Showing 1 - 13 results of 13 for search '"программируемая клеточная гибель"', query time: 0.59s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: This research was conducted with the financial support of project No. 075-15-2021-944 by the Ministry of Science and Higher Education of the Russian Federation within the framework of the ERA-NET “Target Identification and Drug Development in Liver Cancer (TAIGA)”.

    Source: Vavilov Journal of Genetics and Breeding; Том 27, № 7 (2023); 784-793 ; Вавиловский журнал генетики и селекции; Том 27, № 7 (2023); 784-793 ; 2500-3259 ; 10.18699/VJGB-23-83

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3978/1765; Antropova E.A., Khlebodarova T.M., Demenkov P.S., Venzel A.S., Ivanisenko N.V., Gavrilenko A.D., Ivanisenko T.V., Adamovskaya A.V., Revva P.M., Lavrik I.N., Ivanisenko V.A. Computer analysis of regulation of hepatocarcinoma marker genes hypermethylated by HCV proteins. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(8):733-742. DOI 10.18699/VJGB-22-89; Axley P., Ahmed Z., Ravi S., Singal A.K. Hepatitis C virus and hepatocellular carcinoma: a narrative review. J. Clin. Transl. Hepatol. 2018;6(1):79-84. DOI 10.14218/JCTH.2017.00067; Balogh J., Victor D., Asham E.H., Burroughs S.G., Boktour M., Saharia A., Li X., Ghobrial R.M., Monsour H.P., Jr. Hepatocellular carcinoma: a review. J. Hepatocell. Carcinoma. 2016;3:41-53. DOI 10.2147/JHC.S61146; Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M., Marshall K.A., Phillippy K.H., Sherman P.M., Holko M., Yefanov A., Lee H., Zhang N., Robertson C.L., Serova N., Davis S., Soboleva A. NCBI GEO: archive for functional genomics data sets – update. Nucleic Acids Res. 2013;41(D1):D991-D995. DOI 10.1093/nar/gks1193; Copetti T., Bertoli C., Dalla E., Demarchi F., Schneider C. p65/RelA modulates BECN1 transcription and autophagy. Mol. Cell. Biol. 2009;29(10):2594-2608. DOI 10.1128/MCB.01396-08; Dong Y., Shen X., He M., Wu Z., Zheng Q., Wang Y., Chen Y., Wu S., Cui J., Zeng Z. Activation of the JNK-c-Jun pathway in response to irradiation facilitates Fas ligand secretion in hepatoma cells and increases hepatocyte injury. J. Exp. Clin. Cancer Res. 2016;35(1):114. DOI 10.1186/s13046-016-0394-z; Forner A., Llovet J.M., Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245-1255. DOI 10.1016/S0140-6736(11)61347-0; Gu F.M., Li Q.L., Gao Q., Jiang J.H., Huang X.Y., Pan J.F., Fan J., Zhou J. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3. World J. Gastroenterol. 2011; 17(34):3922-3932. DOI 10.3748/wjg.v17.i34.3922; Hillert L.K., Ivanisenko N.V., Busse D., Espe J., König C., Peltek S.E., Kolchanov N.A., Ivanisenko V.A., Lavrik I.N. Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIPL heterodimer. Cell Death Differ. 2020;27(7):2117-2130. DOI 10.1038/s41418-020-0489-0; Huang Q., Lin B., Liu H., Ma X., Mo F., Yu W., Li L., Li H., Tian T., Wu D., Shen F., Xing J., Chen Z.N. RNA-seq analyses generate comprehensive transcriptomic landscape and reveal complex transcript patterns in hepatocellular carcinoma. PLoS One. 2011;6(10):e26168. DOI 10.1371/journal.pone.0026168; Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(Suppl.11):228. DOI 10.1186/s12859-020-03557-8; Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved AI-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. DOI 10.3390/ijms232314934; Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. DOI 10.1186/1752-0509-9-S2-S2; Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(Suppl.1):34. DOI 10.1186/s12859-018-2567-6; Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Y.I., Voevoda S.M. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARSCoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. DOI 10.1038/s41598-02224170-0; Krammer P.H., Kamiński M., Kiessling M., Gülow K. No life without death. Adv. Cancer Res. 2007;97:111-138. DOI 10.1016/S0065-230X(06)97005-5; Lavrik I.N., Krammer P.H. Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 2012;19(1):36-41. DOI 10.1038/cdd.2011.155; Lee J., Ou J.J. Hepatitis C virus and intracellular antiviral response. Curr. Opin. Virol. 