-
1Academic Journal
Συγγραφείς: A. A. Lamaka, A. V. Gutarau, N. G. Shcherbakou, P. V. Ivuts, А. А. Ломако, А. В. Гуторов, Н. Г. Щербаков, П. В. Ивуть
Πηγή: Devices and Methods of Measurements; Том 14, № 1 (2023); 7-17 ; Приборы и методы измерений; Том 14, № 1 (2023); 7-17 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2023-14-1
Θεματικοί όροι: сшивка изображений, spectrometer, spatial resolution, software synchronization, image connection, спектрометр, пространственное разрешение, программная синхронизация
Περιγραφή αρχείου: application/pdf
Relation: https://pimi.bntu.by/jour/article/view/804/647; Lu H., Fan T., Ghimire P., Deng L. Experimental Evaluation and Consistency Comparison of UAV Multispectral Minisensors. Remote Sens., 2020, no. 12(16), рр. 2542. DOI:10.3390/rs12162542; Iizuka K., Itoh M., Shiodera S., Matsubara T., Dohar M., Watanabe K. Advantages of unmanned aerial vehicle (UAV) photogrammetry for landscape analysis compared with satellite data: A case study of postmining sites in Indonesia. Cogent Geosci, 2018, vol. 4, pp. 1498180. DOI:10.1080/23312041.2018.1498180; Dash J.P., Watt M.S., Pearse G.D., Heaphy M., Dungey H.S. Assessing very high-resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS J. Photogramm, 2017, vol. 131, pp. 1–14. DOI:10.1016/j.isprsjprs.2017.07.007; Bendig J., Yu K., Aasen H., Bolten A., Bennertz S., Broscheit J., Gnyp M.L., Bareth G. Combining UAVbased plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs., 2015, vol. 39, pp. 79–87. DOI:10.1016/j.jag.2015.02.012; Candiago S., RemondinoF., De Giglio M., Dubbini M., Gattelli M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens., 2015, vol. 7, pp. 4026– 4047. DOI:10.3390/rs70404026; Gutarau A.V., Lamaka A.A., Belyaev B.I., SosenkoV.A., Ivut P.V. Unmanned Aerial Spectrometry Vehicle. The 8th Belarussian Space Congress: materials, Minsk, 2022, October 25‒27, vol. 1, pp. 129–132 (in Russian).; Molchanov A.S. Methodology of evaluation of linear permit per pixel of aerophotosystems of military purpose when conducting flight tests. Izvestia vuzov. Geodesy and Aerophotosurveying, 2018, vol. 62(4), pp. 390– 396 (in Russian). DOI 10.30533/0536-101X-2018-62-4-390-396; Peisahson I.V. Optics of Spectral Instruments. Ed. 2nd, add. and reworked. Instruments with concave diffraction gratings. Leningrad: Mashinostroenie Publ., 1975, Ch. 6, pp. 222–227.; Katkovsky L.V. Calculation of objects thermal imaging parameters from unmanned aerial vehicles. Doklady BGUIR, 2020, vol. 18(2), pp. 53‒61 (in Russian). DOI:10.35596/1729-7648-2020-18-2-53-61; Box and linearly constrained optimization [Electronic resource]. ALGLIB – Optimization (nonlinear and quadratic). Avialable at: https://www.alglib.net/optimization/boundandlinearlyconstrained.php. (accessed: 01.09.2022).; Kaehler A., Bradski G. Learning OpenCV 3. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA, 2016, pp. 511–583.; Lamaka A.A. Considering camera distortion panoramic images forming method for unmanned aerial vehicle multispectral data. Journal of the Belarusian State University. Physics, 2022, vol. 2, pp. 60–69 (in Russian). DOI:10.33581/2520-2243-2022-2-60-69; Katkouski L.V. Hardware-software system “Calibrovka” for ground-based spectrometry of the underlying surface and atmosphere. The 7th Belarussian Space Congress: materials, Minsk, 2017, October 25‒27, vol. 2, pp. 36‒40 (in Russian).; https://pimi.bntu.by/jour/article/view/804