093/humrep/dew058.; Zhang Y., Sun X., Li Z. et al. Interactions between miRNAs and the Wnt/β-catenin signaling pathway in endometriosis. Biomed Pharmacother. 2024;171:116182. https://doi.org/10.1016/j.biopha.2024.116182.; Cariello M., Squilla A., Piacente M. et al. Drug resistance: the role of exosomal miRNA in the microenvironment of hematopoietic tumors. Molecules. 2022;28(1):116. https://doi.org/10.3390/molecules28010116.; Zhang H., Li G., Sheng X., Zhang S. Upregulation of miR-33b promotes endometriosis via inhibition of Wnt/β-catenin signaling and ZEB1 expression. Mol Med Rep. 2019;19(3):2144–52. https://doi.org/10.3892/mmr.2019.9870.; Dávalos A., Goedeke L., Smibert P. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108(22):9232–7. https://doi.org/10.1073/pnas.1102281108.; Pattanayak B., Garrido-Cano I., Adam-Artigues A. et al. MicroRNA-33b suppresses epithelial-mesenchymal transition repressing the MYC-EZH2 pathway in HER2+ breast carcinoma. Front Oncol. 2020;10:1661. https://doi.org/10.3389/fonc.2020.01661.; Wu H.T., Zhong H.T., Li G.W. et al. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J Transl Med. 2020;18(1):51. https://doi.org/10.1186/s12967-020-02240-z.; Eggers J.C., Martino V., Reinbold R. et al. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online. 2016;32(4):434–45. https://doi.org/10.1016/j.rbmo.2015.12.013.; Furuya M., Masuda H., Hara K. et al. ZEB1 expression is a potential indicator of invasive endometriosis. Acta Obstet Gynecol Scand. 2017;96;(9):1128–35. https://doi.org/10.1111/aogs.13179.; Zhang Y., Chang X., Wu D. et al. Down-regulation of exosomal miR-214-3p tTargeting CCN2 contributes to endometriosis fibrosis and the role of exosomes in the horizontal transfer of miR-214-3p. Reprod Sci. 2021;28(3):715–27. https://doi.org/10.1007/s43032-020-00350-z.; Mani M., Carrasco D.E., Zhang Y. et al. BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer Res. 2009;69(19):7577–86. https://doi.org/10.1158/0008-5472.CAN-09-0773.; Zhang M., Wang X., Xia X. et al. Endometrial epithelial cells-derived exosomes deliver microRNA-30c to block the BCL9/Wnt/CD44 signaling and inhibit cell invasion and migration in ovarian endometriosis. Cell Death Discov. 2022;8(1):151. https://doi.org/10.1038/s41420-022-00941-6.; Braza-Boïls A., Marí-Alexandre J., Gilabert J. et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88. https://doi.org/10.1093/humrep/deu019.; Zhu H., Cao X.X., Liu J., Hua H. MicroRNA-488 inhibits endometrial glandular epithelial cell proliferation, migration, and invasion in endometriosis mice via Wnt by inhibiting FZD7. J Cell Mol Med. 2019;23(4):2419–30. https://doi.org/10.1111/jcmm.14078.; Peghaire C., Bats M.L., Sewduth R. et al. Fzd7 (Frizzled-7) Expressed by endothelial cells controls blood vessel formation through Wnt/β-catenin canonical signaling. Arterioscler Thromb Vasc Biol. 2016;36(12):2369–80. https://doi.org/10.1161/ATVBAHA.116.307926.; Mai H., Xu H., Lin H. et al. LINC01541 Functions as a ceRNA to modulate the Wnt/β-catenin pathway by decoying miR-506-5p in endometriosis. Reprod Sci. 2021;28(3):665–74. https://doi.org/10.1007/s43032-020-00295-3.; Qiao D., Qin X., Yang H. et al. Estradiol mediates the interaction of LINC01541 and miR-429 to promote angiogenesis of G1/G2 endometrioid adenocarcinoma in-vitro: a pilot study. Front Oncol. 2022;12:951573. https://doi.org/10.3389/fonc.2022.951573.; Wang Y.Y., Duan H., Wang S. et al. Talin1 induces epithelial-mesenchymal transition to facilitate endometrial cell migration and invasion in adenomyosis under the regulation of microRNA-145-5p. Reprod Sci. 2021;28(5):1523–39. https://doi.org/10.1007/s43032-020-00444-8.; https://www.gynecology.su/jour/article/view/2509