2022;52:244-249. DOI 10.1016/j.coviro.2021.12.010; Liu K., Yao H., Wen Y., Zhao H., Zhou N., Lei S., Xiong L. Functional role of a long non-coding RNA LIFR-AS1/miR-29a/TNFAIP3 axis in colorectal cancer resistance to pohotodynamic therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864(9B):2871-2880. DOI 10.1016/j.bbadis.2018.05.020; Liu Z., Fitzgerald M., Meisinger T., Batra R., Suh M., Greene H., Penrice A.J., Sun L., Baxter B.T., Xiong W. CD95-ligand contributes to abdominal aortic aneurysm progression by modulating inflammation. Cardiovasc. Res. 2019;115(4):807-818. DOI 10.1093/cvr/cvy264; Llovet J.M., Montal R., Sia D., Finn R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. ;15(10):599-616. DOI 10.1038/s41571-018-0073-4; Nateri A.S., Spencer-Dene B., Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature. 2005;437(7056):281-285. DOI 10.1038/nature03914; Qian Q., Wu C., Chen J., Wang W. Relationship between IL10 and PD- L1 in liver hepatocellular carcinoma tissue and cell lines. Bio med. Res. Int. 2020;2020:8910183. DOI 10.1155/2020/8910183; Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. DOI 10.1016/j.virusres.2015.12.003; Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018a;15(4):20180054. DOI 10.1515/jib-2018-0054; Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Goncharova I.A., Dosenko V.E., Zolotareva O.I., Hofestaedt R., Lavrik I.N., Rogaev E.I. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics. 2018b;11(1):61-76. DOI 10.1186/s12920-018-0331-4; Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(Suppl.2):117-131. DOI 10.1186/s12920-019-0492-9; Song X., Kim S.Y., Zhang L., Tang D., Bartlett D.L., Kwon Y.T., Lee Y.J. Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer. Cell Death Dis. 2014;5(10):e1504. DOI 10.1038/cddis.2014.463; Soni D., Wang D.M., Regmi S.C., Mittal M., Vogel S.M., Schlüter D., Tiruppathi C. Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury. Cell Death Discov. 2018;4:60. DOI 10.1038/s41420-018-0056-3; Thorgeirsson S.S., Grisham J.W. Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet. 2002;31(4):339-346. DOI 10.1038/ng0802-339; Uhlén M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., Kampf C., Sjöstedt E., Asplund A., Olsson I., Edlund K., Lundberg E., Navani S., Szigyarto C.A., Odeberg J., Djureinovic D., Takanen J.O., Hober S., Alm T., Edqvist P.H., Berling H., Tegel H., Mulder J., Rockberg J., Nilsson P., Schwenk J.M., Hamsten M., von Feilitzen K., Forsberg M., Persson L., Johansson F., Zwahlen M., von Heijne G., Nielsen J., Pontén F. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. DOI 10.1126/science.1260419; Vleugel M.M., Greijer A.E., Bos R., van der Wall E., van Diest P.J. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum. Pathol. 2006;37(6):668-674. DOI 10.1016/j.humpath.2006.01.022; Wu L., Li J., Liu T., Li S., Feng J., Yu Q., Zhang J., Chen J., Zhou Y., Ji J., Chen K., Mao Y., Wang F., Dai W., Fan X., Wu J., Guo C. Quercetin shows anti-tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med. 2019;8(10):4806-4820. DOI 10.1002/cam4.2388; Xie B., Wang D.H., Spechler S.J. Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig. Dis. Sci. 2012;57(5): 1122-1129. DOI 10.1007/s10620-012-2136-1; Yankina M.A., Saik O.V., Ivanisenko V.A., Demenkov P.S., Khusnutdinova E.K. Evaluation of prioritization methods of extrinsic apoptotic signaling pathway genes for retrieval of the new candidates associated with major depressive disorder. Russ. J. Genet. 2018; 54(11):1366-1374. DOI 10.1134/S1022795418110170; Yi H., Patel A.K., Sodhi C.P., Hackam D.J., Hackam A.S. Novel role for the innate immune receptor Toll-like receptor 4 (TLR4) in the regulation of the Wnt signaling pathway and photoreceptor apoptosis. PLoS One. 2012;7(5):e36560. DOI 10.1371/journal.pone.0036560; Zheng Y., Hlady R.A., Joyce B.T., Robertson K.D., He C., Nannini D.R., Kibbe W.A., Achenbach C.J., Murphy R.L., Roberts L.R., Hou L. DNA methylation of individual repetitive elements in hepatitis C virus infection-induced hepatocellular carcinoma. Clin. Epigenetics. 2019;11(1):145. DOI 10.1186/s13148-019-0733-y; Zhou X., Zhu A., Gu X., Xie G. Inhibition of MEK suppresses hepatocellular carcinoma growth through independent MYC and BIM regulation. Cell. Oncol. (Dordr.). 2019;42(3):369-380. DOI 10.1007/s13402-019-00432-4; https://vavilov.elpub.ru/jour/article/view/3978

  3. 3
    Academic Journal

    Source: Bulletin of Siberian Medicine; Том 20, № 2 (2021); 176-183 ; Бюллетень сибирской медицины; Том 20, № 2 (2021); 176-183 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-2

