-
1Academic Journal
Authors: L. F. Stovba, O. V. Chukhralya, A. A. Petrov, S. A. Mel’nikov, D. I. Pavel’ev, S. V. Borisevich, Л. Ф. Стовба, О. В. Чухраля, А. А. Петров, С. А. Мельников, Д. И. Павельев, С. В. Борисевич
Source: Problems of Particularly Dangerous Infections; № 3 (2024); 42-50 ; Проблемы особо опасных инфекций; № 3 (2024); 42-50 ; 2658-719X ; 0370-1069
Subject Terms: безопасность/иммуногенность, priming/boosting, rate of seroconversion, safety and immunogenicity, праймирование/бустирование, уровень сероконверсии
File Description: application/pdf
Relation: https://journal.microbe.ru/jour/article/view/2040/1499; Duggan A.T., Klunk J., Porter A.F., Dhody A.N., Hicks R., Smith G.L., Humphreys M., McCollum A.M., Davidson W.B., Wilkins K., Li Y., Burke A., Polasky H., Flanders L., Poinar D., Raphenya A.R., Lau T.T.Y., Alcock B., McArthur A.G., Golding G.B., Holmes E.C., Poinar H.N. The origins and genomic diversity of American Civil War Era smallpox vaccine strains. Genome Biol. 2020; 21(1):175. DOI:10.1186/s13059-020-02079-z.; Esparza J., Schrick L., Damaso C.D., Nitsche A. Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine. Vaccine. 2017; 35(52):7222–30. DOI:10.1016/j.vaccine 1017.11.003.; Nalca A., Zumbrum E.E. Acam2000: the new small vaccine for United States Strategic National Stockpile. Drag Des. Devel. Ther. 2010; 4:71–9. DOI:10.2147/dddt.s3687.; Melamed S., Israely T., Paran N. Challenges and achievements in prevention and treatment of smallpox. Vaccines. 2018; 6(1):8. DOI:10.3390/vaccines6010008.; Jacobs B.L., Langland J.O., Kibler K.V., Denzler K.L., White S.D., Holechek S.A., Wong S., Huynh T., Baskin C.R. Vaccinia virus vaccines: past, present and future. Antiviral Res. 2009; 84(1):1–13. DOI:10.1016/j.antiviral.2009.06.006.; Yamaguchi M., Kimura M., Hirayama M. Vaccination research group research report: Ministry of Health and Welfare special research: postvaccination side effects and research regarding treatment of complications. Rinsho to Uirusu [Clin Virus]. 1975; 3:269–79.; Marennikova S.S., Chimishkyan K.L., Maltseva N.N., Shelukhina E.M., Fedopov V.V. Characteristics of virus strains for production of smallpox vaccines. In: Gusic B., editor. Proceedings of the Symposium on Smallpox. Zagreb: Yugoslav Academy of Sciences and Arts; 1969. P. 65–79.; Kimura M., Sakai H. Vaccination in Japan. Rinsho to Uirusu [Clin. Virus]. 1996; 24:30–40.; McCurdy L.H., Larkin B.D., Martin J.E., Graham B.S. Modified vaccinia Ankara: potential as an alternative smallpox vaccine. Clin. Infect. Dis. 2004; 38(12):1749–53. DOI:10.1086/421266.; Tint H. The rationale for elective prevaccination with attenuated vaccinia (CVI-78) in preventing some vaccination complications. Proceedings of the Symposia Series in Immunobiological Standardization. 1973; 19:281–92.; Hashizume S. Chiba Serum Institute. Special edition future of vaccination: everything about attenuated vaccines. Basics of new attenuated vaccine strain LC16m8. Clin. Virus. 1975; 3:229–35.; Hashizume S., Yoshizawa N., Morita M., Suzuki K. Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain. In: Quinnan G., editor. Vaccinia Virus as Vectors for Vaccine Antigens. New York: Elsevier Science Publishing; 1985. P. 87–99.; Morita M., Suzuki K., Yasuda A., Kojima A., Sugimoto M., Watanabe K., Kobayashi H., Kajima K., Hashizume S. Recombinant vaccinia virus LC16m0 or LC16m8 that expresses hepatitis B surface antigen while preserving the attenuation of the parental virus strain. Vaccine. 