Showing 1 - 5 results of 5 for search '"производные эритропоэтина"', query time: 0.51s Refine Results
  1. 1
    Academic Journal

    Contributors: The study was supported by the grant of the President of the Russian Federation MD-757.2020.7 and the RFBR grant project No. 19-34-90073., Исследование выполнено при поддержке гранта Президента РФ MD-757.2020.7 и гранта РФФИ проект №19-34-90073.

    Source: Pharmacy & Pharmacology; Том 9, № 4 (2021); 294-305 ; Фармация и фармакология; Том 9, № 4 (2021); 294-305 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2021-9-4

    File Description: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/880/744; https://www.pharmpharm.ru/jour/article/view/880/745; Jelkmann W. Erythropoietin after a century of research: younger than ever // European Journal of Haematology. – 2007. – Vol. 78, No.3. – Р. 183–205. DOI:10.1111/j.1600-0609.2007.00818.x.; Heikal L., Ghezzi P., Mengozzi M., Stelmaszczuk B., Feelisch M., Ferns G.A. Erythropoietin and a nonerythropoietic peptide analog promote aortic endothelial cell repair under hypoxic conditions: role of nitric oxide // Hypoxia (Auckl). – 2016. – Vol. 16, No.4. – Р. 121–133. DOI:10.2147/HP.S104377.; Zhang Y., Wang L., Dey S., Alnaeeli M., Suresh S., Rogers H., Teng R., Noguchi C.T. Erythropoietin action in stress response, tissue maintenance and metabolism // International journal of molecular sciences. – 2014. – Vol. 15, No.6. – Р. 10296–10333. DOI:10.3390/ijms150610296.; Wu H., Liu X., Jaenisch R., Lodish H.F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor // Cell. – 1995. – No.83. – P. 59–67. DOI:10.1016/0092-8674(95)90234-1.; Lin C.S., Lim S.K., D’Agati V., Costantini F. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis // Genes & Development. – 1996. – No.10. – P. 154–164. DOI:10.1101/gad.10.2.154.; Ueba H., Shiomi M., Brines M., Yamin M., Kobayashi T., Ako J., Momomura S., Cerami A., Kawakami M. Suppression of coronary atherosclerosis by helix B surface Peptide, a nonerythropoietic, tissue-protective compound derived from erythropoietin // Molecular medicine (Cambridge, Mass.). – 2013. – Vol. 19, No.1. – Р. 195–202. DOI:10.2119/molmed.2013.00037.; Lu K.Y., Ching L.C., Su K.H., Yu Y.B., Kou Y.R., Hsiao S.H., Huang Y.C., Chen C.Y., Cheng L.C., Pan C.C., Lee T.S. Erythropoietin suppresses the formation of macrophage foam cells: role of liver X receptor alpha // Circulation. – 2010. – Vol. 121, No.16. – P. 1828–1837. DOI:10.1161/CIRCULATIONAHA.109.876839.; Haine L., Yegen C.H., Marchant D., Richalet J.P., Boncoeur E., Voituron N. Cytoprotective effects of erythropoietin: What about the lung? // Biomedicine & Pharmacotherapy. – 2021. –No.139 – P. 111547. DOI:10.1016/j.biopha.2021.111547.; Brines M., Grasso G., Fiordaliso F., Sfacteria A., Ghezzi P., Fratelli M., Latini R., Xie Q.W., Smart J., Su-Rick C.J., Pobre E., Diaz D., Gomez D., Hand C., Coleman T., Cerami A. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor // Proceedings of the National Academy of Sciences USA. – 2004. – Vol. 101, No.41. – P. 14907–14912. DOI:10.1073/pnas.0406491101.; Anagnostou A., Liu Z., Steiner M., Chin K., Lee E.S., Kessimian N., Noguchi C.T. Erythropoietin receptor mRNA expression in human endothelial cells // Proceedings of the National Academy of Sciences USA. – 1994. –No.91. – P. 3974–3978. DOI:10.1073/pnas.91.9.3974.; Anagnostou A., Lee E.S., Kessimian N., Levinson R., Steiner M. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells // Proceedings of the National Academy of Sciences USA. – 1990. – No.87. – P. 5978–5982. DOI:10.1073/pnas.87.15.5978.; Hou J., Wang S., Shang Y.C., Chong Z.Z., Maiese K. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress // Current Neurovascular Research. – 2011. –No.8. – P. 220–235. DOI:10.2174/156720211796558069.; Beleslin-Cokic B.B., Cokic V.P., Wang L., Piknova B., Teng R., Schechter A.N., Noguchi C.T. Erythropoietin and hypoxia increase erythropoietin receptor and nitric oxide levels in lung microvascular endothelial cells // Cytokine. – 2011. –No.54. – P. 129–135. DOI:10.1016/j.cyto.2011.01.015.; Kanagy N.L., Perrine M.F., Cheung D.K., Walker B.R. Erythropoietin administration in vivo increases vascular nitric oxide synthase expression // Journal of Cardiovascular Pharmacology. – 2003. – No.42. – P. 527–533. DOI:10.1097/00005344-200310000-00011.; Corwin H.L., Gettinger A., Fabian T.C., May A., Pearl R.G., Heard S., An R., Bowers P.J., Burton P., Klausner M.A., Corwin M.J. Efficacy and safety of epoetin alfa in critically ill patients // The New England Journal of Medicine. – 2007. – No.357. – P. 965–76. DOI:10.1056/NEJMoa071533.; Brines M., Patel N.S., Villa P., Brines C., Mennini T., De Paola M., Erbayraktar Z., Erbayraktar S., Sepodes B., Thiemermann C., Ghezzi P., Yamin M., Hand C.C., Xie Q.W., Coleman T., Cerami A. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin // Proceedings of the National Academy of Sciences USA. – 2008. – No.105. – P. 10925–10930. DOI:10.1073/pnas.0805594105.; Erbayraktar Z., Erbayraktar S., Yilmaz O., Cerami A., Coleman T., Brines M. Nonerythropoietic tissue protective compounds are highly effective facilitators of wound healing // Molecular Medicine. – 2009. – No.15. – P. 235–241. DOI:10.2119/molmed.2009.00051.; Ueba H., Brines M., Yamin M., Umemoto T., Ako J., Momomura S., Cerami A., Kawakami M. Cardioprotection by a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin // Proceedings of the National Academy of Sciences USA. – 2010. – No.107. – P. 14357–14362. DOI:10.1073/pnas.1003019107.; Ahmet I., Tae H.J., Juhaszova M., Riordon D.R., Boheler K.R., Sollott S.J., Brines M., Cerami A., Lakatta E.G., Talan M.I. A small nonerythropoietic helix B surface peptide based upon erythropoietin structure is cardioprotective against ischemic myocardial damage // Molecular Medicine. –2011. – Vol. 17, No.3–4. – P. 194–200. DOI:10.2119/molmed.2010.00235.; Пученкова О.А., Надеждин С.В., Солдатов В.О., Жученко М.А., Коршунова Д.С., Кубекина М.В., Коршунов Е.Н., Корокина Л.В., Куликов А.Л., Голубинская П.А., Покровский В.М., Патраханов Е.А., Лебедев П.Р., Гуреев В.В., Денисюк Т.А., Беляева В.С., Мовчан Е.А., Лепетюха Е.И., Покровский М.В. Изучение антиатеросклеротической и эндотелиопротективной активности пептидных агонистов гетерорецептора EpoR/CD131 // Фармация и фармакология. – 2020. – Т. 8, № 2 – С. 100–111. DOI:10.19163/2307-9266-2020-8-2-100-111.; Stubbendorff M., Hua X., Deuse T.l. Inducing myointimal hyperplasia versus atherosclerosis in mice: an introduction of two valid models // Journal of Visualized Experiments. – 2014. – No.87. – P. 51459. DOI:10.3791/51459.; Tediashvili G., Wang D., Reichenspurner H., Deuse T., Schrepfer S. Balloon-based Injury to Induce Myointimal Hyperplasia in the Mouse Abdominal Aorta // Journal of Visualized Experiments. – 2018. – No. 132. – P. 56477. DOI:10.3791/56477.; Teng R., Calvert J.W., Sibmooh N., Piknova B., Suzuki N., Sun J., Martinez