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4395/3000; https://bulletin.tomsk.ru/jour/article/view/4395/3030; Global Strategy for asthma management and prevention. Global Initiative for Asthma. GINA. URL: http://www.slideshare.net/cristobalbunuel/gina-report-2016; 2016. URL: http://www.ginasthma.org/local/uploads/files/GINA.Report_ 2016.pdf.; Федеральные клинические рекомендации по бронхиальной астме. 2016: 64. URL: http://spulmo.ru/obshchestvonews/news-812.; Reddel H.K., Hurd S.S., FitzGerald J.M. World Asthma Day. GINA 2014: A global asthma strategy for a global problem. Int. J. Tuberc. Lung Dis. 2014; 18 (5): 505–506. DOI:10.5588/ijtld.14.0246.; Бельтюков Е.К., Братухин К.П. Эпидемиология аллергического ринита и бронхиальной астмы в Свердловской области. Доктор.ру. 2015; 108 (7): 11– 14.; Ушакова Д.В., Никонов Е.Л. Эпидемиология бронхиальной астмы. Терапия. 2018; 20 (2): 90–95.; Федосеев Г.Б., Емельянов А.В., Сергеева Г.Р., Иванова Н.И., Зибрина Т.М., Максименко И.Н., Цуканова И.В. Распространенность бронхиальной астмы и аллергического ринита среди взрослого населения Санкт-Петербурга. Терапевтический архив. 2003; 75 (1): 523–526.; Guzzardi M.A, Iozzo P., Salonen M.K., Kajantie E., Eriksson J.G. Maternal adiposity and infancy growth predict later telomere length: a longitudinal cohort study. Int. J. Obes. 2016; 40 (7): 1063–1069. DOI:10.1038/ijo.2016.58.; Минеев В.Н., Лалаева Т.М., Васильева Т.С., Трофимов В.И. Фенотип бронхиальной астмы с ожирением. Пульмонология. 2012; (2): 102–107. DOI:10.18093/0869-0189-2012-0-2-102-107.; Baffi C.W., Winnica D.E., Holguin F. Asthma and obesity: mechanisms and clinical implications. Asthma Res. Pract. 2015; 1: 1. DOI:10.1186/s40733-015-0001-7.; Глушкова Е.Ф., Шартанова Н.В., Лусс Л.В. Ожирение и бронхиальная астма: клинико-аллергологическая характеристика. Русский Медицинский Журнал. 2018; 8 (1): 4–8.; Vodounon C.A., Chabi C.B., Skibo Yu.V., Ezin V., Aikou N., Kotchoni S.O., Akpona S.A., Baba-Moussa L., Abramova Z.I. Influence of the programmed cell death of lymphocytes on the immunity of patients with atopic bronchial asthma. Allergy Asthma Clin. Immunol. 2014; 10 (1): 14. DOI:10.1186/1710-1492-10-14.; Shore S.A. Obesity and asthma: possible echanisms. J. Allergy Clin. Immunol. 2008; 121 (5): 1087–1093. DOI:10.1016/j.jaci.2008.03.004.; Miranda C., Busacker A., Balzar S., Trudeau J., Wenzel S.E. Distinguishing severe asthma phenotype: role of age at onset and eosinophilic inflammation. J. Allergy Clin. Immunol. 2004; 113 (1): 101–108. DOI:10.1016/j.jaci.2003.10.041.; Wiik A.S., Gordon T.P., Kavanaugh A.F., Lahita R.G., Reeves W., van Venrooij W.J., Wilson M.R., Fritzler M. Cutting edge diagnostics in rheumatology: the role of patients, clinicians, and laboratory scientists in optimizing the use of autoimmune serology. Arthritis Rheum. 2004; 51 (2): 291–298. DOI:10.1002/art.20229.; Jameson S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol. 2002; 8 (2): 547–556. DOI:10.1038/nri853.; Plas D.R., Rathmell J.C., Thompson C.B. Homeostatic control of lymphocyte survival: potential origins and implications. Nat. Immunol. 2002; 3 (6): 515–521. DOI:10.1038/ni0602-515.; Badovinac V.P., Harty J.T. Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol. Rev. 2006; 211 (1): 67–80. DOI:10.1111/j.0105-2896.2006.00384.x.; Скибо Ю.В., Пономарева А.А., Решетникова И.Д., Абрамова З.И. Индукция аутофагии в Т-лимфоцитах периферической крови больных атопической бронхиальной астмой. Клеточная трансплантология и тканевая инженерия. 2012; 7 (3): 146–150.; Green D.R. The end and after: how dying cells impact the living organism. Immunity. 2011; 35 (4): 441–445. DOI:10.1016/j.immuni.2011.10.003.; Черников В.П., Белоусова Т.А., Кактурский Л.В. Морфологические и биохимические критерии клеточные гибели. Архив патологии. 2010; 72 (3): 48–54.; Romao S., Gannage M., Munz C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin. Cancer Biol. 2013; 23 (5): 391–396. DOI:10.1016/j.semcancer.2013.03.001.; Walsh C.M., Edinger A.L. The complex interplay between autophagy, apoptosis and necrotic signals promotes T-cell homeostasis. Immunol. Rev. 2010; 236 (1): 95–109. DOI:10.1111/j.1600-065X.2010.00919.x.; Варга О.Ю., Рябков В.А. Апоптоз: понятие, механизмы реализации, значение. Экология человека. 