Showing 1 - 20 results of 91 for search '"привычное невынашивание беременности"', query time: 0.87s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Medical science of Uzbekistan; No. 2 (2025): March-April; 149-154 ; Медицинская наука Узбекистана; № 2 (2025): Март-Апрель; 149-154 ; O`zbekiston tibbiyot ilmi; No. 2 (2025): Mart-Aprel; 149-154 ; 2181-3612

    File Description: application/pdf

  3. 3
    Academic Journal

    Contributors: D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»

    Source: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3193/2100; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14975; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14976; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14977; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14978; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14979; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14980; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14981; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14983; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14984; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14985; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/15005; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/15195; Клинические рекомендации. Привычный выкидыш. https://cr.minzdrav.gov.ru/recomend/721_1 (Электронный ресурс) URL: https://cr.minzdrav.gov.ru/recomend/721_1; Сотникова Н.Ю., Фарзалиева А.В., Борзова Н.Ю., Воронин Д.Н., Крошкина Н.В. Характеристика дифференцировки моноцитов и экспрессии CD163 у женщин с угрожающим ранним выкидышем. Иммунология, 2022, Т. 43, № 6, С. 714–721. DOI:10.33029/0206-4952-2021-42-6-714-721; Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors. J. Leukoc. Biol., 2013, Vol. 93, no. 1, pp. 209-215. DOI:10.1189/jlb.0312145; Comins-Boo A., Valdeolivas L., Perez-Pla F., Cristobal I., Subhi-Issa N., Dominguez-Soto A., Pilar-Suarez L., Gasca-Escorial P., Calvo-Urrutia M., Fernandez-Arquero M., Herraiz M. A., Corbi, A., Sanchez-Ramon, S. Immunophenotyping of peripheral blood monocytes could help identify a baseline pro-inflammatory profile in women with recurrent reproductive failure. J. Reprod. Immunol., 2022, Vol. 154, pp. 103735. DOI:10.1016/j.jri.2022.103735; Dimitriadis E., Menkhorst E., Saito S., Kutteh W. H., Brosens, J. J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers, 2020, Vol. 6, no. 1, p. 98. DOI:10.1038/s41572-020-00228-z; Faas M. M., Broekema M., Moes H., van der Schaaf G., Heineman M. J., de Vos P. Altered monocyte function in experimental preeclampsia in the rat. Am. J. Obstet. Gynecol., 2004, Vol. 191, no. 4, pp.1192-1198. DOI:10.1016/j.ajog.2004.03.041; Faas M. M., van Pampus M. G., Anninga Z. A., Salomons J., Westra I. M., Donker R. B., Aarnoudse J.G., de Vos P. Plasma from preeclamptic women activates endothelial cells via monocyte activation in vitro. J. Reprod. Immunol., 2010, Vol. 87, no. 1-2, pp. 28-38. • DOI:10.1016/j.jri.2010.07.005; Faas M.M., de Vos P. Maternal monocytes in pregnancy and preeclampsia in humans and in rats. J. Reprod. Immunol., 2017, Vol. 119, pp. 91-97. DOI:10.1016/j.jri.2016.06.009; Forstner D., Guettler J., Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. International Journal of Molecular Sciences, 2021, Vol. 22, no. 19, pp. e10732. DOI:10.3390/ijms221910732; Grandone E., Piazza G. Thrombophilia, inflammation, and recurrent pregnancy loss: a case-based review. Semin. Reprod. Med., 2021, Vol. 39, no. 01/02, pp. 62-68. DOI:10.1055/s-0041-1731827; Hellgren M. Hemostasis during normal pregnancy and puerperium. Semin. Thromb. Hemost., 2003, Vol. 29, no. 2, pp.125-130. DOI:10.1055/s-2003-38897; Jin M. Q., Huang B. Y., Lu D. Y., Huang J. Y., Ma L. Identification and verification of feature biomarkers associated with immune cells in recurrent pregnancy loss. Eur. Rev. Med. Pharmacol. Sci., 2024, Vol. 28, no. 2, pp. 556-570. DOI:10.26355/eurrev_202401_35053; Ledingham M. A, Thomson A. J., Jordan F., Young A.,Crawford M., Norman J. E. Cell adhesion molecule expression in the cervix and myometrium during pregnancy and parturition. Obstet. Gynecol., 2001, Vol. 97, no. 2, pp. 235-242. DOI:10.1016/s0029-7844(00)01126-1; Luo Y., Zou Y. Identification of novel biomarkers and immune infiltration features of recurrent pregnancy loss by machine learning. Sci. Rep. 2023, Vol. 13, no. 1, pp. 10571. DOI:10.1038/s41598-023-38046-4; Mantovani A., Biswas S.K., Galdiero M.R., Sica A., Locati M. Macrophage plasticity and polarization in tissue repair and remodeling. J. Pathol., 2013, Vol. 229, no. 2, pp. 176-185. • DOI:10.1002/path.4133; Mellembakken J. R., Aukrust P., Olafsen M. K.,Ueland T., Hestdal K., Videm V. Activation of leukocytes during the uteroplacental passage in preeclampsia. Hypertension, 2002, Vol. 39, no. 1, pp. 155-160. DOI:10.1161/hy0102.100778; Nagamatsu T., Schust D.J. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod. Sci., 2010, Vol. 17, no. 3, pp. 209-218. • DOI:10.1177/1933719109349962; Ning F., Liu H., Lash G. E. The role of decidual macrophages during normal and pathological pregnancy. Am. J. Reprod. Immunol. 2016, Vol. 75, no. 3, pp. 298-309. DOI:10.1111/aji.12477; Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, Vol. 92, no.1, pp. e12883. DOI:10.1111/sji.12883; Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil. Steril., 2012, Vol. 98, no. 5, pp. 1103-1111. DOI:10.1016/j.fertnstert.2012.06.048; Rai R., Regan L. Recurrent miscarriage. Lancet, 2006, Vol. 368, no. 9535, pp. 601-611. DOI:10.1016/S0140-6736(06)69204-0; Sacks G.P., Studena K., Sargent I.L., Redman C.W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am. J. Obstet. Gynecol., 1998, Vol. 179, no. 1, pp. 80-86. • DOI:10.1016/s0002-9378(98)70254-6; True H., Blanton M., Sureshchandra S., Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunological Reviews, 2022, Vol. 308, no. 1, pp. 77-92. DOI:10.1111/imr.13080; van Nieuwenhoven A. L., Moes H., Heineman M. J., Santema J., Faas M. M. Cytokine production by monocytes, NK cells, and lymphocytes is different in preeclamptic patients as compared with normal pregnant women. Hypertens. Pregnancy, 2008, Vol. 27, no. 3, pp. 207-224. DOI:10.1080/10641950701885006; Yuan M, Jordan F., McInnes I. B., Harnett M. M., Norman J. E. Leukocytes are primed in peripheral blood for activation during term and preterm labour. Mol. Hum. Reprod., 2009, Vol. 15, no. 11, pp. 713-724. DOI:10.1093/molehr/gap054; Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D. N., Leenen P. J., Liu Y. J., MacPherson G., Randolph G. J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J. M., Lutz M. B. Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, Vol. 116, no. 16, pp. e74-e80 DOI:10.1182/blood-2010-02-258558; https://www.mimmun.ru/mimmun/article/view/3193