K., Yamamoto M., Schechter A.N., Lefer D.J., Noguchi C.T. Acute erythropoietin cardioprotection is mediated by endothelial response. Basic Res. Cardiol. – 2011. – No.106. – P. 343–354. DOI:10.1007/s00395-011-0158-z.; Yasuda H., Iwata Y., Nakajima S., Furuichi K., Miyake T., Sakai N., Kitajima S., Toyama T., Shinozaki Y., Sagara A., Miyagawa T., Hara A., Shimizu M., Kamikawa Y., Sato K., Oshima M, Yoneda-Nakagawa S., Kaneko S., Wada T. Erythropoietin signal protected human umbilical vein endothelial cells from high glucose-induced injury // Nephrology (Carlton). – 2019. – Vol. 24, No. 7. – P. 767–774. DOI:10.1111/nep.13518.; Beleslin-Cokic B.B., Cokic V.P., Yu X., Weksler B.B., Schechter A.N., Noguchi C.T. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells // Blood. – 2004. – No.104. – P. 2073–2080. DOI:10.1182/blood-2004-02-0744.; Корокин М.B., Солдатов В.О., Титце А., Голубев И.В., Белых А.Е., Кубекина М.В., Пученкова О.А., Денисюк Т.А., Гуреев В.В., Покровская Т.Г., Гудырев О.С., Жученко М.А., Затолокина М.А., Покровский М.В. 11-аминокислотный пептид, имитирующий структуру a-спирали b эритропоэтина, улучшает функцию эндотелия, но стимулирует тромбообразование у крыс // Фармация и фармакология. – 2019. – Т. 7, № 6. – С. 312–320. DOI:10.19163/2307-9266-2019-7-6-312-320.; Shokrzadeh M, Etebari M, Ghassemi-Barghi N. An engineered non-erythropoietic erythropoietin-derived peptide, ARA290, attenuates doxorubicin induced genotoxicity and oxidative stress // Toxicology in Vitro. – 2020. – No.66. – P. 104864. DOI:10.1016/j.tiv.2020.104864.; Belyaeva V.S., Stepenko Yu.V., Lyubimov I.I., Kulikov A.L., Tietze A.A., Kochkarova I.S., Martynova O.V., Pokopeyko O.N., Krupen’kina L.A., Nagikh A.S., Pokrovskiy V.M., Patrakhanov E.A., Belashova A.V., Lebedev P.R., Gureeva A.V. Non-hematopoietic erythropoietin-derived peptides for atheroprotection and treatment of cardiovascular diseases // Research Results in Pharmacology. – 2020. – Vol. 6, No.3. – P. 75–86. DOI:10.3897/rrpharmacology.6.58891.; Golubev I.V., Gureev V.V., Korokin M.V., Zatolokina M.A., Avdeeva E.V., Gureeva A.V., Rozhkov I.S., Serdyuk EA, Soldatova VA. Preclinical study of innovative peptides mimicking the tertiary structure of the α-helix B of erythropoietin // Research Results in Pharmacology. – 2020. – Vol. 6, No. 2. – P. 85–96. DOI:10.3897/rrpharmacology.6.55385).; Golubev I.V., Gureev V.V., Korokina L.V., Gudyrev O.S., Pokrovskaia T.G., Pokopeiko O.N., Pokrovskii V.M., Artyushkova E.B., Korokin M.V. The anti-aggregation activity of new 11-amino acid of erythropoietin derivate containing tripeptide motifs // Archivos venezolanos de farmacología y terapéutica. – 2020. – Vol. 39, No.5. – P. 588–591. DOI:10.5281/zenodo.4264989.; Warren J.S., Zhao Y., Yung R., Desai A. Recombinant human erythropoietin suppresses endothelial cell apoptosis and reduces the ratio of Bax to Bcl-2 proteins in the aortas of apolipoprotein E-deficient mice // Journal of Cardiovascular Pharmacology. – 2011. – Vol. 57, No. 4. – P. 424–33. DOI:10.1097/FJC.0b013e31820d92fd.; Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation // Microbes and Infection. – 2012. – Vol. 14, No. 3. – P. 238–246. DOI:10.1016/j.micinf.2011.10.005.; https://www.pharmpharm.ru/jour/article/view/880

  2. 2
  3. 3
    Academic Journal

    Source: Pharmacy & Pharmacology; Том 8, № 2 (2020); 100-111 ; Фармация и фармакология; Том 8, № 2 (2020); 100-111 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2020-8-2