2006; (7): 28–32.; Zhao Y.X., Zhang H.R., Yang X.N., Zhang Y.H., Feng S., Yu F.X., Yan X.X. Fine particulate matter-induced exacerbation of allergic asthma via activation of T-cell immunoglobulin and mucin domain 1. Chinese Medical Journal 2018; 131 (20): 2461–2473. DOI:10.4103/0366-6999.243551.; Чечина О.Е., Биктасова А.К., Сазонова Е.В. Роль цитокинов в редокс-зависимой регуляции апоптоза. Бюллетень сибирской медицины. 2009; 8 (2): 67–71. DOI:10.20538/1682-0363-2009-2-67-71.; Tian B.P., Xia L.X., Bao Z.Q., Zhang H., Xu Z.W., Mao Y.Y. Bcl-2 inhibitors reduce steroid-insensitive airway inflammation. J. Allergy Clin Immunol. 2017; 140 (2): 418–430. DOI:10.1016/j.jaci.2016.11.027.; Лунев Д.А., Заклякова Л.В., Овсянникова Е.Г., Сарсенгалиева А.К. Роль апоптоза в поддержании гомеостаза живых систем. Астраханский медицинский журнал. 2010; 5 (1): 11–20.; Brison D.R. Apoptosis in mammalian preimplantation embryos: regulation by survival factors. Pathol. Int. 2001; 51 (12): 948–953.; Hengartner M.O. The biochemistry of apoptosis. Nature. 2000; 407 (6805): 770–776. DOI:10.1038/35037710.; Marsden V.S., O’connor L., O’reilly R.A. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002; 419 (6907): 614–617. DOI:10.1038/nature01101.; Kroemer G., Martin S.J. Caspase-independent cell death. Nat. Med. 2005; 11 (7): 725–730. DOI:10.1038/nm1263.; Milner T.A., Waters E.M., Robinson D.C., Pierce J.P. Degenerating processes identified by electron microscopic immunocytochemial methods. Meth. Mol. Biol. 2011; 793: 23–59. DOI:10.1007/978-1-61779-328-8_3.; Whelan R.S., Kaplinskiy V., Kitsis R.N. Cell death in the pathogenesis of heart disease: mechanisms and signifi cance. Annu. Rev. Physiol. 2010; 72 (1): 19–44. DOI:10.1146/annurev.physiol.010908.163111.; Yang F., Tu J., Pan J.Q., Luo H.L., Liu Y.H., Wan J., Zhang J., Wei P.F., Jiang T., Chen Y.H., Wang L.P. Light-controlled inhibition of malignant glioma by opsin gene transfer. Cell Death Dis. 2013; 4(10): 893–907. DOI:10.1038/cddis.2013.425.; Zeng W., Wang X., Xu P., Liu G., Eden H.S., Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics. 2015; 5 (6): 559–582. DOI:10.7150/thno.11548.; Сергеева Т.Ф., Ширманова М.В., Загайнова Е.В., Лукьянов К.А. Современные методы исследования апоптотической гибели клеток. Современные технологии в медицине. 2015; 7 (3): 172–182. DOI:10.17691/stm2015.7.3.21.; Todo-Bom A., Mota P.A., Alves V., Vale P.S., Santos R.M. Apoptosis and Asthma in the Elderly. J. Investig Allergol. Clin. Immunol. 2007; 17 (2): 107–112.; Deponte M. Programmed cell death in protists. Biochem Biophys Acta. 2008; 1783 (7): 1396–1405. DOI:10.1016/j.bbamcr.2008.01.018.; Potapinska O., Demkow U. T-lymphocyte apoptosis in asthma. Eur. J. Med. Res. 2009: 14 (4): 192–195. DOI; 1186/2047-783X-14-S4-192.; Rottem M., Shoenfeld Y. Asthma as a paradigm for autoimmune desease. Int. Arch. Allergy. Immunol. 2003; 132 (3): 210–214. DOI:10.1159/000074301.; Яровая Г.А., Нешкова Е.А., Мартынова Е.А., Блохина Т.Б. Роль протеолитических ферментов в контроле различных стадий апоптоза. Лабораторная медицина. 2011; (11): 39–53.; Огородова Л.М., Деев И.А., Иванчук И.И. Клиническая и патогенетическая эффективность различных фармакотерапевтических режимов при тяжелой бронхиальной астме у детей. Педиатрическая фармакология. 2006; 3 (3): 26–31.; Murray P.J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 2007; 178 (5): 2623– 2629. DOI:10.4049/jimmunol.178.5.2623.; Минеев В.Н., Сорокина Л.Н., Нёма М.А., Иванов В.А., Липкин Г.И. Роль транскрипционного фактора РАХ-5 в патогенезе бронхиальной астмы. Медицинская иммунология. 2012; 14 (4–5): 347–352.; Bittner S. Ehrenschwender M. Multifaceted death receptor 3 signaling-promoting survival and triggering death. FEBS Letters. 2017; 591 (17): 2543–2555. DOI:10.1002/1873-3468.12747.; Chen G.G., Liang N.C., Lee J.F., Chan U.P., Wang S.H., Leung B.C., Leung K.L. Over-expression of Bcl-2 against Pteris semipinnata L-induced apoptosis of human colon cancer cells via a NF-kappa B-related pathway. Apoptosis. 2004; 9 (5): 619–627. DOI:10.1023/b:appt.0000038041.57782.84.; Viatour P., Bentires-Alj M., Chariot A., Deregowski V., de Leval L., Merville M.P., Bours V. NF-kappa B2/p100 induces Bcl-2 expression. Leukemia. 2003; 17 (7): 1349–1358. DOI:10.1038/sj.leu.2402982.; Abdulamir A.S., Kadhim H.S., Hafi R.R., Ali M.A., Faik I., Abubakar F., Abbas K.A. Severity of asthma: the role of; CD25+, CD30+, NF-kappaB, and apoptotic markers. J. Investig. Allergol. Clin. Immunol. 