  4. 4
    Academic Journal

    Contributors: Статья подготовлена в рамках выполнения ПНИ № 1022040700798-6-3.2.2-1-9 «Разработка лабораторных модулей иммунологического обследования пациенток с целью прогнозирования различных форм акушерской и репродуктивной патологии»

    Source: Medical Immunology (Russia); Том 27, № 1 (2025); 35-44 ; Медицинская иммунология; Том 27, № 1 (2025); 35-44 ; 2313-741X ; 1563-0625

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2893/2067; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12791; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12792; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12793; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12794; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12795; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12796; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12797; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12798; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12799; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12800; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12801; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12802; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12982; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12983; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12984; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13029; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13030; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13031; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13032; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13033; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13040; Аржанова О. Н., Сельков С. А., Савичева А. М., Комаров Е.А., Беспалова О.Н., Плужникова Т.А, Капустин Р.В., Корнюшина Е.А. Невынашивание беременности : профилактика и лечение : методически рекомендации 3-е изд. – Санкт-Петербург : Эко-Вектор, 2019. – 94 с.; Сельков С. А., Соколов Д. И., Чепанов С. В. Иммунорегуляторные эффекты иммуноглобулинов для внутривенного введения // Медицинская иммунология. - 2013. - № 1 (15). - C. 5–12.; Чепанов С.В., Соколов Д.И., Шляхтенко Т.Н., Капустин Р.В., Окорокова Л.А., Белякова К.Л., Сельков С.А. Экспериментальное обоснование эндотелиопротективного эффекта иммуноглобулинов для внутривенного введения при акушерской патологии // Акушерство и Гинекология. - 2016. - №5. - C. 82–89.; Привычный выкидыш. Клинические рекомендации ООО «Российское общество акушеров-гинекологов» (РОАГ). – Москва, 2021. – 56 с.; Andreoli L., Bertsias G. K., Agmon-Levin N., Brown S., Cervera, R., Costedoat-Chalumeau N., Doria, A., Fischer-Betz R., Forger F., Moraes-Fontes M. F., Khamashta M., King J., Lojacono, A., Marchiori F., Meroni P. L., Mosca, M., Motta M., Ostensen M., Pamfil C., Tincani A. EULAR recommendations for women’s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Annals of the rheumatic diseases, 2017, № 3, no. 76, pp. 476–485.; Arachchillage D. R. J., Laffan M. Pathogenesis and management of antiphospholipid syndrome. British journal of haematology, 2017, Vol. 2, no. 178, pp. 181–195.; Bender Atik R., Christiansen O. B., Elson J., Kolte A. M., Lewis S., Middeldorp S., Mcheik S., Peramo B., Quenby S., Nielsen H. S., van der Hoorn M.-L., Vermeulen N., Goddijn M. ESHRE guideline: recurrent pregnancy loss: an update in 2022. Human Reproduction Open, 2022, no.1.; Capecchi M., Abbattista M., Ciavarella A., Uhr, M., Novembrino C., Martinelli I. Anticoagulant Therapy in Patients with Antiphospholipid Syndrome. Journal of clinical medicine, 2022, Vol. 23, no. 11, pp. 6954; Hoxha A., Tormene D., Campello E., Simioni P. Treatment of Refractory/High-Risk Pregnancies With Antiphospholipid Syndrome: A Systematic Review of the Literature. Frontiers in pharmacology, 2022, Vol.19, no. 13, pp. 849692; Kiserud T., Benachi A., Hecher K., Perez R. G., Carvalho J., Piaggio G., Platt L. D. P. The World Health Organization fetal growth charts: concept, findings, interpretation, and application. American journal of obstetrics and gynecology, 2018, Vol. 218, no. 2S, pp. S619–S629.; Latino J. O., Udry S., Aranda F. M., Perés Wingeyer S. D. A., Fernández Romero D. S., De Larrañaga G. F. Pregnancy failure in patients with obstetric antiphospholipid syndrome with conventional treatment: the influence of a triple positive antibody profile. Lupus, 2017, Vol.26, no. 9, pp. 983–988.; Miyakis S., Lockshin M. D., Atsumi T., Branch D. W., Brey R. L., Cervera R., Derkesen R. H. W. M., De Groot P. G., Koike T., Meroni P. L., Reber G., Shoenfeld Y., Tincani A., Vlachoyiannopoulos P. G., Krilis S. A. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). Journal of thrombosis and haemostasis : JTH, 2006, Vol.4, no. 2, pp. 295–306.; Mormile I., Granata F., Punziano A., de Paulis A., Rossi F. W. Immunosuppressive Treatment in Antiphospholipid Syndrome: Is It Worth It? Biomedicines, 2021, Vol.9, no. 2, pp. 1–21.; Papageorghiou A. T., Ohuma E. O., Altman D. G., Todros T., Ismail L. C., Lambert A., Jaffer Y. A., Bertino E., Gravett M. G., Purwar M., Noble J. A., Pang R., Victora C. G., Barros F. C., Carvalho M., Salomon L. J., Bhutta Z. A., Kennedy S. H., Villar, J. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet (London, England), 2014, Vol.384, no. 9946, pp. 869–879.; Stephenson M. D., Kutteh W. H., Purkiss S., Librach C., Schultz P., Houlihan E., Liao C. Intravenous immunoglobulin and idiopathic secondary recurrent miscarriage: a multicentered randomized placebo-controlled trial Human reproduction (Oxford, England), 2010, Vol.25, no. 9, pp. 2203–2209.; Tenti S., Cheleschi S., Guidelli G. M., Galeazzi M., Fioravanti A. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmunity Reviews, 2016, Vol.15, no. 3, pp. 226–235.; Yang X., Meng T. Is there a Role of Intravenous Immunoglobulin in Immunologic Recurrent Pregnancy Loss? Journal of Immunology Research, 2020, Vol. 2020.; https://www.mimmun.ru/mimmun/article/view/2893

