Showing 1 - 20 results of 24 for search '"преобразование Гильберта-Хуанга"', query time: 0.62s Refine Results
  1. 1
    Academic Journal

    Source: Eastern-European Journal of Enterprise Technologies; Том 1, № 9 (91) (2018): Information and controlling system; 54-61
    Восточно-Европейский журнал передовых технологий; Том 1, № 9 (91) (2018): Информационно-управляющие системы; 54-61
    Східно-Європейський журнал передових технологій; Том 1, № 9 (91) (2018): Інформаційно-керуючі системи; 54-61

    File Description: application/pdf

  2. 2
    Academic Journal

    Contributors: This research was funded in whole, or in part, by the Wellcome Trust Grant number 203139/Z/16/Z . For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. The authors also give thanks to Andrew Quinn for discussions about EMD and the Python EMD toolbox., Это исследование полностью или частично финансировалось Wellcome Trust номер гранта 203139/Z/16/Z . В целях обеспечения открытого доступа авторы согласны с использованием любой версии данного документа и его производных согласно лицензии общественного авторского права CC. Авторы также благодарят Эндрю Куинна за обсуждение аспектов РЭМ и инструментария Python РЭМ.

    Source: General Reanimatology; Том 17, № 5 (2021); 65-79 ; Общая реаниматология; Том 17, № 5 (2021); 65-79 ; 2411-7110 ; 1813-9779