  7. 7
    Academic Journal

    Πηγή: Ukrainian Neurosurgical Journal; Vol. 31 No. 1 (2025); 16-22 ; Ukrainian Neurosurgical Journal; Том 31 № 1 (2025); 16-22 ; 2663-9092 ; 2663-9084

    Περιγραφή αρχείου: application/pdf; text/html

    Διαθεσιμότητα: https://theunj.org/article/view/311770

  8. 8
    Academic Journal

    Πηγή: BIOAsia-Altai; Том 4 № 1 (2024): Международный биотехнологический форум «BIOAsia–Altai»; 325-329
    BIOAsia-Altai; Vol 4 No 1 (2024): International Biotechnology Forum “BIOAsia-Altai”; 325-329

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://journal.asu.ru/bioasia/article/view/16355

  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal

    Συνεισφορές: The work was carried out with the financial support of the Russian Science Foundation (project No. 21-75-10163)., Работа выполнена при финансовой поддержке Российского научного фонда (проект № 21-75-10163).

    Πηγή: Advances in Molecular Oncology; Vol 11, No 4 (2024); 66-79 ; Успехи молекулярной онкологии; Vol 11, No 4 (2024); 66-79 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  15. 15
  16. 16
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 23, № 4 (2024); 45-53 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 45-53 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3191/1250; Молекулярно-генетические подтипы рака яичников: перспективы дальнейших исследований. Вопросы онкологии. 2019; 65(1): 56–62.; Motohara T., Yoshida G.J., Katabuchi H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin Cancer Biol. 2021; 77: 182–93. doi:10.1016/j.semcancer.2021.03.038.; Колесников Е.Н., Максимов А.Ю., Кит О.И., Кутилин Д.С. Зависимость общей и безрецидивной выживаемости больных от молекулярно-генетического подтипа плоскоклеточного рака пищевода. Вопросы онкологии. 2019; 65(5): 691–700. doi:10.37469/0507-3758-2019-65-5-691-700.; Yu L., Jiang R., Chen W., Liu Ya., Wang, G., Xin Gong X., Wang Yo. Novel prognostic indicator combining inflammatory indicators and tumor markers for gastric cancer. World J Surg Onc. 2023; 21(1). doi:10.1186/s12957-023-02926-w.; Golubeva V.A., Nepomuceno T.C., Monteiro A.N.A. Germline Missense Variants in BRCA1: New Trends and Challenges for Clinical Annotation. Cancers (Basel). 2019; 11(4): 522. doi:10.3390/cancers11040522.; Steffensen K.D., Smoter M., Waldstrøm M., Grala B., Bodnar L., Stec R., Szczylik C., Jakobsen A. Resistance to first line platinum paclitaxel chemotherapy in serous epithelial ovarian cancer: The prediction value of ERCC1 and Tau expression. Int J Oncol. 2014; 44(5): 1736–44. doi:10.3892/ijo.2014.2311.; Богуш Т.А., Попова А.С., Дудко Е.А., Богуш Е.А., Тюляндина А.С., Тюляндин С.А., Давыдов М.И. ERCC1 как маркер резистентности рака яичников к препаратам платины. Антибиотики и химиотерапия. 2015; 60(3–4): 42–50.; Богуш Т.А., Стенина М.Б., Богуш Е.А., Заркуа В.Т., Калюжный С.А., Мамичев И.А., Тюляндина А.С., Тюляндин С.А. Количественные показатели экспрессии ERCC1 в ткани серозного рака яичников и эффективность I линии химиотерапии с включением препаратов платины. Антибиотики и химиотерапия. 2018; 63(1–2): 24–31.; Bao Y., Yang B., Zhao J., Shen S., Gao J. Role of common ERCC1 polymorphisms in cisplatin-resistant epithelial ovarian cancer patients: A study in Chinese cohort. Int J Immunogenet. 2020; 47(5): 443–53. doi:10.1111/iji.12484.; Lu D., Shi H.C., Wang Z.X., Gu X.W., Zeng Y.J. Multidrug resistance-associated biomarkers PGP, GST-pi, Topo-II and LRP as prognostic factors in primary ovarian carcinoma. Br J Biomed Sci. 2011; 68(2): 69–74. doi:10.1080/09674845.2011.11730326.; Xiao H., Zheng Yo., Ma L., Tian L., Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol. 2021; 12. doi:10.3389/fphar.2021.648407.; Muriithi W., Macharia L.W., Heming C.P., Echevarria J.L., Nyachieo A., Filho P.N., Neto V.M. ABC transporters and the hallmarks of cancer: roles in cancer aggressiveness beyond multidrug resistance. Cancer Biol Med. 2020; 17(2): 253–69. doi:10.20892/j.issn.2095-3941.2019.0284.; Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001; 410(6825): 277–84 doi:10.1038/35065745.; Михайлов Н.Ю., Гаркави Л.Х., Мащенко Н.М., Жукова Г.В. Исследование связи параметров лейкоцитарной формулы крови с частотными характеристиками сигнала пульсовой волны. Биофизика. 2012; 57(1): 99–104. doi:10.1134/S0006350912010150.; Тюляндина А.С., Коломиец Л.А., Морхов К.Ю., Нечушкина В.М., Покатаев И.А., Румянцев А.А., Тюляндин С.А., Урманчеева А.Ф., Хохлова С.В. Практические рекомендации по лекарственному лечению рака яичников, первичного рака брюшины и рака маточных труб. Злокачественные опухоли. 2022; 12(3s2-1): 198–211. doi:10.18027/2224-5057-2022-12-3s2-198-211.; Rodolakis I., Pergialiotis V., Liontos M., Haidopoulos D., Loutradis D., Rodolakis A., Bamias A., Thomakos N. Chemotherapy Response Score in Ovarian Cancer Patients: An Overview of Its Clinical Utility. J Clin Med. 2023; 12(6): 2155. doi:10.3390/jcm12062155.; Лушников Е.Ф., Абросимов А.Ю., Двинских Н.Ю. Патоморфоз опухолей человека. М., 2021. 224 с.; Guo C., Lu M., Chen J. An evaluation of time series summary statistics as features for clinical prediction tasks. BMC Med Inform Decis Mak. 2020; 48. doi:10.1186/s12911-020-1063-x; https://www.siboncoj.ru/jour/article/view/3191