  5. 5
  6. 6
  7. 7
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 73-79 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 73-79 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2007/1497; Colman R.W., Marder V.J., Clowes A.W. Hemostasis and thrombosis. Basic principles and clinical practice. Philadelphia, Pa.: Lippincott, 2006: 1827.; Buller H.R., Sohne M., Middeldorp S. Treatment of venous thromboembolism. J Thromb Haemost 2005; 3(8): 1554- 1560. DOI:10.1111/j.1538-7836.2005.01414.x; Wells P.S. Integrated strategies for the diagnosis of venous thromboembolism. J Thromb Haemost 2007; 5 Suppl 1: 41- 50. DOI:10.1111/j.1538-7836.2007.02493.x; Schellong S.M. Distal DVT: worth diagnosing? Yes. J Thromb Haemost 2007; 5 Suppl 1: 51-54. DOI:10.1111/j.1538-7836.2007.02490.x; Васильев С.А., Виноградов В.Л. Роль наследственности в развитии тромбозов. Тромбоз, гемостаз и реология 2007; 3: 32-40.; Khan S., Dickerman J.D. Hereditary thrombophilia. Thromb J 2006; 4: 15. DOI:10.1186/1477-9560-4-15; Васильев С.А., Виноградов В.Л., Смирнов А.Н., Погорельская Е.П., Маркова М.Л. Тромбозы и тромбофилии: классификация, диагностика, лечение, профилактика. Русский медицинский журнал 2013; 17: 896-901.; Bates S.M., Greer I.A., Pabinger I., Sofaer S., Hirsh J. Venous thromboembolism, thrombophilia, antithrombotic therapy, and pregnancy: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133(6 Suppl): 844S-886S. DOI:10.1378/chest.08-0761; Шмаков Р.Г., Кирющенков П.А., Пырегов А.В., Виноградова М.А., Баев О.Р., Кан Н.Е. и др. Краткий протокол: Исследование системы гемостаза во время беременности и после родов. Акушерство и гинекология 2015; 4: 1-2.; Краснопольский В.И., Петрухин В.А., Мельников А.П. Ведение беременных с тромбофилией. Российский вестник акушера-гинеколога 2013; 13(4): 79-81.; Jordan F.L., Nandorff A. The familial tendency in thrombo-embolic disease. Acta Med Scand 1956; 156(4): 267-275. DOI:10.1111/j.0954-6820.1956.tb00084.x; Revel-Vilk S., Chan A., Bauman M., Massicotte P. Prothrombotic conditions in an unselected cohort of children with venous thromboembolic disease. J Thromb Haemost 2003; 1(5): 915-921. DOI:10.1046/j.1538-7836.2003.00158.x; van Ommen C.H., Heijboer H., Büller H.R., Hirasing R.A., Heijmans H.S., Peters M. Venous thromboembolism in childhood: a prospective two-year registry in The Netherlands. J Pediatr 2001; 139(5): 676-681. DOI:10.1067/ mpd.2001.118192; Albisetti M., Moeller A., Waldvogel K., Bernet-Buettiker V., Cannizzaro V., Anagnostopoulos A. et al. Congenital prothrombotic disorders in children with peripheral venous and arterial thromboses. Acta Haematol 2007; 117(3): 149-155. DOI:10.1159/000097462; Revel-Vilk S., Kenet G. Thrombophilia in children with venous thromboembolic disease. Thromb Res 2006; 118(1): 59-65. DOI:10.1016/j.thromres.2005.05.026; Ehrenforth S., Junker R., Koch H.G., Kreuz W., Münchow N., Scharrer I., Nowak-Göttl U. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood. Childhood Thrombophilia Study Group. Eur J Pediatr 1999; 158 Suppl 3: S97-104. DOI:10.1007/ pl00014359; Жданова Л.В. Генетически детерминированные тромбофилии в детском возрасте. Вестник БГУ. Медицина и фармация 2015; 12: 114-122.; Момот А.П., Николаева М.Г. Тромбофилии в акушерско-гинекологической практике. Гепаринопрофилактика. Медицинский Совет 2017; 13: 71-78. DOI:10.21518/2079-701X-2017-13-71-78; Hale S.A., Schonberg A., Badger G.J., Bernstein I.M. Relationship between prepregnancy and early pregnancy uterine blood flow and resistance index. Reprod Sci 2009; 16(11): 1091- 1096. DOI:10.1177/1933719109341843; Walfish M., Neuman A., Wlody D. Maternal haemorrhage. Br J Anaesth 2009; 103 Suppl 1: i47-56. DOI:10.1093/bja/aep303; Бицадзе В.О., Макацария А.Д., Хизроева Д.Х., Макацария Н.А., Яшенина Е.В., Казакова Л.А. Тромбофилия как важнейшее звено патогенеза осложнений беременности. Практическая медицина 2012; 5: 22-29.; Momot A.P., Semenova N.A., Belozerov D.E., Trukhina D.A., Kudinova I.Y. The Dynamics of the hemostatic Parameters in Physiological Pregnancy and After Delivery. J Hematol Blood Transfus Disord 2016; 3: 005. DOI:10.24966/HBTD2999/100005; Mahmutbegović E., Marjanović D., Medjedović E., Mahmutbegović N., Dogan S., Valjevac A. et al. Prevalence of F5 1691G>A, F2 20210G>A, and MTHFR 677C>T polymorphisms in Bosnian women with pregnancy loss. Bosn J Basic Med Sci 2017; 17(4): 309-314. DOI:10.17305/ bjbms.2017.1954; Weng Z., Li X., Li Y., Lin J., Peng F., Niu W. The association of four common polymorphisms from four candidate genes (COX-1, COX-2, ITGA2B, ITGA2) with aspirin insensitivity: a meta-analysis. PLoS One 2013; 8(11): e78093. DOI:10.1371/journal.pone.0078093; Adorno-Cruz V., Liu H. Regulation and functions of integrin α2 in cell adhesion and disease. Genes Dis 2018; 6(1): 16-24. DOI:10.1016/j.gendis.2018.12.003; Alsulaim A.Y., Azam F., Sebastian T., Mahdi Hassan F., AbdulAzeez S., Borgio J.F., Alzahrani F.M. The association between two genetic polymorphisms in ITGB3 and increase risk of venous thromboembolism in cancer patients in Eastern Province of Saudi Arabia. Saudi J Biol Sci 2022; 29(1): 183-189. DOI:10.1016/j.sjbs.2021.08.073; Gunathilake K.M., Sirisena U.N., Nisansala P.K., Goonasekera H.W., Jayasekara R.W., Dissanayake V.H. The Prevalence of the Prothrombin (F2) 20210G>A Mutation in a Cohort of Sri Lankan Patients with Thromboembolic Disorders. Indian J Hematol Blood Transfus 2015; 31(3): 356-361. DOI:10.1007/s12288-014-0452-7