2009; 19 (3): 218–224.; Ying S., Khan L.N., Meng Q., Barnes N.C., Kay A.B. Cyclosporin A, apoptosis of BAL T-cells and expression of Bcl-2 in asthmatics. Eur. Respir. J. 2003; 22 (2): 207–212. DOI:10.1183/09031936.03.00098902.; Akha A.S., Miller R.A. Signal transduction in the aging immune system. Curr. Opin. Immunol. 2005; 17 (5): 486– 491. DOI:10.1016/j.coi.2005.07.004.; Melis M., Siena L., Pace E., Gjomarkaj M., Profi ta M., Pirazzoli A., Todaro M., Stassi G., Bonsignore G., Vignola A.M. Fluticasone induces apoptosis in peripheral T- lymphocytes: a comparison between asthmatic and normal subjects. Eur. Respir. J. 2002; 19 (2): 257–266. DOI:10.1183/09031936.02.00239202.; Buc M., Dzurilla M., Bucova M. Immunophathogenesis of bronchial asthma. Arch. Immunol. Ther. Ex. 2009; 57 (5): 331–434. DOI:10.1007/s00005-009-0039-4.; Чубарова С.В., Чернова И.А., Крапошина А.Ю., Соловьева И.А., Демко И.В., Салмина А.Б., Малиновская Н.А. Апоптоз лимфоцитов периферической крови при бронхиальной астме различной степени тяжести. Бюллетень физиологии и патологии дыхания. 2013; (48): 28–33.; Vodounon C.A., Chabi C.B., Skibo Y.V., Ezin V., Aikou N., Kotchoni S.O., Akpona S.A., Baba-Moussa L., Abramova Z.I. Influence of the programmed cell death of lymphocytes on the immunity of patients with atopic bronchial asthma. Allergy, Asthma and Clinical Immunology. 2014; 10 (1): 1–11. DOI:10.1186/1710-1492-10-14.; Peter C., Wesselborg S., Herrman M., Lauber K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis. 2010; 15 (9): 1007–1028. DOI:10.1007/s10495-010-0472-1.; Потапнев М.П. Аутофагия, апоптоз, некроз клеток и иммунное распознавание своего и чужого. Иммунология. 2014; 35 (2): 95–102.; Парахонский А.П., Егорова C.B., Цыганок С.С. Механизмы программируемой гибели клеток периферической крови у больных бронхиальной астмой. Успехи современного естествознания. 2008; (8): 107–108.; Нсангу М.М.Д., Водунон А.С., Абрамова З.И., Лунцов А.В., Цибулькина В.Н. Особенности морфологических показателей и количественной оценки лимфоцитов периферической крови больных атопической бронхиальной астмой. Казанский медицинский журнал. 2007; 88 (2): 168–171.; Carmen M.M., Angela T., Fatina Z. Shed membrane microparticles from circulating and vascular cells in regulating vascular function. Am. J. Physiol. Heart Circ. Physiol. 2005; 288 (3): 1004–1009. DOI:10.1152/ajpheart.00842.2004.; Инжутова А.И., Салмина А.Б., Петрова М.М. Регистрация блеббинга плазматической мембраны лимфоцитов периферической крови как экспресс- метод оценки тяжести состояния больных осложненными формами гипертонической болезни. Бюллетень СО РАМН. 2007; (1): 6–10.; Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 2013; 113 (1): 1–11. DOI:10.1007/s11060-013-1084-8.; Buzas E.I., György B., Nagy G. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 2014; 10 (6): 356–364. DOI:10.1038/nrrheum.2014.19.; Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Molecules and Cells. 2013; 36 (2): 105–111. DOI:10.1007/s10059-013-0154-2.; Пантелеевa М.А., Абаеваa А.А., Баландина А.Н., Беляевa А.В., Нечипуренковa Д.Ю., Обыденный С.И., Свешникова А.Н., Шибековa А.М., Атауллахановa Ф.И. Внеклеточные везикулы плазмы крови: состав, происхождение, свойства. Биологические мембраны. 2017; 34 (3): 155–161. DOI:10.7868/S0233475517030069.; Hargett L.A., Bauer N.N. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication. Pulm. Circ. 2013; 3 (2): 329– 340. DOI:10.4103/2045-8932.114760.; Redzic J.S., Balaj L., van der Vos K.E., Breakefield X.O. Extracellular RNA mediates and marks cancer progression. Semin Cancer Biol. 2014; 28: 14–23. DOI:10.1016/j.semcancer.2014.04.010.; Mostefai H.A., Agouni A., Carusio N., Mastronardi M.L., Heymes C., Henrion D., Andriantsitohaina R., Martinez M.C. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J. Immunol. 2008; 180 (7): 5028–5035. DOI:10.4049/jimmunol.180.7.5028.; Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014; 69 (1): 4–9. DOI:10.1093/gerona/glu057.; Locksley R.M., Killeen N., Lenardo M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001; 104 (4): 487–501. DOI:10.1016/S0092-8674(01)00237-9.; Чернышева Е.Н., Панова Т.Н. Взаимосвязь апоптоза и процессов преждевременного старения у больных с метаболическим синдромом. Саратовский научно-медицинский журнал. 2012; 8 (2): 251–255.; https://bulletin.tomsk.ru/jour/article/view/4395