    File Description: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/687/602; https://www.pharmpharm.ru/jour/article/view/687/605; Zárate A, Manuel-Apolinar L, Basurto L, De la Chesnaye E, Saldívar I. Cholesterol and atherosclerosis. Historical considerations and treatment. Arch Cardiol Mex. 2016; 86(2):163-9. DOI:10.1016/j.acmx.2015.12.002.; Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation; 2004; 109(23):27‐32. doi:10.1161/01.CIR.0000131515.03336.f8.; Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat ClinPractCardiovasc Med. 2009; 6(1):16‐26. DOI:10.1038/ncpcardio1397.; Sorokin A, Kotani K, Bushueva O, Taniguchi N, Lazarenko V. The cardio-ankle vascular index and ankle-brachial index in young Russians . Journal of atherosclerosis and thrombosis. 2015; 22(2):211-8. DOI:10.5551/jat.26104.; Polonikov A., Bykanova M, Ponomarenko I, Sirotina S, Bocharova A, Vagaytseva K, Shvetsov Y. The contribution of CYP2C gene subfamily involved in epoxygenase pathway of arachidonic acids metabolism to hypertension susceptibility in Russian population. Clinical and Experimental Hypertension. 2017; 39(4):306-311. DOI:10.1080/10641963.2016.1246562.; Bennett M.R, Sinha S, Owens G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res. 2016; 118(4):692‐702. DOI:10.1161/CIRCRESAHA.115.306361.; Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. CurrAtheroscler Rep. 2017; 19(11):42s DOI:10.1007/s11883-017-0678-6.; Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular endothelium. Proc. Natl. Acad. Sci. U.S.A. 2006; 103:5379–5384. DOI:10.1073/pnas.0601026103.; Brines M, Patel NS, Villa P, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl AcadSci U S A. 2008; 105(31):10925-10930. DOI:10.1073/pnas.0805594105.; Korokin MV, Soldatov VO, Tietze AA, Golubev MV, Belykh AE, Kubekina MV, Puchenkova OA, Denisyuk TA, Gureyev VV, Pokrovskaya TG, Gudyrev OS, Zhuchenko MA, Zatolokina MA, Pokrovskiy MV. 11-amino acid peptide imitating the structure of erythropoietin α-helix b improves endothelial function, but stimulates thrombosis in rats. Pharmacy & Pharmacology. 2019; 7(6):312-320. Russian. DOI:10.19163/2307-9266-2019-7-6-312-320.; Korokin M, Gureev V, Gudyrev O, Golubev I, Korokina L, Peresypkina A, Pokrovskaia T, Lazareva G, Soldatov V, Zatolokina M, Pobeda A, Avdeeva E, Beskhmelnitsyna E, Denisyuk T, Avdeeva N, Bushueva O, Pokrovskii M. Erythropoietin Mimetic Peptide (pHBSP) Corrects Endothelial Dysfunction in a Rat Model of Preeclampsia. Int. J. Mol. Sci. 2020; 21:6759. DOI:10.3390/ijms21186759.; Golubev IV, Gureev VV, Korokin MV, Zatolokina MA, Avdeeva EV, Gureeva AV, Rozhkov IS, Serdyuk EA, Soldatova VA. Preclinical study of innovative peptides mimicking the tertiary structure of the α-helix B of erythropoietin. Research Results in Pharmacology. 2020; 6(2):85-96. DOI:10.3897/rrpharmacology.6.55385.; Trifunovic A, Wredenberg A, Falkenberg M. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004; 429:417–423. DOI:10.1038/nature02517.; Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005. 309(5733):481-484. DOI:10.1126/science.1112125.; Zvartsev RV, Korshunova DS, Gorshkova EA., et al. Neonatal Lethality and Inflammatory Phenotype of the New Transgenic Mice with Overexpression of Human Interleukin-6 in Myeloid Cells. DoklBiochemBiophys. 