  8. 8
    Academic Journal

    Contributors: The study was supported by the Russian Science Foundation grant No. 23-15-00341., Работа выполнена при поддержке гранта Российского научного фонда № 23-15-00341.

    Source: Medical Genetics; Том 23, № 10 (2024); 50-54 ; Медицинская генетика; Том 23, № 10 (2024); 50-54 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2563/1825; Quenby S., Gallos I.D., Dhillon-Smith R.K. et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. The Lancet. 2021; 10285: 1658-1667. doi:10.1016/S0140-6736(21)00682-6.; Coomarasamy A., Dhillon-Smith R.K., Papadopoulou A. et al. Recurrent miscarriage: evidence to accelerate action. The Lancet. 2021; 10285: 1675-1682. doi:10.1016/S0140-6736(21)00681-4; Devall A. J., Coomarasamy A. Sporadic pregnancy loss and recurrent miscarriage Best Practice & Research Clinical Obstetrics & Gynaecology. 2020; 69: 30-39. doi:10.1016/j.bpobgyn.2020.09.002; Feldberg D. Epigenetic aspects of human reproduction and early pregnancy. Sex, Gender, and Epigenetics. Academic Press. 2023; 237-243. doi:10.1016/B978-0-12-823937-7.00018-3; Tisato V., Silva J.A., Scarpellini F. et al. Epigenetic role of LINE-1 methylation and key genes in pregnancy maintenance. Scientific Reports. 2024; 1: 3275. doi:10.1038/s41598-024-53737-2; Lou C., Goodier J. L., Qiang R. A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reproductive Biology and Endocrinology. 2020; 18: 6. doi:10.1186/s12958-020-0564-x; Vasilyev S.A., Tolmacheva E.N., Vasilyeva O.Y. et al. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy. J Assist Reprod Genet. 2021; 38(1): 139–149. doi:10815-020-02003-1.; Lebedev I.N., Ostroverkhova N.V., Nikitina T.V. et al. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Eur. J. Hum. Genet. 2004; 12:513–520. doi:10.1038/sj.ejhg.5201178; Vasilyev S.A., Timoshevsky V.A., Lebedev I.N. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239. Russ. J. Genet. 2010; 46:1381–1385. doi:10.1134/S1022795410110141; Vasilyev S.A., Markov A.V., Vasilyeva O.Yu. et al. Method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter. MethodsX. 2021;8, 101445. doi:10.1016/j.mex.2021.101445; Lim J.H., Kang Y.J., Lee B.Y. et al. Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clin Epigenet. 2019; 11(180). doi:10.1186/s13148-019-0756-4; Lim J.H., Kim S.Y., Han J.Y et al. Comprehensive investigation of DNA methylation and gene expression in trisomy 21 placenta. Placenta. 2016; 42:17-24. doi:10.1016/j.placenta.2016.03.012.; Tolmacheva E.N., Vasilyev S.A., Nikitina T.V. et al. Identification of differentially methylated genes in first-trimester placentas with trisomy 16. Sci Rep. 2022; 12(1):1166. doi:10.1038/s41598-021-04107-9.; Lou C., Qiang R., Wu H. et al. Expression of LINE-1 retrotransposon in early human spontaneous abortion tissues. Medicine (Baltimore). 2022; 101(49):e31964. doi:10.1097/MD.0000000000031964.; Tisato V., Silva J.A., Scarpellini F. et al. Epigenetic role of LINE-1 methylation and key genes in pregnancy maintenance. Sci Rep. 2024; 14(1):3275. doi:10.1038/s41598-024-53737-2.; Malki S., van der Heijden G.W., O’Donnell K.A., et al. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell. 2014; 29(5):521-533. doi:10.1016/j.devcel.2014.04.027.; Yuan P., Guo Q., Guo H. et al. The methylome of a human polar body reflects that of its sibling oocyte and its aberrance may indicate poor embryo development. Hum Reprod. 2021; 36(2):318-330. doi:10.1093/humrep/deaa292