  17. 17
    Academic Journal

    Συνεισφορές: The study was performed without external funding., Исследование проведено без спонсорской поддержки.

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 2 (2024); 61-66 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 2 (2024); 61-66 ; 2413-5496 ; 2311-1267

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1040/909; Lefrancais E., Ortiz-Munoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9. doi:10.1038/nature21706.; Holinstat M. Normal platelet function. Cancer Metastasis Rev. 2017;36:195–8. doi:10.1007/s10555-017-9677-x.; Holinstat M., Tourdot B.E. Coronary heart disease risk factors take a disproportional toll on women. Arterioscler Thromb Vasc Biol. 2015;35(4):750–1. doi:10.1161/ATVBAHA.115.305466.; Koupenova M., Mick E., Mikhalev E., Benjamin E.J., Tanriverdi K., Freedman J.E. Sex diff erences in platelet toll-like receptors and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2015;35(4):1030–7. doi:10.1161/ATVBAHA.114.304954.; Clemetson K.J. Platelets and pathogens. Cell Mol Life Sci. 2010;67(4):495–8. doi:10.1007/s00018-009-0204-2.; Stark R.J., Aghakasiri N., Rumbaut R.E. Platelet-derived Toll-like receptor 4 (Tlr-4) is suffi cient to promote microvascular thrombosis in endotoxemia. PLoS One. 2012;7(7):e41254. doi:10.1371/journal.pone.0041254.; Cox D., Kerrigan S.W., Watson S.P. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost. 2011;9(6):1097–107. doi:10.1111/j.1538-7836.2011.04264.x.; Elgueta R., Benson M.J., de Vries V.C., Wasiuk A., Guo Y., Noelle R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72. doi:10.1111/j.1600-065X.2009.00782.x.; Danese S., Katz J.A., Saibeni S., Papa A., Gasbarrini A., Vecchi M., Fiocchi C. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of infl ammatory bowel disease patients. Gut. 2003;52(10):1435–41. doi:10.1136/gut.52.10.1435.; Yacoub D., Hachem A., Théorêt J.F., Gillis M.A., Mourad W., Merhi Y. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Arterioscler Thromb Vasc Biol. 2010;30(12):2424–33. doi:10.1161/ATVBAHA.110.216143.; Semple J.W., Italiano J.E. Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74. doi:10.1038/nri2956.; Youssefi an T., Drouin A., Massé J.M., Guichard J., Cramer E.M. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specifi c subcellular compartment and is enhanced by platelet activation. Blood. 2002;99(11):4021–9. doi:10.1182/blood-2001-12-0191.; Maouia A., Rebetz J., Kapur R., Semple J.W. The Immune Nature of Platelets Revisited. Transfus Med Rev. 2020;34(4):209–20. doi:10.1016/j.tmrv.2020.09.005.; Wong C.H., Jenne C.N., Petri B., Chrobok N.L., Kubes P. Nucleation of platelets with blood-borne pathogens on Kupff er cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol. 2013;14(8):785–92. doi:10.1038/ni.2631.; Mishan M.A., Ahmadiankia N., Bahrami A.R. CXCR4 and CCR7: Two eligible targets in targeted cancer therapy. Cell Biol Int. 2016;40(9):955–67. doi:10.1002/cbin.10631.; Seyfried T.N., Huysentruyt L.C. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73. doi:10.1615/critrevoncog.v18.i1-2.40.; Gay L.J., Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34. doi:10.1038/nrc3004.; Elaskalani O., Berndt M.C., Falasca M., Metharom P. Targeting Platelets for the Treatment of Cancer. Cancers (Basel). 2017;9(7):94. doi:10.3390/cancers9070094.; Melki I., Tessandier N., Zuff erey A., Boilard E. Platelet microvesicles in health and disease. Platelets. 