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2136/1556; https://www.reanimatology.com/rmt/article/view/2136/1557; Sanders R.D., Tononi G, Laureys S., Sleigh J.W. Unresponsiveness # Unconsciousness. Anesthesiology. 2012; 116 (4): 946-959. DOI:10.1097/ALN.0b013e318249d0a7.; Ni Mhuircheartaigh R., Warnaby C., Rogers R., Jbabdi S., Tracey I. Slow-Wave Activity Saturation and Thalamocortical Isolation During Propofol Anesthesia in Humans. Sci Transl Med. 2013; 23; 5 (208): 208ra148. DOI:10.1126/scitranslmed.3006007.; Warnaby C.E., Sleigh J.W., Hight D., Jbabdi S., Tracey I. Investigation of Slow-wave Activity Saturation during Surgical Anesthesia Reveals a Signature of Neural Inertia in Humans. Anesthesiology. 2017; 127 (4): 645-657. DOI:10.1097/ALN.0000000000001759.; Marchant N., Sanders R., Sleigh J., Vanhaudenhuyse A., Bruno A.U., Brichant J.F., Steven Laureys S., Bonhomme V. How Electroencephalography Serves the Anesthesiologist. Clin EEG Neurosci. 2014; 45 (1): 22-32. DOI:10.1177/1550059413509801.; Purdon P.L., Sampson A., Pavone K.J., Brown E.N. Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology. 2015; 123 (4): 937-960. DOI:10.1097/ALN.0000000000000841.; Marcuse L.V., Fields M.C., Jenna J. Y. The EEG in other neurological and medical conditions and in status epilepticus. In: Rowan's Primer of EEG. 2nd ed. London: Elsevier, 2016: 157-173.; Gropper M. A. Miller's Anesthesia, 2-Volume Set E-Book [electronic resource], 9th ed. 2019.; Amzica F. What does burst suppression really mean? Epilepsy Behav. 2015; 49: 234-237. DOI:10.1016/j.yebeh.2015.06.012.; Hogan J., Sun H., Aboul Nour H., Jing J., Tabaeizadeh M., Shoukat M., Javed F., Kassa S., Edhi., Bordbar E., Gallagher J., Moura V. J., Ghanta M., Shao Y-P., Akeju O., Cole A.J., Rosenthal E.S., Zafar S., Westover M.B. Burst Suppression: Causes and Effects on Mortality in Critical Illnes. Neurocrit Care 2020; 33: 565-574. DOI:10.1007/s12028-020-00932-4; Pontificia Universidad Catolica de Chile,. Study of the Association Between Burst Suppression During Anesthetic Induction With Propofol in Cardiac Surgery in Patients Over 65 Years of Age With Postoperative Delirium. Clinical trials.gov. Clinical trial registration NCT04713644, Mar. 2021. Accessed: Apr. 14, 2021. [Online]. Available: https: //clinicaltrials.gov/ct2/show/NCT04713644.; Soehle M., Dittmann A., Ellerkmann R.K., Baumgarten G., Putensen C., Guenther U. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. BMC Anesthesiol. 2015; 15 (61): 1-8. DOI:10.1186/s12871-015-0051-7.; Huang N.E., Shen Z., Long S., Wu M.C., Shih H.H., Zheng Q., Yen N. C., Tung C.C., Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis', Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1998; 454 (1971): 903995. DOI:10.1098/rspa.1998.0193.; Huang N.E., Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008; 46 (2): 1-23. DOI:10.1029/2007RG000228.; Kortelainen J., Vayrynen E. Assessing EEG slow wave activity during anesthesia using Hilbert-Huang Transform. Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2015: 117-120. DOI:10.1109/EMBC.2015.7318314.; Barbosh M., Singh P., Sadhu A. Empirical mode decomposition and its variants: a review with applications in structural health monitoring. Smart Mater. Struct. 2020; 29 (9): 093001. DOI:10.1088/1361-665X/aba539.; Bueno-Lopez M., Giraldo E., Molinas M., Fosso O.B. The Mode Mixing Problem and its Influence in the Neural Activity Reconstruction. IAENG International Journal of Computer Science. 2019; 46 (3): 11.; Yang Y., DengJ., Wu C. Analysis of Mode Mixing Phenomenon in the Empirical Mode Decomposition Method. In 2009 Second International Symposium on Information Science and Engineering, Shanghai, China; 2009: 553-556. DOI:10.1109/ISISE.2009.19.; Wu Z., Huang N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009; 01 (01): 1-41. DOI:10.1142/S1793536909000047.; Deering R., Kaiser J.F. The use of a masking signal to improve empirical mode decomposition. In: Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing. 2005; 4: iv/485-iv/488. DOI:10.1109/ICASSP.2005.1416051.; Wang Y.H., Hu K., Lo M.T. Uniform Phase Empirical Mode Decomposition: An Optimal Hybridization of Masking Signal and Ensemble Approaches'. IEEE Access. 