  9. 9
    Academic Journal

    Source: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2992/2043; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13731; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13732; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13733; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13734; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13735; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13736; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13737; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13738; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13739; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13740; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13741; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13742; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13747; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13748; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13760; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/13761; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2992/14381; Alecsandru D., Klimczak A. M. Garcia Velasco J. A., Pirtea P., Franasiak J. M. Immunologic causes and thrombophilia in recurrent pregnancy loss. Fertil. Steril., 2021, Vol. 115, no. 3, pp. 561-566.; Aleva F.E., Temba G., de Mast Q., Simons S.O., de Groot P.G., Heijdra Y.F., van der Ven A. Increased platelet-monocyte interaction in stable COPD in the absence of platelet hyper-reactivity. Respiration, 2018, Vol. 95, no. 1, pp. 35-43.; Allen N., Barrett T.J., Guo Y., Nardi M., Ramkhelawon B., Rockman C.B., Hochman J.S., Berger J.S. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis, 2019, Vol. 282, pp. 11-18. DOI:10.1016/j.atherosclerosis.2018.12.029; Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors. J. Leukoc. Biol., 2013, Vol. 93, no. 1, pp. 209-215. DOI:10.1189/jlb.0312145; Ashman N., Macey M.G., Fan S.L., Azam U., Yaqoob M.M. Increased platelet-monocyte aggregates and cardiovascular disease in end-stage renal failure patients. Nephrol. Dial. Transplant., 2003, Vol. 18, no. 10, pp. 2088-2096. DOI:10.1093/ndt/gfg348; Blumenfeld, Z., Brenner, B. Thrombophilia-associated pregnancy wastage. Fertil. Steril., 1999, Vol. 72, no. 5, pp. 765-774.; Brambilla M., Canzano P., Becchetti A., Tremoli E., Camera M. Alterations in platelets during SARS-CoV-2 infection. Platelets, 2022, Vol. 33, no. 2, pp. 192-199. DOI:10.1080/09537104.2021.1962519; Клинические рекомендации. Привычный выкидыш. https://cr.minzdrav.gov.ru/recomend/721_1 (Электронный ресурс); Clinical guidelines. Recurrent miscarriage.(In Russ.) Available at: https://cr.minzdrav.gov.ru/recomend/721_1 (Electronic source) URL: https://cr.minzdrav.gov.ru/recomend/721_1; Dimitriadis E., Menkhorst E., Saito S., Kutteh W. H., Brosens, J. J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers, 2020, Vol. 6, no. 1, p. 98. DOI:10.1038/s41572-020-00228-z; Elalamy I., Chakroun T., Gerotziafas G.T., Petropoulou A., Robert F., Karroum A., Elgrably F., Samama M.M., Hatmi M. Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients. Thromb. Res., 2008, Vol. 121, no. 6, pp. 843-848. DOI:10.1016/j.thromres.2007.07.016; Gawaz M. P., Loftus J. C., Bajt M. L., Frojmovic M. M., Plow E. F., Ginsberg M. H. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J. Clin. Invest., 1991, Vol. 88., no. 4, pp.1128-1134.; Graff J., Harder S., Wahl O., Scheuermann E.H., Gossmann J. Anti-inflammatory effects of clopidogrel intake in renal transplant patients: effects on platelet-leukocyte interactions, platelet CD40 ligand expression, and proinflammatory biomarkers. Clin. Pharmacol. Ther., 2005, Vol. 78, no. 5, pp. 468-476. DOI:10.1016/j.clpt.2005.08.002; Grandone E., Piazza G. Thrombophilia, inflammation, and recurrent pregnancy loss: a case-based review. Semin. Reprod. Med., 2021, Vol. 39, no. 01/02, pp. 62-68. DOI:10.1055/s-0041-1731827; Harding S.A., Sommerfield A.J., Sarma J., Twomey P.J., Newby D.E., Frier B.M., Fox K.A. Increased CD40 ligand and platelet-monocyte aggregates in patients with type 1 diabetes mellitus. Atherosclerosis, 2004, Vol. 176, no. 2, pp. 321-325. DOI:10.1016/j.atherosclerosis.2004.05.008.; Haselmayer P., Grosse-Hovest L., von Landenberg P., Schild H., Radsak M.P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood, 2007, Vol. 110, no. 3, pp. 1029-1035. DOI:10.1182/blood-2007-01-069195.; Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., Teixeira L., Barreto E.A., Pao C.R.R., Righy C., Franco S., Souza T.M.L., Kurtz P., Bozza F.A., Bozza P.T. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 2020, Vol. 136, no. 11, pp. 1330-1341. DOI:10.1182/blood.2020007252; Hottz E.D., Medeiros-de-Moraes I.M., Vieira-de-Abreu A., de Assis E.F., Vals-de-Souza R., Castro-Faria-Neto H.C., Weyrich A.S., Zimmerman G.A., Bozza F.A., Bozza P.T. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J. Immunol., 2014, Vol. 193, no. 4, pp. 1864-1872. DOI:10.4049/jimmunol.1400091; Hottz E.D., Quirino-Teixeira A.C., Merij L.B., Pinheiro M.B.M., Rozini S.V., Bozza F.A., Bozza P.T. Platelet-leukocyte interactions in the pathogenesis of viral infections. Platelets, 2022, Vol. 33, no. 2, pp. 200-207. DOI:10.1080/09537104.2021.1952179.; Ishikawa T., Shimizu M., Kohara S., Takizawa S., Kitagawa Y., Takagi S. Appearance of WBC-platelet complex in acute ischemic stroke, predominantly in atherothrombotic infarction. J. Atheroscler. Thromb., 2012, Vol. 19, no. 5, pp. 494-501. DOI:10.5551/jat.10637; Kaplar M., Kappelmayer J., Veszpremi A., Szabo K., Udvardy M. The possible association of in vivo leukocyte-platelet heterophilic aggregate formation and the development of diabetic angiopathy. Platelets, 2001, Vol. 12, no. 7, pp. 419-422. DOI:10.1080/09537100120078368; Kullaya V., van der Ven A., Mpagama S., Mmbaga B.T., de Groot P., Kibiki G., de Mast Q. Platelet-monocyte interaction in Mycobacterium tuberculosis infection. Tuberculosis, 2018, Vol. 111, pp. 86-93. DOI:10.1016/j.tube.2018.05.002; Liang H., Duan Z., Li D., Li D., Wang Z., Ren L., Shen T., Shao Y. Higher levels of circulating monocyte-platelet aggregates are correlated with viremia and increased sCD163 levels in HIV-1 infection. Cell. Mol. Immunol., 2015, Vol. 12, no. 4, pp. 435-443. DOI:10.1038/cmi.2014.66; Liu X., Chen Y., Ye C., Xing D., Wu R., Li F., Chen L., Wang T. Hereditary thrombophilia and recurrent pregnancy loss: a systematic review and meta-analysis. Hum. Reprod., 2021, Vol.36, no. 5, pp.1213-1229.; Loguinova M., Pinegina N., Kogan V., Vagida M., Arakelyan A., Shpektor A., Margolis L., Vasilieva E. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction. Thromb. Haemost., 2018, Vol. 118, no. 11, pp. 1969-1981. DOI:10.1055/s-0038-1673342; Lukanov T. H, Veleva G. L., Konova E. I., Ivanov P. D., Kovacheva, K. S., Stoykov D. J. Levels of platelet-leukocyte aggregates in women with both thrombophilia and recurrent pregnancy loss. Clin Appl Thromb. Hemost., 2011, Vol.17, no. 2, pp.181-187. DOI:10.1177/1076029609350891; Maclay J.D., McAllister D.A., Johnston S., Raftis J., McGuinnes C., Deans A., Newby D.E., Mills N.L., MacNee W. Increased platelet activation in patients with stable and acute exacerbation of COPD. Thorax, 2011, Vol. 66, no. 9, pp. 769-774. DOI:10.1136/thx.2010.157529; Marquardt L., Anders C., Buggle F., Palm F., Hellstern P., Grau A.J. Leukocyte-platelet aggregates in acute and subacute ischemic stroke. Cerebrovasc. Dis., 2009, Vol. 28, no. 3, pp. 276-282. DOI:10.1159/000228710; Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, Vol. 92, no.1, pp. e12883. DOI:10.1111/sji.12883; Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil. Steril., 2012, Vol. 98, no. 5, pp. 1103-1111. DOI:10.1016/j.fertnstert.2012.06.048; Rondina M.T., Brewster B., Grissom C.K., Zimmerman G.A., Kastendieck D.H., Harris E.S., Weyrich A.S. In vivo platelet activation in critically ill patients with primary 2009 influenza A(H1N1). Chest, 2012, Vol. 141, no. 6, pp. 1490-1495. DOI:10.1378/chest.11-2860; Samfireag M., Potre C., Potre O., Tudor R., Hoinoiu T., Anghel A. Approach to thrombophilia in pregnancy-a narrative review. Medicina (Kaunas), 2022, Vol. 58, no. 5, pp. 692. DOI:10.3390/medicina58050692; Sayed D., Amin N.F., Galal G.M. Monocyte-platelet aggregates and platelet micro-particles in patients with post-hepatitic liver cirrhosis. Thromb. Res., 2010, Vol. 125, no. 5, pp. e228-e233. DOI:10.1016/j.thromres.2009.12.002; Schrottmaier W.C., Kral J.B., Badrnya S., Assinger A. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb. Haemost., 2015, Vol. 114, no. 3, pp. 478-489. DOI:10.1160/TH14-11-0943; Серебряная Н.Б., Шанин С.Н., Фомичева Е.Е., Якуцени П.П. Тромбоциты как активаторы и регуляторы воспалительных и иммунных реакций. Часть 2. Тромбоциты как участники иммунных реакций // Медицинская иммунология. – 2019. – Т. 21, № 1. – С. 9-20. Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P.; Blood platelets as activators and regulators of inflammatory and immune reactions. Part 2. Thrombocytes as participants of; immune reactions. Meditsinskaya; Immunologiya = Medical Immunology, 2019, Vol. 21, no. 1, pp. 9-20. (In Russ.) DOI:10.15789/1563-0625-2019-1-9-20; Simcox L. E., Ormesher L., Tower C., Greer I. A. Thrombophilia and pregnancy complications. Int. J. Mol. Sci, 2015, Vol. 16, no. 12, pp. 28418-28428. DOI:10.3390/ijms161226104; Simon D. I., Chen Z., Xu H., Li C. Q., Dong J., McIntire L. V., Ballantyne C. M., Zhang L., Furman M. I., Berndt M. C., Lopez J. A. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J. Exp. Med., 2000, Vol. 192, no. 2, pp. 193-204. DOI:10.1084/jem.192.2.193; Tao L., Changfu W., Linyun L., Bing M., Xiaohui H. Correlations of platelet-leukocyte aggregates with P-selectin S290N and P-selectin glycoprotein ligand-1 M62I genetic polymorphisms in patients with acute ischemic stroke. J. Neurol. Sci., 2016, Vol. 367, pp. 95-100. DOI:10.1016/j.jns.2016.05.046; Taus F., Salvagno G., Cane S., Fava C., Mazzaferri F., Carrara E., Petrova V., Barouni R.M., Dima F., Dalbeni A., Romano S., Poli G., Benati M., De Nitto S., Mansueto G., Iezzi M., Tacconelli E., Lippi G., Bronte V., Minuz P. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler. Thromb. Vasc. Biol., 2020, Vol. 40, no. 12, pp. 2975-2989. DOI:10.1161/ATVBAHA.120.315175; Thomas M.R., Storey R.F. The role of platelets in inflammation. Thromb. Haemost., 2015, Vol. 114, no. 3, pp. 449-458. DOI:10.1160/TH14-12-1067; Wu Q., Ren J., Hu D., Wu X., Li G., Wang G., Gu G., Chen J., Li R., Li Y., Hong Z., Ren H., Zhao Y., Li J. Monocyte subsets and monocyte-platelet aggregates: implications in predicting septic mortality among surgical critical illness patients. Biomarkers, 2016, Vol. 21, no. 6, pp. 509-516. DOI:10.3109/1354750X.2016.1160290; Yang S., Huang X., Liao J., Li Q., Chen S., Liu C., Ling L., Zhou J. Platelet-leukocyte aggregates - a predictor for acute kidney injury after cardiac surgery. Ren. Fail., 2021, Vol. 43, no. 1, pp. 1155-1162. DOI:10.1080/0886022X.2021.1948864; Zahran A.M., El-Badawy O., Mohamad I.L., Tamer D.M., Abdel-Aziz S.M., Elsayh K.I. Platelet activation and platelet-leukocyte aggregates in type I diabetes mellitus. Clin. Appl. Thromb. Hemost., 2018, Vol. 24, no. 9_suppl, pp. 230S-239S. DOI:10.1177/1076029618805861; Zarbock A., Muller H., Kuwano Y., Ley K. PSGL-1-dependent myeloid leukocyte activation. J. Lekoc. Biol. 2009, Vol. 86, no. 5, pp. 1119-1124. DOI:10.1189/jlb.0209117; Zhou X., Liu X.L., Ji W.J., Liu J.X., Guo Z.Z., Ren D., Ma Y.Q., Zeng S., Xu Z.W., Li H.X., Wang P.P., Zhang Z., Li Y.M., Benefield B.C., Zawada A.M., Thorp E.B., Lee D.C., Heine G.H. The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events. Medicine (Baltimore), 2016, Vol. 95, no. 18, pp. e3466. DOI:10.1097/MD.0000000000003466; Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D. N., Leenen P. J., Liu Y. J., MacPherson G., Randolph G. J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J. M., Lutz M. B. Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, Vol. 116, no. 16, pp. e74-e80. DOI:10.1182/blood-2010-02-258558; https://www.mimmun.ru/mimmun/article/view/2992

