-
1Academic Journal
Συγγραφείς: I. A. Mazerkina, V. A. Evteev, A. B. Prokofiev, O. V. Muslimova, E. Yu. Demchenkova, И. А. Мазеркина, В. А. Евтеев, А. Б. Прокофьев, О. В. Муслимова, Е. Ю. Демченкова
Συνεισφορές: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00003-20-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590047-6)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00003-20-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590047-6).
Πηγή: Regulatory Research and Medicine Evaluation; Том 10, № 3 (2020); 177-183 ; Регуляторные исследования и экспертиза лекарственных средств; Том 10, № 3 (2020); 177-183 ; 3034-3453 ; 3034-3062
Θεματικοί όροι: прогнозирование межлекарственного взаимодействия, β-lactam antibiotics, drug-drug interaction, inhibition of organic anion transporters, prediction of drug-drug interaction, β-лактамные антибиотики, межлекарственное взаимодействие, ингибирование транспортеров органических анионов
Περιγραφή αρχείου: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/308/405; Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36. https://doi.org/10.1038/nrd3028; Ueo H, Motohashi H, Katsura T, Inui K. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005;70(7):1104–13. https://doi.org/10.1016/j.bcp.2005.06.024; Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438(3):137–42. https://doi.org/10.1016/s00142999(02)01306-7; Vanwert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/ Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol. 2007;293(4):F1332–41. https://doi.org/10.1152/ajprenal.00319.2007; Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N, et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther. 2002;303(2):534–9. https://doi.org/10.1124/jpet.102.037580; Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, et al. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol. 1999;55(5):847–54. PMID: 10220563; Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake ofmethotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70. https://doi.org/10.1124/jpet.107.121491; Sato M, Iwanaga T, Mamada H, Ogihara T, Yabuuchi H, Maeda T, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008;25(3):639–46. https://doi.org/10.1007/s11095-007-9401-6; Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002;302(2):666–71. https://doi.org/10.1124/jpet.102.034330; Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277–86. https://doi.org/10.1124/mol.59.5.1277; Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res. 2007;24(4):811–5. https://doi.org/10.1007/s11095-006-9196-x; Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem. 2008;283(13):8654–63. https://doi.org/10.1074/jbc.M708615200; Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24. https://doi.org/10.1124/jpet.300.3.918; Ahn S-Y, Bhatnagar V. Update on the molecular physiology of organic anion transporters. Curr Opin Nephrol Hypertens. 2008;17(5):499–505. https://doi.org/10.1097/MNH.0b013e32830b5d5d; Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008;38(7–8):889–935. https://doi.org/10.1080/00498250801927435; Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol. 2003;146:95–158. https://doi.org/10.1007/s10254-0020003-8; El-Sheikh AAK, Masereeuw R, Russel FGM. Mechanisms of renal anionic drug transport. Eur J Pharmacol. 2008;585(2–3):245–55. https://doi.org/10.1016/j.ejphar.2008.02.085; Бреслер ВМ, Наточин ЮВ. Угнетение диуретиками секреции флюоресцина в проксимальном канальце почки лягушки (прижизненное исследование методом контактной микроскопии). Бюллетень экспериментальной биологии и медицины. 1973;75(6):67–9.; Beyer KH, Flippin H, Verwey WF, Woodward R. The effect of para-aminohippuric acid on plasma concentration of penicillin in man. JAMA. 1944;126(16):1007–9. https://doi.org/10.1001/jama.1944.02850510015003; Rammelkamp C, Bradley S. Excretion of penicillin in man. Proc Soc Exper Biol & Med. 1943;53:30. https://doi.org/10.3181/0037972753-14171; Beyer KH, Miller AK, Russo HF, Patch E, Verwey WF. The inhibitory effect of caronamide on the renal elimination of penicillin. Am J Physiol. 1947;149(2):355–68. https://doi.org/10.1152/ajplegacy.1947.149.2.355; Beyer KH, Russo HF, Tillson EK, Miller AK, Verwey WF, et al. ‘Benemid,’ p-(di-n-propylsulfamyl)-benzoic acid; its renal affinity and its elimination. Am J Physiol. 