2018; 6: 34819-34833. DOI:10.1109/ACCESS.2018.2847634.IEEE Access 2018; 6: 34819-34833.; Gramfort A., Luessi M., Larson E., Engemann D.A., Strohmeier D., Brodbeck C.H., Goj R., Brooks T., Parkkonen L., Hamalainen M. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2013; 26 (7): 1-13. DOI: 1O.3389/fnins.2O13.00267.; Quinn A.J., Lopes dos Santos V., Dupret D., Nobre A.CH., Mark W. Woolrich M.W. EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python. J Open Source Softw. 2021; 6 (59): 1-8. DOI:10.21105/joss.02977.; Quinn A.J, Lopes-dos-Santos V., Huang N., Liang W.K., Juan Ch.H., Yeh J-R., Nobre A.C., Dupret D., Woolrich M.W. Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics. bio-Rxiv. 2021.04.12.439547. DOI:10.1101/2021.04.12.439547.; Kenny J.D., Westover M.B., Ching S., Brown E.N., Solt K. Propofol and sevoflurane induce distinct burst suppression patterns in rats. Front. Syst. Neurosci. 2014; 8 (237): 1-13. DOI:10.3389/fnsys.2014.00237.; Vijn P.C., Sneyd J.R. I.v. anaesthesia and EEG burst suppression in rats: bolus injections and closed-loop infusions. Br. J. Anaesth. 1998; 81 (3): 415-421. DOI:10.1093/bja/81.3.415.; Freye E., Levy J.V. Cerebral Monitoring in the Operating Room and the Intensive Care Unit: An Introductory for the Clinician and a Guide for the Novice Wanting to Open a Window to the Brain. J. Clin. Monit. Comput. 2005; 19 (1): 1-76. DOI:10.1007/s10877-005-0712-z.; Hesse S., Kreuzer M., Hight D., Gaskell A., Devari P., Singh D., Taylor N.B., Whalin M.K., Lee S., Sleigh J.W., Garcia P.S.Association of electroencephalogram trajectories during emergence from anaesthesia with delirium in the postanaesthesia care unit: an early sign of postoperative complications'. Br. J. Anaesth. 2019; 122 (5): 622-634. doi:10.1016/j.bja.2018.09.016.; Hight D., L. J. Voss L.J., Garcia P.S., J. Sleigh J.W. Changes in Alpha Frequency and Power of the Electroencephalogram during VolatileBased General Anesthesia. Front. Syst. Neurosci. 2017; 11 (36): DOI:10.1016/j.bja.2018.09.016.10 doi:10.3389/fnsys.2017.00036.; Sleigh J., Pullon R.M., Vlisides P.E., Warnaby C.E. Electroencephalographic slow wave dynamics and loss of behavioural responsiveness induced by ketamine in human volunteers. Br. J. Anaesth. 2019; 123 (5): 592-600. DOI:10.1016/j.bja.2019.07.021.; Massimini M., Huber R., Ferrarelli F., Hill S., Giulio T. The Sleep Slow Oscillation as a Traveling Wave. J. Neurosci. 2004; 24 (31): 6862-6870. DOI:10.1523/JNEUROSCI.1318-04.2004.; Murphy M., Bruno M-A., Riedner B.A., Boveroux P., Noirhomme Q., Landsness E., Brichant J-F., Phillips Ch., Massimini M., Laureys S., Tononi G., Boly M. Propofol Anesthesia and Sleep: A High-Density EEG Study. Sleep. 2011; 34 (3): 283-291A: DOI:10.1093/sleep/34.3.283.; Lewis L.D., Ching Sh., Weiner V.S., Peterfreund R.A., Eskandar E.N., Cash S.S., Brown E.N., Purdon P.L. Local cortical dynamics of burst suppression in the anaesthetized brain. Brain. 2013; 136 (9) 27272737. DOI:10.1093/brain/awt174.; Ming Q., Liou J-Y., Yang F., Li J., Chu Ch., Zhou Q., Wu D., Xu S., Luo P. Liang J., Li D., Pryor K.O., Lin W., Schwartz T., Ma H. Isoflurane-In-duced Burst Suppression Is a Thalamus-Modulated, Focal-Onset Rhythm With Persistent Local Asynchrony and Variable Propagation Patterns in Rats. Front. Syst. Neurosci. 2021; 14: 1-11. DOI:10.3389/fnsys.2020.599781.; Lang X., Zheng Q., Zhang Z., Lu S., Xie L., Horch A., Su H. Fast Multivariate Empirical Mode Decomposition. IEEE Access PP; 2018; 99: 1-18. DOI:10.1109/ACCESS.2018.2877150.; Rehman N., Mandic D.P. Multivariate empirical mode decomposition. Proc. R. Soc. Math. Phys. Eng. Sci. 2010; 466 (2117): 1291-1302.DOI:10.1098/rspa.2009.0502.; Wu Z., Feng J., Qiao F., Tan Z.-M. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016; 374 (2065): 20150197. DOI:10.1098/rsta.2015.0197.; Amzica F., Steriade M. Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol. 1998; 107 (2): 69-83. DOI:10.1016/S0013-4694 (98)00051-0.; Chen S-J., Peng Ch-J., Chen Y-Ch., Hwang Y-R., Lai Y-S., Fan S-Z., Jen K-K. Comparison of FFT and marginal spectra of EEG using empirical mode decomposition to monitor anesthesia. Comput. Methods Programs Biomed. 