  4. 4
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 19, № 6 (2015); 731-737 ; Вавиловский журнал генетики и селекции; Том 19, № 6 (2015); 731-737 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/491/819; Agata N., Ahmad R., Kawano T., Raina D., Kharbanda S., Kufe D. MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res. 2008;68(15):6136-6144. DOI 10.1158/0008-5472.CAN-08-0464; Carrington P.E., Sandu C., Wei Y., Hill J.M., Morisawa G., Huang T., Gavathiotis E., Wei Y., Werner M.H. The structure of FADD and its mode of interaction with procaspase-8. Mol. Cell. 2006;22(5):599-610. DOI 10.1016/j.molcel.2006.04.018; Case D.A., Berryman J.T., Betz R.M., Cerutti D.S., Cheatham T.E., Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., Lee T.S., LeGrand S., Li P., Luchko T., Luo R., Madej B., Merz K.M., Monard G., Needham P., Nguyen H., Nguyen H.T., Omelyan I., Onufriev A., Roe D.R., Roitberg A., Salomon-Ferrer R., Simmerling C. L., Smith W., Swails J., Walker R.C., Wang J., Wolf R.M., Wu X., York D.M., Kollman P.A. AMBER 2015. University of California, San Francisco, 2015.; Dickens L.S., Boyd R.S., Jukes-Jones R., Hughes M.A., Robinson G. L., Fairall L., Schwabe J.W.R., Cain K., MacFarlane M. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol. Cell. 2012; 47(2):291-305. DOI 10.1016/j.molcel.2012.05.004; Herbert A., Sternberg M. J. E. MaxCluster – A tool for Protein Structure Comparison and Clustering. 2014. URL: http://www.sbg.bio.ic.ac. uk/~maxcluster/; Huang L., Chen D., Liu D., Yin L., Kharbanda S., Kufe D. MUC1 oncoprotein blocks glycogen synthase kinase 3β-mediated phosphorylation and degradation of β-catenin. Cancer Res. 2005;65(22):10413-10422. DOI 10.1158/0008-5472.CAN-05-2474; Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577-2637.; Kufe D., Inghirami G., Abe M., Hayes D., Justi-Wheeker H., Schlom J. Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma. 1984; 3:223-32. DOI 10.1089/hyb.1984.3.223.; Levitin F., Stern O., Weiss M., Gil-Henn C., Ziv R., Prokocimer Z., Smorodinsky N.I., Rubinstein D.B., Wreschner D.H. The MUC1 SEA module is a self-cleaving domain. J. Biol. Chem. 2005;280(39):33374-33386. DOI 10.1074/jbc.M506047200; Li Y., Kuwahara H., Ren J., Wen G., Kufe D. The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3β and β-catenin. J. Biol. hem. 2001;276(9):6061-6064. DOI 10.1074/jbc.C000754200; Ligtenberg M.J., Kruijshaar L., Buijs F., Van Meijer M., Litvinov S. V., Hilkens J. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J. Biol. Chem. 1992;267(9):6171-6177.; Macao B., Johansson D.G., Hansson G.C., Härd T. Autoproteolysis coupled to protein folding in the SEA domain of the membranebound MUC1 mucin. Nat. Struct. Mol. Biol. 2006;13(1):71-76. DOI 10.1038/nsmb1035; Nguyen H., Roe D.R., Simmerling C. Improved generalized born solvent model parameters for protein simulations. J. Chem. Theory Comput. 2013;9(4):2020-2034. DOI 10.1021/ct3010485; Raina D., Agarwal P., Lee J., Bharti A., McKnight C.J., Sharma P., Kharbanda S., Kufe D. Characterization of the MUC1-C cytoplasmic domain as a cancer target. PLOS One. 2015;10(8):e0135156. DOI 10.1371/journal.pone.0135156; Raina D., Ahmad R., Kumar S., Ren J., Yoshida K., Kharbanda S., Kufe D. MUC1 oncoprotein blocks nuclear targeting of c‐Abl in the apoptotic response to DNA damage. EMBO J. 2006;25(16):3774-3783. DOI 10.1038/sj.emboj.7601263; Ren J., Li Y., Kufe D. Protein kinase C δ regulates function of the DF3/MUC1 carcinoma antigen in β-catenin signaling. J. Biol. Chem. 2002;277(20):17616-17622. DOI 10.1074/jbc.M200436200; Schleich K., Warnken U., Fricker N., Öztürk S., Richter P., Kammerer K., Schnölzer M., Karmmer P.H., Lavrik I.N. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modelingevidence for a death effector domain chain model. Mol. Cell. ;47(2):306-319. DOI 10.1016/j.molcel.2012.05.006; Shatsky M., Nussinov R., Wolfson H.J. A method for simultaneous alignment of multiple protein structures. Proteins- Structure, Function, and Bioinformatics. 2004;56(1):143-156. DOI 10.1002/ prot.10628; Shen C., Yue H., Pei J., Guo X., Wang T., Quan J.M. Crystal structure of the death effector domains of caspase-8. Biochem. Bioph. Res. Co. 2015;463(3):297-302. DOI 10.1016/j.bbrc.2015.05.054; Wei X., Xu H., Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell. 2005;7(2):167-178. DOI 10.1016/j.ccr.2005.01.008; Yang J.K., Wang L., Zheng L., Wan F., Ahmed M., Lenardo M.J., Wu H. Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol. Cell. 2005;20(6):939-949. DOI 10.1016/j.ccr.2005.01.008; Zagrovic B., Pande V. Solvent viscosity dependence of the folding rate of a small protein: distributed computing study. J. Comput. Chem. 2003;24(12):1432-1436. DOI 10.1002/jcc.10297; https://vavilov.elpub.ru/jour/article/view/491