1951;166(3):625–40. https://doi.org/10.1152/ajplegacy.1951.166.3.625; Lopez-Nieto CE, You G, Barros EJG, Beier DR, Nigam SK. Molecular cloning and characterization of a novel transport protein with very high expression in the kidney. J Am Soc Nephrol. 1996;7:1301.; Goa KL, Noble S. Panipenem/betamipron. Drugs. 2003;63(9):91325; discussion 926. https://doi.org/10.2165/00003495-20036309000005; Payne LE, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017;21(1):276. https://doi.org/10.1186/s13054-017-1856-1; Wallace KL. Antibiotic-induced convulsions. Crit Care Clin. 1997;13(4),741–62. https://doi.org/10.1016/s0749-0704(05)70367-5; Miller AD, Ball AM, Bookstaver PB, Dornblaser EK, Bennett CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31(4):408–23. https://doi.org/10.1592/phco.31.4.408; Tune BM. Nephrotoxicity of beta-lactam antibiotics: mechanisms and strategies for prevention. Pediatr Nephrol. 1997;11(6):768–72. https://doi.org/10.1007/s004670050386; Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of β-lactam concentration–toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–7. https://doi.org/10.1093/jac/dkx209; Hirouchi Y, Naganuma H, Kawahara Y, Okada R, Kamiya A, Inui K, Hori R. Preventive effect of betamipron on nephrotoxicity and uptake of carbapenems in rabbit renal cortex. Jpn J Pharmacol. 1994;66(1):1–6. https://doi.org/10.1254/jjp.66.1; Kim SH, Kim WB, Kwon JW, Lee MG. Nephroprotective effect of betamipron on a new carbapenem, in rabbits. Biopharm Drug Dispos. 1999;20(3):125–9. https://doi.org/10.1002/(sici)1099-081x(199904)20:33.0.co;2-v; Huo X, Meng Q, Wang C, Zhu Y, Liu Z, Ma X. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharm Sin B. 2019;9(5):986–96. https://doi.org/10.1016/j.apsb.2019.02.005; Yamazaki I, Shirakawa Y, Fugono T. Comparison of the renal excretory mechanisms of cefmenoxime and other cephalosporins: effect of para-aminohippurate on renal clearance and intrarenal distribution of cephalosporins in rabbits. J Antibiot (Tokyo). 1981;34(11):1476–85. https://doi.org/10.7164/antibiotics.34.1476; Saitoh H, Oda M, Gyotoku T, Kobayashi M, Fujisaki H, Sekikawa H. A beneficial interaction between imipenem and piperacillin possibly through their renal excretory process. Biol Pharm Bull. 2006;29(12):2519–22. https://doi.org/10.1248/bpb.29.2519; Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci. 2002;70(16):1861–74. https://doi.org/10.1016/s00243205(02)01500-x; Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672–7. PMID: 10411577; Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol. 2001;419(2–3):113–20. https://doi.org/10.1016/s00142999(01)00962-1; Deguchi T, Kusuhara H, Takadate A, Endou H, Otagiri M, Sugiyama Y. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 2004;65(1):162–74. https://doi.org/10.1111/j.1523-1755.2004.00354.x; Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T, Ikeda T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22(1):41–7. https://doi.org/10.2133/dmpk.22.41; Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–92. https://doi.org/10.1007/s40262-017-0506-8; Ye J, Liu Q, Wang C, Meng Q, Sun H, Peng J, et al. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol Rep. 2013;65(2):505–12. https://doi.org/10.1016/s17341140(13)71026-0; Chen J, Terada T, Ogasawara K, Katsura T, Inui K. Adaptive responses of renal organic anion transporter 3 (OAT3) during cholestasis. Am J Physiol Renal Physiol. 2008;295(1):F247–52. https://doi.org/10.1152/ajprenal.00139.2008; Katsube T, Miyazaki S, Narukawa Y, Hernandez-Illas M, Wajima T. Drug-drug interaction of cefiderocol, a siderophore cephalosporin, via human drug transporters. Eur J Clin Pharmacol. 2018;74(7):931–8. https://doi.org/10.1007/s00228-018-2458-9; Fleck C, Hilger R, Jurkutat S, Karge E, Merkel U, Schimske A, Schubert J. Ex vivo stimulation of renal transport of the cytostatic drugs methotrexate, cisplatin, topotecan (Hycamtin) and raltitrexed (Tomudex) by dexamethasone, T3 and EGF in intact human and rat kidney tissue and in human renal cell carcinoma. Urol Res. 2002;30(4):256–62. https://doi.org/10.1007/s00240-002-0265-2; https://www.vedomostincesmp.ru/jour/article/view/308