2017;28(3):214–21. doi:10.1080/09537104.2016.1265924.; Naderi-Meshkin H., Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol. 2018;233(12):9167–78. doi:10.1002/jcp.26937.; Reneman R.S., Hoeks A.P. Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput. 2008;46(5):499–507. doi:10.1007/s11517-008-0330-2.; Erpenbeck L., Schön M.P. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood. 2010;115(17):3427–36. doi:10.1182/blood-2009-10-247296.; Gay L.J., Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553–4. doi:10.1016/j.ccr.2011.11.001.; Kitamura T., Qian B.Z., Pollard J.W. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86. doi:10.1038/nri3789.; Palumbo J.S., Degen J.L. Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res. 2007;120 Suppl 2: S22–8. doi:10.1016/S0049-3848(07)70127-5.; Borsig L. The role of platelet activation in tumor metastasis. Expert Rev Anticancer Ther. 2008;8(8):1247–55. doi:10.1586/14737140.8.8.1247.; Placke T., Örgel M., Schaller M., Jung G., Rammensee H.G., Kopp H.G., Salih H.R. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8. doi:10.1158/0008-5472.CAN-11-1872.; Gabrilovich D., Ishida T., Oyama T., Ran S., Kravtsov V., Nadaf S., Carbone D.P. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically aff ects the diff erentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66. PMID: 9834220.; Laxmanan S., Robertson S.W., Wang E., Lau J.S., Briscoe D.M., Mukhopadhyay D. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun. 2005;334(1):193–8. doi:10.1016/j.bbrc.2005.06.065.; Reddig P.J., Juliano R.L. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24(3):425–39. doi:10.1007/s10555-005-5134-3.; Alfano D., Iaccarino I., Stoppelli M.P. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels. J Biol Chem. 2006;281(26):17758–67. doi:10.1074/jbc.M601812200.; Douma S., Van Laar T., Zevenhoven J., Meuwissen R., Van Garderen E., Peeper D.S. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–9. doi:10.1038/nature02765.; Golebiewska E.M., Poole A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62. doi:10.1016/j.blre.2014.10.003.; Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. doi:10.1038/nrc2088.; Tanaka K., Okugawa Y., Toiyama Y., Inoue Y., Saigusa S., Kawamura M., Araki T., Uchida K., Mohri Y., Kusunoki M. Brainderived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS One. 2014;9(5):e96410. doi:10.1371/journal.pone.0096410.; Xiao Y.C., Yang Z.B., Cheng X.S., Fang X.B., Shen T., Xia C.F., Liu P., Qian H.H., Sun B., Yin Z.F., Li Y.F. CXCL8, overexpressed in colorectal cancer, enhances the resistance of colorectal cancer cells to anoikis. Cancer Lett. 2015;361(1):22–32. doi:10.1016/j.canlet.2015.02.021.; Zeng Q., McCauley L.K., Wang C.Y. Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. Implication in head and neck squamous cell carcinoma progression. J Biol Chem. 2002;277(51):50137–42. doi:10.1074/jbc.M208952200.; Luey B.C., May F.E. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8. doi:10.1186/s12943-015-0482-2.; Freedman J.E., Loscalzo J., Barnard M.R., Alpert C., Keaney J.F., Michelson A.D. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997;100(2):350–6. doi:10.1172/JCI119540.; Chanvorachote P., Pongrakhananon V., Chunhacha P. Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation. Biomed Res Int. 2014;2014:941359. doi:10.1155/2014/941359.; Bao W., Qiu H., Yang T., Luo X., Zhang H., Wan X. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma. PLoS One. 2013;8(7):e70616. doi:10.1371/journal.pone.0070616.; Jie X.X., Zhang X.Y., Xu C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget. 2017;8(46):81558–71. doi:10.18632/oncotarget.18277.; Moustakas A., Heldin C.H. Signaling networks guiding epithelialmesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20. doi:10.1111/j.1349-7006.2007.00550.x.; Palena C., Hamilton D.H., Fernando R.I. Infl uence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol. 2012;8(6):713–22. doi:10.2217/fon.12.59.; Li N. Platelets in cancer metastasis: To help the “villain” to do evil. Int J Cancer. 2016;138(9):2078–87. doi:10.1002/ijc.29847.; McCarty O.J., Mousa S.A., Bray P.F., Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and fi rm adhesion under dynamic fl ow conditions. Blood. 2000;96(5):1789–97. PMID: 10961878.; Janowska-Wieczorek A., Wysoczynski M., Kijowski J., MarquezCurtis L., Machalinski B., Ratajczak J., Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–60. doi:10.1002/ijc.20657.; Коваленко Т.А., Пантелеев М.А., Свешникова А.Н. Роль тканевого фактора в метастазировании, неоангиогенезе и гемостазе при онкологических заболеваниях. Онкогематология. 2019;14(2):70–85. doi:10.17650/1818-8346-2019-14-2-70-85.; Бутылин А.А., Пантелеев М.А., Атауллаханов Ф.И. Пространственная динамика свертывания крови. Российский химический журнал. 2007;51(1):45–50.; Подоплелова Н.А., Сулимов В.Б., Тащилова А.С., Ильин И.С., Пантелеев М.А., Ледeнева И.В., Шихалиев Х.С. Свертывание крови в XXI веке: новые знания, методы и перспективы для терапии. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(1):139–57. doi:10.24287/1726-1708-2020-19-1-139-157.; Fischer E.G., Riewald M., Huang H.Y., Miyagi Y., Kubota Y., Mueller B.M., Ruf W. Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor. J Clin Invest. 1999;104(9):1213–21. doi:10.1172/JCI7750.; Orellana R., Kato S., Erices R., Bravo M.L., Gonzalez P., Oliva B., Cubillos S., Valdivia A., Ibañez C., Brañes J., Barriga M.I., Bravo E., Alonso C., Bustamente E., Castellon E., Hidalgo P., Trigo C., Panes O., Pereira J., Mezzano D., Cuello M.A., Owen G.I. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290. doi:10.1186/s12885-015-1304-z.; Läubli H., Spanaus K.S., Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114(20):4583–91. doi:10.1182/blood-2008-10-186585.; Labelle M., Begum S., Hynes R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90. doi:10.1016/j.ccr.2011.09.009.; Padua D., Zhang X.H., Wang Q., Nadal C., Gerald W.L., Gomis R.R., Massagué J. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66–77. doi:10.1016/j.cell.2008.01.046.; Bielenberg D.R., Zetter B.R. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015;21(4):267–73. doi:10.1097/PPO.0000000000000138.; Wojtukiewicz M.Z., Sierko E., Hempel D., Tucker S.C., Honn K.V. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017;36(2):249–62. doi:10.1007/s10555-017-9673-1.; He A.D., Xie W., Song W., Ma Y.Y., Liu G., Liang M.L., Da X.W., Yao G.Q., Zhang B.X., Gao C.J., Xiang J.Z., Ming Z.Y. Platelet releasates promote the proliferation of hepatocellular carcinoma cells by suppressing the expression of KLF6. Sci Rep. 2017;7(1):3989. doi:10.1038/s41598-017-02801-1.; Banskota S., Gautam J., Regmi S.C., Gurung P., Park M.H., Kim S.J., Nam T.G., Jeong B.S., Kim J.A. BJ-1108, a 6-Amino-2,4,5- Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX. Pathway. PLoS One. 2016;11(1):e0148133. doi:10.1371/journal.pone.0148133.; Wang S., Li Z., Xu R. Human Cancer and Platelet Interaction, a Potential Therapeutic Target. Int J Mol Sci. 2018;19(4):1246. doi:10.3390/ijms19041246.; https://journal.nodgo.org/jour/article/view/1040