  5. 5
    Academic Journal

    Source: Ophthalmology in Russia; Том 10, № 4 (2013); 5-10 ; Офтальмология; Том 10, № 4 (2013); 5-10 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2013-4

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/116/118; https://www.ophthalmojournal.com/opht/article/downloadSuppFile/116/2; Hengartner M. O. The biochemistry of apoptosis. Nature. 2000; 407: 770‑776.; Macaya A. Apoptosis in the nervous system. Rev-Neurol. 1996; 135: 1356‑1360.; Sastry P. S., Rao K. S. Apoptosis and the nervous system. J. Neurochem. 2000; 74: 1‑20.; Stepanov Ju. M., Fil’chenkov A. A., Kushlinskij N. E. [Sistema Fas / Fas-ligand. Fas / Fas-ligand system.] Dnepropetrovsk: DNA. 2000; 48. (in Russ.).; Hail Jr. N., Carter B. Z., Konopleva M. and Andreeff M. Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis. 2006; 11: 889‑904.; Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit. J. Cancer. 1972; 26: 239‑257.; Takahashi A., Masuda A., Sun M., Centonze V. E., Herman B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2‑dependent alterations in mitochondrial pH (pHm). Eur. J. Ophthalmol. 2003; 13: 11‑18.; Agarwal R., Talati M., Lambert W., Clark A. F., Wilson S. E., Agarwal N., Wordinger R. J. Fas-activated apoptosis and apoptosis mediators in human trabecular meshwork cells. Eur. J. Ophthalmol. 1999; 9 (1): 22‑29.; Gregory M. S., Hackett C. G., Abernathy E. F., Lee K. S. Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. Arch. Ophthalmol. 2010; 128 (6): 724‑730.; Wax M. B., Tezel G., Yang J. et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cellderived fas-ligand. Iran J. Immunol. 2007; 4: 215‑219.; Richter C. Oxidative stress, mitochondria and apoptosis. Restor Neurol. Neurosci. 1998; 12: 59‑62.; Barnett E. M., Zhang X. et al. Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. J. Glaucoma. 2009; 18 (2): 93‑100.; Calandrella N., De Seta C., Scarsella G., Risuleo G. Carnitine reduces the lipoperoxidative; damage of the membrane and apoptosis after induction of cell stress in experimental glaucoma. Oman. J. Ophthalmol. 2010; 3: 109‑116.; Farkas R. H., Grosskreutz C. L. Apoptosis, neuroprotection and retinal ganglion cell death. Int. Ophthalmol. Clin. 2001; 41: 111‑130.; Okisaka S., Murakami A., Mizukawa A., Ito J. Apoptosis in retinal ganglion cell decrease in human glaucomatous eyes. Ophthalmic Genet. 1996; 17 (4): 145‑65.; Ju K. R., Kim H. S., Kim J. H., Lee N. Y., Park C. K. Retinal glial cell responses and Fas / FasL activation in rats with chronic ocular hypertension. J. Biol. Chem. 2005; 280 (35): 31240‑31248.; Boillet P., Metcalf D., Huang D. C. et al. Proapoptotic Bcl-2 relative bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999; 286: 1735‑1738.; Rothstein T. L., Wang J. K., Panka D. J. et al. Protection against Fas-dependent Th1‑mediated apoptosis by antigen receptor engagment in B cells. Nature. 1995; 374: 163‑165.; Zalewska R., Zalewski B., Reszec J. et al. The expressions of Fas and caspase3 in human glaucomatous optic nerve axons. J. Neurosci. 2008; 28 (46): 12085‑12096.; Benjelloun N., Joly L. M., Palmier В., Plotkine M., Charriaut-Marlangue С. Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxiaischaemia in the rat brain. Neuropathol. Appl. Neurobiol. 2003; 29: 350‑360.; Duchen M. R. Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 2000; 52: 57‑68.; Nesterov A. P. Novye tendencii v konservativnom lechenii glaukomy. [New tendencies in conservative treatment of glaucoma.] Vestn. Oftal’m. [Ann. Of ophtalmol.]. 1995; 4: 3‑5. (in Russ.].; Boldin M. P., Goncharov T. M., Goltsev Y. V., Wallach D. Involvement of MACH, a novel MORT1 / FADD-interacting protease, in Fas / APO-1- and TNF receptor-induced cell death. Cell. 1996; 85: 803‑805.; Muzio M., Chinnaiyan A. M., Kischkel F. C. et al. FLICE, a novel FADD-homologous ICE / CED-3‑like protease, is recruited to the CD95 (Fas / APO-1) death-inducing signaling comlex. Cell. 1996; 85: 817‑827.; Skulachjov V. P. [Evolution, mitochondrions and oxygen.] Sorosovskij Obrazovatel’nyj Zhurnal [Sorosovsky Educational Journal]. 