2018; 483(1):344-347. DOI:10.1134/S1607672918060157.; Stubbendorff M, Hua X, Deuse T, et al. Inducing myointimal hyperplasia versus atherosclerosis in mice: an introduction of two valid models. J Vis Exp. 2014; 87:51459. DOI:10.3791/51459.; Tediashvili G, Wang D, Reichenspurner H, Deuse T, Schrepfer S. Balloon-based Injury to Induce Myointimal Hyperplasia in the Mouse Abdominal Aorta. J Vis Exp. 2018; 132:56477. DOI:10.3791/56477.; Molina-Sánchez P, Andrés V. Isolation of Mouse Primary Aortic Endothelial Cells by Selection with Specific Antibodies. Methods in Mouse Atherosclerosis. Methods in Molecular Biology. Humana Press, New York, NY. 2015; 1339. DOI:10.1007/978-1-4939-2929-0_7.; Stumpf JD, Saneto RP, Copeland WC. Clinical and molecular features of POLG-related mitochondrial; Kusov P, Deikin A. Developing Novel Transgenic Mice Model Of Atherogenesis With Conditional Oxidative Stress By Introduction Of Epithelium-Specific Inducible Mitochondrial Polg With Mutagenic Activity. Atherosclerosis. 2019; 287:99 s.DOI:10.1016/j.atherosclerosis.2019.06.287.; Poznyak AV, Silaeva YY, Orekhov AN, Deykin AV. Animal models of human atherosclerosis: current progress. Braz J Med Biol Res. 2020. 53(6):9557 s. DOI:10.1590/1414-431x20209557.; Mushenkova NV, Summerhill VI, Silaeva YY, Deykin AV, Orekhov AN. Modelling of atherosclerosis in genetically modified animals. Am J Transl Res. 2019.11(8):4614-4633.; Volobueva AS, Orekhov AN, Deykin AV. An update on the tools for creating transgenic animal models of human diseases - focus on atherosclerosis. Braz J Med Biol Res. 2019; 52(5):8108. DOI:10.1590/1414-431X20198108.; Bittorf T, Jaster R, Lüdtke B, Kamper B, Brock J. Requirement for JAK2 in erythropoietin-induced signalling pathways . Cell Signal. 1997; 9(1):85-89. DOI:10.1016/s0898-6568(96)00121-0.; Peng B, Kong G, Yang C. et al. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis. 2020; 11(79). DOI:10.1038/s41419-020-2276-8.; Warren JS, Zhao Y, Yung R, Desai A. Recombinant human erythropoietin suppresses endothelial cell apoptosis and reduces the ratio of Bax to Bcl-2 proteins in the aortas of apolipoprotein E-deficient mice. Journal of Cardiovascular Pharmacology. 2011; 57(4):424-433. DOI:10.1097/fjc.0b013e31820d92fd.; Bäck M, Yurdagul A, Tabas I. et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019; 16:389–406. DOI:10.1038/s41569-019-0169-2.; Ley K, Huo Y. VCAM-1 is critical in atherosclerosis. J Clin Invest. 2001; 107(10):1209-1210. DOI:10.1172/JCI13005.; Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry (Mosc). 2016; 81(11):1358-1370. DOI:10.1134/S0006297916110134.; Fotis L, Agrogiannis G, Vlachos IS, Pantopoulou A, Margoni A, Kostaki M, Verikokos C, Tzivras D, Mikhailidis DP, Perrea D. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclerosis in a rat model. In Vivo. 2012; 26:243–250.; Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect. 2012; 14(3):238-246. DOI:10.1016/j.micinf.2011.10.005.; Liu Y, Luo B, Shi R, et al. Nonerythropoietic Erythropoietin-Derived Peptide Suppresses Adipogenesis, Inflammation, Obesity and Insulin Resistance. Sci Rep. 2015:515134. DOI:10.1038/srep15134.; Kimáková P, Solár P, Solárová Z, Komel R, Debeljak N. Erythropoietin and Its Angiogenic Activity Int J Mol Sci. 2017; 18(7):1519. DOI:10.3390/ijms18071519.; Michel JB, Martin-Ventura JL, Nicoletti A, Ho-Tin-Noe B. Pathology of human plaque vulnerability: mechanisms and consequences of intraplaquehaemorrhages. Atherosclerosis. 2014; 234(2) 311–319.; Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017; 12:18-34. DOI:10.1016/j.redox.2017.01.007.; https://www.pharmpharm.ru/jour/article/view/687

  4. 4
  5. 5