  18. 18
    Academic Journal

    Πηγή: Russian Journal of Infection and Immunity; Vol 14, No 3 (2024); 586-592 ; Инфекция и иммунитет; Vol 14, No 3 (2024); 586-592 ; 2313-7398 ; 2220-7619

    Περιγραφή αρχείου: application/pdf

  19. 19
    Academic Journal

    Συνεισφορές: This study was performed under the state assignment of D.O. Ott Institute of Obstetrics, Gynecology, and Reproductive Medicine, project number 1021062512052-5-3.2.2., Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект №1021062512052-5-3.2.2).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 3 (2024); 202-210 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 3 (2024); 202-210 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1408/692; Milyutina Y.P., Mikhailova V.A., Pyatygina K.M., Demidova E.S., Malygina D.A., Tertychnaia T.E., Arutjunyan A.V., Sokolov D.I., Selkov S.A. Role of caspases in the cytotoxicity of NK-92 cells in various models of coculturing with trophoblasts. Biochemistry (Mosc.). 2019;84(10):1186–1196.; Markova K., Mikhailova V., Milyutina Y., Korenevsky A., Sirotskaya A., Rodygina V., Tyshchuk E., Grebenkina P., Simbirtsev A., Selkov S., Sokolov D. Effects of microvesicles derived from NK cells stimulated with IL-1β on the phenotype and functional activity of endothelial cells. Int. J. Mol. Sci. 2021;22(24):13663.; Del Zotto G., Marcenaro E., Vacca P., Sivori S., Pende D., Della Chiesa M., Moretta F., Ingegnere T., Mingari M.C., Moretta A., Moretta L. Markers and function of human NK cells in normal and pathological conditions. Cytometry B Clin. Cytom. 2017;92(2):100–114.; Михайлова В.А., Белякова К.Л., Сельков С.А., Соколов Д.И. Особенности дифференцировки NK-клеток: CD56dim и CD56bright NK-клетки во время и вне беременности. Мед. иммунол. 2017;19(1):19–26.; Тыщук Е.В., Михайлова В.А., Сельков С.А., Соколов Д.И. Естественные киллеры: происхождение, фенотип, функции. Мед. иммунол. 2021;23(6):1207–1228.; Bazhenov D.O., Mikhailova V.A., Furaeva K.L., Vyaz’mina L.P., Sokolov D.I., Sel’kov S.A. The role of cytokines in maintaining the dynamics of cell-cell interaction between natural killer cells and trophoblast cells. Bull. Exp. Biol. Med. 2022;172(5):622–631.; Bazhenov D., Mikhailova V., Nikolaenkov I., Markova K., Salloum Z., Kogan I., Gzgzyan A., Selkov S., Sokolov D. The uteroplacental contact zone cytokine influence on NK cell cytotoxicity to trophoblasts. Gynecol. Endocrinol. 2020;36(Suppl. 1):1–6.; Mikhailova V.A., Bazhenov D.O., Viazmina L.P., Agnaeva A.O., Bespalova O.N., Sel’kov S.A., Sokolov D.I. Cytotoxic activity of peripheral blood NK cells towards trophoblast cells during pregnancy. Bull. Exp. Biol. Med. 2019;166(4):567–573.; Belyakova K.L., Stepanova O.I., Sheveleva A.R., Mikhailova V.A., Sokolov D.I., Sel’kov S.A. Interaction of NK cells, trophoblast, and endothelial cells during angiogenesis. Bull. Exp. Biol. Med. 2019;167(1):169–176.; Bazhenov D.O., Khokhlova E.V., Viazmina L.P., Furaeva K.N., Mikhailova V.A., Kostin N.A., Selkov S.A., Sokolov D.I. Characteristics of natural killer cell interaction with trophoblast cells during pregnancy. Curr. Mol. Med. 2020;20(3):202–219.; Sokolov D., Gorshkova A., Markova K., Milyutina Y., Pyatygina K., Zementova M., Korenevsky A., Mikhailova V., Selkov S. Natural killer cell derived microvesicles affect the function of trophoblast cells. Membranes. 2023;13(2):213.; Korenevsky A.V., Milyutina Y.P., Bochkovsky S.K., Oshkolova A.A., Bespalova O.N., Selkov S.A., Sokolov D.I. Micropreparative cell lysate fractionation in studying the effect of natural killer cells on phenotype, migration and apoptosis of trophoblast cells in vitro. J. Evol. Biochem. Physiol. 