1999; 9: 1‑7.; Carelli V., Ross-Cisneros F. N., Sadun A. A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 2004; 23: 53‑89.; Krieger C. Mitochondria, Ca2+ and neurodegenerative disease. Eurор. J. Pharmacol. 2002; 447: 177‑188.; Abu-Amero K. K, Morales J., Bosley T. M. Mitochondrial abnormalities in patients with primary open-angle glaucomа. Invest. Ophthalmol. Vis. Sci. 2006; 47: 2533‑2541.; Andrews R. M., Griffiths P. G., Johnson M. A. et al. Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br. J. Ophthalmol. 1999; 83: 231‑235.; Youle R. J., Karbowski M. Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell. Biol. 2005; 6: 657‑663.; Kong G. Y., Van Bergen N. J., Trounce I. A., Crowston J. G. Mitochondrial dysfunction and glaucoma. Exp Eye Res. 2009; 88 (4): 808‑815.; Ricci J. E., Munoz-Pinedo C., Fitzgerald P. et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell. 2004; 117: 773‑786.; Jha P., Banda H., Tytarenko R., Bora P. S., Bora N. S. Complement mediated apoptosis leads to the loss of retinal ganglion cells in animal model of glaucoma. J. Neurosci. Res. 2011; 89 (11): 1783‑1794.; Kisiswa L., Dervan A. G., Albon J., Morgan J. E., Wride M. A. Retinal ganglion cell death postponed: giving apoptosis a break? Proc. Natl. Acad. Sci. U S A. 2009; 106 (23): 9391‑9396.; Kurysheva N. I., Asejchev A. V., Ratmanova E. V. [Studying of anti-radical activity of modern antiglaukomatous preparations in the light of their neuroprotection.] [Glaucoma.]. 2004; 4: 6‑10. (In Russ.).; Dreyer E., Grosskreutz C. Neuroprotective effect of relusol in treatment of open angle glaucoma Abstr. Inter. 1998; 8: 30‑39.; Golubnitschaja-Labudova O., Liu R., Decker C. et al. Altered gene expression in lymphocytes of patients with normaltension glaucoma Curr. Eye Res. 2000; 21: 867‑876.; Mckinnon S. J. Glaucoma, apoptosis and neuroprotection Curr. Opin. Ophthalmol. 1997; 8: 28‑37.; Erichev V. P., Shamshinova A. M., Lovpache Dzh. N. i dr. [Comparative assessment of neuroprotection of peptide bioregulators at patients with various stages of primary open-angle glaucoma.] [Glaucoma.]. 2005; 1: 18‑24. (In Russ.).; Chen J., Miao Y., Wang X. H., Wang Z. Elevation of p-NR2A (S1232) by Cdk5 / p35 contributes to retinal ganglion cell apoptosis in a rat experimental glaucoma model. Eye (Lond). 2011; 25 (5): 545‑553.; Coassin M., Lambiase A., Sposato V., Micera A., Bonini S., Aloe L. Retinal p75 and bax overexpression is associated with retinal ganglion cells apoptosis in a rat model of glaucoma Cell Mol. Neurobiol. 2008; 28 (2): 263‑275.; Cordeiro M. F., Migdal C., Bloom P., Fitzke F. W., Moss S. E. Imaging apoptosis in the eye Cell Death Dis. 2010; (1):51‑62.; Nickells R. W. Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death Surv. Ophthalmol. 1999; 43: 151‑161.; Zhou W., Zhu X., Zhu L., Cui Y. Y. Neuroprotection of muscarinic receptor agonist pilocarpine against glutamate-induced apoptosis in retinal neurons J. Cell Biol. 2007; 179 (7): 1523‑1537.; Zhou X., Li F., Kong L., Tomita H., Li C., Cao W. Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma Exp Eye Res. 2009; 89 (5): 665‑677.; Guo L., Moss S. E., Alexander R. A. et al. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix Invest. Ophthalmol. Vis. Sci. 2005; 46: 175‑182.; Quigley H. A., Nickells R. W., Kerrigan L. A. et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis Invest. Ophthalmol. Vis. Sci. 1995; 36: 774‑786.; Osborne N. N., Li G. Y., Ji D., Mortiboys H. J., Jackson S. Light affects mitochondria to cause apoptosis to cultured cells: possible relevance to ganglion cell death in certain optic neuropathies Vet. Ophthalmol. 2007; 1: 88‑94.; Spaeth G. L. Glaucoma, apoptosis, death and life Prog. Retin. Eye Res. 1999; 18 (1): 39‑57.; Cellerino A., Bahr M., Isenmann S. Apoptosis in developing visual system. Cell Tissue Res. 2000; 301: 53‑69.; Izzotti A., Sacca S. C. et al. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. J. Natl. Med. Assoc. 2009; 101 (1): 46‑50.; https://www.ophthalmojournal.com/opht/article/view/116

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13