2016; 137: 77-85. DOI:10.1016/j.cmpb.2016.08.024.; Li Ch., Li D., Liang Z., Voss L.J., Sleigh J.W. Analysis of depth of anesthesia with Hilbert-Huang spectral entropy. Clin. Neurophysiol. 2008; 119 (11): 2465-2475. DOI:10.1016/j.clinph.2008.08.006.; Cole S. R., Voytek B. Brain Oscillations and the Importance of Waveform Shape. Trends Cogn. Sci. 2017; 21 (2): 137-149. DOI:10.1016/j.tics.2016.12.008.; van Ede F., Quinn A.J., Woolrich M.W., Nobre A.C. Neural Oscillations: Sustained Rhythms or Transient Burst-Events? Trends Neurosci. 2018; 41 (7): 415-417. DOI:10.1016/j.tins.2018.04.004.; Vidaurre D., Quinn A.J., Baker A.P., Dupret D., Tejero-Cantero A.,Wo-olrich M.W. Spectrally resolved fast transient brain states in electrophysiological data. NeuroImage. 2016; 126: 81-95. DOI:10.1016/j.ne-uroimage.2015.11.047.; Bartz S., Avarvand F.S., Leicht G., Nolte G. Analyzing the waveshape of brain oscillations with bicoherence. NeuroImage. 2019; 188: 145-160. DOI:10.1016/j.neuroimage.2018.11.045.; Quinn A.J. Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics. bioRxiv, 2012: 2021.04.12.439547. DOI:10.1101/2021.04.12.439547.; Soler A., Munoz-Gutierrez PA., Bueno-Lopez M., Giraldo E., Molinas M. Low-Density EEG for Neural Activity Reconstruction Using Multivariate Empirical Mode Decomposition. Front. Neurosci; 2020: 14 DOI:10.3389/fnins.2020.00175.; Kortelainen J., Vayrynen E. Assessing EEG slow wave activity during anesthesia using Hilbert-Huang Transform. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015: 117-120. doi:10.1109/EMBC.2015.7318314.; Cole S.R., van der Meij R., Peterson E.J., de Hemptinne C., Starr P.A., Voytek B. Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease. J. Neurosci. 2017; 37 (18): 4830-4840. DOI:10.1523/JNEUROSCI.2208-16.2017.; Amzica F., Steriade M. ‘Electrophysiological correlates of sleep delta waves', Electroencephalogr. Clin. Neurophysiol. 1998; 107 (2): 69-83. DOI:10.1016/S0013-4694(98)00051-0.; Huang N.E., Shen Zh., Long S.R., Wu M.L.C. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-statio-nary time series analysis. Lond. Ser. Math. Phys. Eng. Sci. 1998; 454 (1971): 903-995. DOI:10.1098/rspa.1998.0193.; Wang Y.-H, Hu K., Lo M.-T. Uniform Phase Empirical Mode Decomposition: An Optimal Hybridization of Masking Signal and Ensemble Approaches', IEEE Access. 2018; 6: 34819-34833. DOI:10.1109/ACCESS.2018.2847634.; Yang Y., Deng J., Wu C. Analysis of Mode Mixing Phenomenon in the Empirical Mode Decomposition Method', in 2009 Second International Symposium on Information Science and Engineering, Shanghai, China. 2009: 553-556. DOI:10.1109/ISISE.2009.19.; Deering R., Kaiser J.F. The use of a masking signal to improve empirical mode decomposition', in Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing. 2005; 4: iv/485-iv/488. DOI:10.1109/ICASSP.2005.1416051.; Wu Z., Huang N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009: 01 (01): 1-41. DOI:10.1142/S1793536909000047.; Fabus M.S., Quinn A.J., Warnaby C.E., Woolrich M.W. Automatic decomposition of electrophysiological data into distinct non-sinusoidal oscillatory modes. bioRxiv, 2021: 2021.07.06.451245. DOI:10.1101/2021.07.06.451245.; Lo M.-T., Novak V., Peng C.-K., Liu Y., Hu K. Nonlinear phase interaction between nonstationary signals: A comparison study of methods based on Hilbert-Huang and Fourier transforms. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009; 79 (6 Pt 1): 061924 DOI:10.1103/Phys-RevE.79.061924.; https://www.reanimatology.com/rmt/article/view/2136

  3. 3
    Academic Journal

    Source: Vestnik of Brest State Technical University; No. 1(124) (2021): Vestnik of Brest State Technical University; 69-76
    Вестник Брестского государственного технического университета; № 1(124) (2021): Вестник Брестского государственного технического университета; 69-76

    File Description: application/pdf

  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Системи обробки інформації. — 2015. — № 9(134). 19-23 ; Системы обработки информации. — 2015. — № 9(134). 19-23 ; Information Processing Systems. — 2015. — № 9(134). 19-23 ; 1681-7710

    File Description: application/pdf

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20