2024;60(4):1385–1398.; Амчиславский Е.И., Соколов Д.И., Сельков С.А., Фрейдлин И.С. Пролиферативная активность эндотелиальных клеток человека линии EA.hy926 и ее модуляция. Цитология. 2005;47(5):393–403.; Nilles J., Weiss J., Theile D. Crystal violet staining is a reliable alternative to bicinchoninic acid assay-based normalization. Biotechniques. 2022;73(3):131–135.; Bass J.J., Wilkinson D.J., Rankin D., Phillips B.E., Szewczyk N.J., Smith K., Atherton P.J. An overview of technical considerations for Western blotting applications to physiological research. Scand. J. Med. Sci. Sports. 2017;27(1):4–25.; Kohler P.O., Bridson W.E. Isolation of hormoneproducing clonal lines of human choriocarcinoma. J. Clin. Endocrinol. Metab. 1971;32(5):683–687.; Gong J.H., Maki G., Klingemann H.G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994;8(4):652–658.; Гребенкина П.В., Михайлова В.А., Ошколова А.А., Вершинина С.О., Духинова М.С., Баженов Д.О., Сельков С.А., Соколов Д.И. Децидуальные естественные киллеры и клетки трофобласта: клеточные, гуморальные и молекулярные механизмы взаимодействия. Мед. иммунол. 2022;24(6):1085–1108.; Hanna J., Goldman-Wohl D., Hamani Y., Avraham I., Greenfield C., Natanson-Yaron S., Prus D., Cohen-Daniel L., Arnon T.I., Manaster I., Gazit R., Yutkin V., Benharroch D., Porgador A., Keshet E., Yagel S., Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 2006;12(9):1065–1074.; Korenevsky A.V., Gert T.N., Berezkina M.E., Sinyavin S.A., Mikhailova V.A., Markova K.L., Simbirtsev A.S., Selkov S.A., Sokolov D.I. Protein fractions of natural killer cell lysates affect the phenotype, proliferation and migration of endothelial cells in vitro. J. Evol. Biochem. Physiol. 2022;58(Suppl. 1):S134–S150.; Korenevsky A.V., Berezkina M.E., Gert T.N., Sinyavin S.A., Selkov S.A., Sokolov D.I. Phenotypic and functional characteristics of endothelial cells: the in vitro effects of protein fractions from the lysate of natural killer-derived microvesicles. Мед. иммунол. 2022;24(3):463–480.; Li Q., Li Z., Luo T., Shi H. Targeting the PI3K/ AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol. Biomed. 2022;3(1):47.; Iida M., Harari P.M., Wheeler D.L., Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat. Res. 2020;819–820:111690.; Guo Y.J., Pan W.W., Liu S.B., Shen Z.F., Xu Y., Hu L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020;19(3):1997–2007.; Ahmad J., Ahamad J., Algahtani M.S., Garg A., Shahzad N., Ahmad M.Z., Imam S.S. Nanotechnologymediated delivery of resveratrol as promising strategy to improve therapeutic efficacy in triple negative breast cancer (TNBC): progress and promises. Expert Opin. Drug Deliv. 2024;21(2):229–244.; Cagnol S., Van Obberghen-Schilling E., Chambard J.C. Prolonged activation of ERK1,2 induces FADD-independent caspase 8 activation and cell death. Apoptosis. 2006;11(3):337–346.; Drosopoulos K.G., Roberts M.L., Cermak L., Sasazuki T., Shirasawa S., Andera L., Pintzas A. Transfor mation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J. Biol. Chem. 2005;280(24):22856–22867.; Maik-Rachline G., Hacohen-Lev-Ran A., Seger R. Nuclear ERK: mechanism of translocation, substrates, and role in cancer. Int. J. Mol. Sci. 2019;20(5):1194.; Gao X., Zhang J. Akt signaling dynamics in plasma membrane microdomains visualized by FRET-based reporters. Commun. Integr. Biol. 2009;2(1):32–34.