  10. 10
    Academic Journal

    Source: Ukrainian Journal «Health of Woman»; No. 2(165) (2023): Ukrainian Journal Health of Woman; 35-39
    Ukrainian Journal «Health of Woman»; № 2(165) (2023): Ukrainian Journal Health of Woman; 35-39
    Український журнал "Здоров'я жінки"; № 2(165) (2023): Український журнал Здоров’я жінки; 35-39

    File Description: application/pdf

  11. 11
    Academic Journal

    Source: Репродуктивная эндокринология, Vol 0, Iss 55, Pp 21-28 (2020)
    Reproductive Endocrinology; № 55 (2020); 21-28
    Репродуктивная эндокринология; № 55 (2020); 21-28
    Репродуктивна ендокринологія; № 55 (2020); 21-28

    File Description: application/pdf

  12. 12
    Academic Journal

    Source: Репродуктивная эндокринология, Vol 0, Iss 56, Pp 88-94 (2020)
    Reproductive Endocrinology; № 56 (2020); 88-94
    Репродуктивная эндокринология; № 56 (2020); 88-94
    Репродуктивна ендокринологія; № 56 (2020); 88-94

    File Description: application/pdf

  13. 13
  14. 14
    Academic Journal

    Source: Medical Genetics; Том 21, № 7 (2022); 4-7 ; Медицинская генетика; Том 21, № 7 (2022); 4-7 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2095/1562; Баранов В.С., Баранова Е.В., Иващенко Т.Э., Асеев М.В. Геном человека и гены предрасположенности. Введение в предиктивную медицину. СПб.: Изд-во «Интермедика»; 2000:263.; Bahia W., Finan R.R., Al-Mutawa M. et al. Genetic variation in the progesterone receptor gene and susceptibility to recurrent pregnancy loss: a case-control study. BJOG. 2018; 125(6): 729-735.; Su M.T., Lin S.H. Chen Y.C. Association of sex hormone receptor gene polymorphisms with recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2011; 96(6): 1435-1444.; Cupisti S., Fasching P.A., Ekici A.B. et al. Polymorphisms in estrogen metabolism and estrogen pathway genes and the risk of miscarriage. Arch Obstet Gynaecol. 2009; 280: 395-400.; Cope D.I., Monsivais D. Progesterone Receptor Signaling in the Uterus Is Essential for Pregnancy Success. Cells. 2022; 11(9):1474.; Gadkar-Sable S., Shah C., Rosario G., Sachdeva G., Puri C. Progesterone receptors: various forms and functions in reproductive tissues. Front Biosci. 2005; 10: 2118-2130.; Yin X.-Q., Ju H.-M. Guo Q. et al. Association of Estrogen Receptor 1 Genetic Polymorphisms with Recurrent Spontaneous Abortion Risk. Chin Med J (Engl). 2018; 131(15): 1857-1865.

  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: Medical Genetics; Том 19, № 11 (2020); 81-82 ; Медицинская генетика; Том 19, № 11 (2020); 81-82 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1807/1440; Sui Y., Chen Q., Sun X. Association of skewed X chromosome inactivation and idiopathic recurrent spontaneous abortion: a systematic review and meta-analysis. Reprod Biomed Online. 2015 Aug;31(2):140-8. doi:10.1016/j.rbmo.2015.05.007.; Allen R.C., Zoghbi H.Y., Moseley A.B., Rosenblatt H.M., Belmont J.W. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992 Dec;51(6):1229-1239.

  18. 18
    Academic Journal

    Source: Medical Genetics; Том 19, № 11 (2020); 85-86 ; Медицинская генетика; Том 19, № 11 (2020); 85-86 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1809/1442; Christiansen O. B., Mathiesen O., Lauritsen J. G., Grunnet N. Idiopathic recurrent spontaneous abortion. Evidence of a familial predisposition. Acta. Obstet. Gynecol. Scand. 1990; 69 (7-8): 597-601. DOI:10.3109/00016349009028702; Ведищев С.И., Прокопов А.Ю., Жабина У.В., Османов Э.М. Современные представления о причинах невынашивания беременности. Вестник Томского государственного университета. 2013; 18(4): 1309-1312; Мамедалиева Н.М. Достижения и перспективы в решении проблем невынашивания беременности в Казахстане. Актуальные вопросы акушерства, гинекологии и перинатологии 2012;.2(3): 123-130.

  19. 19
  20. 20