  20. 20
    Academic Journal

    Συνεισφορές: The Ministry of Health of the Republic of Belarus (grant no. 20221498) supported the work, Работа выполнена при поддержке Министерства здравоохранения Республики Беларусь (грант № 20221498)

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 67, № 6 (2023); 490-498 ; Доклады Национальной академии наук Беларуси; Том 67, № 6 (2023); 490-498 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1165/1166; Platelet gel for healing cutaneous chronic wounds / G. Crovetti [et al.] // Transfus. Apher. Sci. – 2004. – Vol. 30, N 2. – P. 145–151. https://doi.org/10.1016/j.transci.2004.01.004; Platelet gel: a new therapeutic tool with great potential / A. Piccin [et al.] // Blood Transfus. – 2017. – Vol. 15, N 4. – P. 333–340. https://doi.org/10.2450/2016.0038-16; Platelet-derived bio-products: classification update, applications, concerns and new perspectives / A. Acebes-Huerta [et al.] // Transfus. Apheresis Sci. – 2020. – Vol. 59, N 1. – Art. 102716. https://doi.org/10.1016/j.transci.2019.102716; Choukroun, J. Platelet-rich fibrin “PRF” and regenerative medicine: ‘The low-speed concept’ / J. Choukroun, A. A. Aalam, R. J. Miron // MSCs and Innovative Biomaterials in Dentistry. – 2017. – Vol. 1, N 2. – P. 21–41. https://doi.org/10.1007/978-3-319-55645-1_2; Evaluation of the effects of homologous platelet gel on healing lower extremity wounds in patients with diabetes / G.-Q. Shan [et al.] // Int. J. Low Extrem. Wounds. – 2013. – Vol. 12, N 1. – P. 22–29. https://doi.org/10.1177/1534734613477113; Экспериментальное и клиническое обоснование применения плазмы, обогащенной растворимыми факторами тромбоцитов, для лечения длительно незаживающих ран при сахарном диабете / А. А. Троянов [и др.] // Медицинский журнал. – 2018. – № 2. – С. 112–117.; Плазма крови, обогащенная растворимыми факторами тромбоцитов: получение, стандартизация, медицинское применение / М. П. Потапнев [и др.] // Здравоохранение. – 2018. –№ 10. – С. 38–44.; International Forum on GMP-grade human platelet lysate for cell propagation: summary / D. Strunk [et al.] // Vox Sang. – 2018. – Vol. 113, N 1. – P. 80–87. https://doi.org/10.1111/vox.12593; Treatment of recalcitrant ulcers with allogeneic platelet gel from pooled platelets in aged hypomobile patients / N. Greppi [et al.] // Biologicals. – 2011. – Vol. 39, N 2. – P. 73–80. https://doi.org/10.1016/j.biologicals.2011.01.002; Effects of Aprotinin or Tranexamic Acid on Proteolytic/Cytokine Profiles in Infants After Cardiac Surgery / T.-Y. Hsia [et al.] // Ann. Thorac. Surg. – 2010. – Vol. 89, N 6. – P. 1843–1852. https://doi.org/10.1016/j.athoracsur.2010.02.069; Progressive Platelet Rich Fibrin tissue regeneration matrix: Description of a novel, low cost and effective method for the treatment of chronic diabetic ulcers-Pilot study / C. J. Saboia-Dantas [et al.] // PLoS One. – 2023. – Vol. 18, N 5. – P. 11. https://doi.org/10.1371/journal.pone.0284701; Platelet-rich fibrin and soft tissue wound healing: a systematic review / R. J. Miron [et al.] // Tissue Eng. Part B Rev. – 2017. – Vol. 23, N 1. – P. 83–99. https://doi.org/10.1089/ten.teb.2016.0233; Богдан, В. Г. Проспективное рандомизированное клиническое исследование эффективности применения аутологичных тромбоцитарных концентратов для стимуляции регенерации трофических язв венозной этиологии / В. Г. Богдан, Д. А. Толстов // Новости хирургии. – 2014. – Т. 22, № 3. – С. 344–350.; Difference in levels of platelet-derived microparticles in platelet components prepared using the platelet rich plasma, buffy coat, and apheresis procedures / E. Noulsri [et al.] // Transfusion and Apheresis Science. – 2017. – Vol. 56, N 2. – P. 135–140. https://doi.org/10.1016/j.transci.2016.10.006; Oneto, P. PRP in wound healing applications / P. Oneto, J. Etuiain // Platelets. – 2021. – Vol. 32, N 2. – P. 189–199. https://doi.org/10.1080/09537104.2020.1849605; https://doklady.belnauka.by/jour/article/view/1165