1987; 5(1):65–70. DOI:10.1016/0264-410х(87)90012-0.; Takeuchi K., Kawakami K., Akagi N., Kawanishi K. Results of experimental inoculation of attenuated LC16m8 reducing effect of LC16m8 strain pre-treatment. Shonika Shinryo [Pediatr. Diagn.]. 1976; 39:1208–19. [Translated from Japanese].; Kenner J., Cameron F., Empig C., Jobes D.V., Gurwith M. LC16m8: an attenuated smallpox vaccine. Vaccine. 2006; 24(47-48): 7009–22. DOI:10.1016/j.vaccine.2006.03.087.; Saijo M., Ami Y., Suzaki Y., Nagata N., Iwata N., Hasegawa H., Ogata M., Fukushi S., Mizutani T., Sata T., Kurata T., Kurane I., Morikawa S. LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox. J. Virol. 2006; 80(11):5179–88. DOI:10.1128/JVI.02642-05.; Morikawa S., Sakiyama T., Hasegawa H., Saijo M., Maeda A., Kurane I., Maeno G., Kimura J., Hirama C., Yoshida T., Asahi-Ozaki Y., Sata T., Kurata T., Kojima A. An attenuated LC16m8 smallpox vaccine: analysis of full-genome sequence and induction of immune protections. J. Virol. 2005; 79(18):11873–91. DOI:10.1128/JVI.79.18.11873-11891.2005.; Silva N.I.O., de Oliveira J.S., Kroon E.G., Trindade G.S., Drumond B.P. Here, there, and everywhere: the wide host range and geographic distribution of zoonotic orthopoxviruses. Viruses. 2021; 13(1):43. DOI:10.3390/v13010043.; Takahashi-Nishimaki F., Funahashi S., Miki K., Hashizume S., Sugimoto M. Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology. 1991; 181(1):158–64. DOI:10.1016/0042-6822(91)90480-y.; Meseda C.A., Mayer A.E., Kumar A., Garcia A.D., Campbell J., Listrani P., Manischewitz J., King L.R., Golding H., Merchlinsky M., Weir J.P. Comparative evaluation of the immune responses and protection engendered by LC16m8 and Dryvax smallpox vaccines in a mouse model. Clin. Vaccine Immunol. 2009; 16(9):1261–71. DOI:10.1128/CVI.00040-09.; Moss B. Smallpox vaccine: targets of protective immunity. Immunol. Rev. 2011; 239(1):8–26. DOI:10.1111/j.1600-065-X.2010.00975.x.; Eto A., Saito T., Yokote H., Kurane I., Kanatani Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine. 2015; 33(45):6106–11. DOI:10.1016/j.vaccine.2015.07.111.; Iizuka I., Ami Y., Suzaki Y., Nagata N., Fukushi S., Ogata M., Morikawa S., Hasegawa H., Mizuguchi M., Kurane I., Saijo M. A single vaccination of nonhuman primates with highly attenuated smallpox vaccine, LC16m8, provides long-term protection against monkeypox. Jpn. J. Infect. Dis. 2017; 70(4):408–15. DOI:10.7883/yoken.JJID.2016.417.; Gordon S.N., Cecchinato V., Andresen V., Heraud J.M., Hryniewicz A., Parks R.W., Venzon D., Chung H.K., Karpova T., McNally J., Silvera P., Reimann K.A., Matsui H., Kanehara T., Shinmura Y., Yokote H., Franchini G. Smallpox vaccine safety is dependent on T cells and not B cells. Infect. Dis. 2011; 203(8):1043–53. DOI:10.1093/infdis/jig162.; Tagaya I., Kitamura T., Sano Y. A new mutant of dermovaccinia virus. Nature. 1961; 192:381–2. DOI:10.1038/192381a0.; Ishii K., Ueda Y., Matsuo K., Matsuura Y., Kitamura T., Kato K., Izumi Y., Someya K., Ohsu T., Honda M., Miyamura T. Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector. Virology. 2002; 302(2):433–44. DOI:10.1006/viro.2002.1622.; Yokote H., Shinmura Y., Kanehara T., Maruno S., Kuranaga M., Matsui H., Hashizume S. Vaccinia virus strain LC16m8 defective in the B5R gene keeps strong protection comparable to its parental strain Lister in immunodeficient mice. Vaccine. 2015; 33(45):6112–9. DOI:10.1016/j.vaccine.2015.07.076.; Yokote H., Shinmura Y., Kanehara T., Maruno S., Kuranaga M., Matsui H., Hashizume S. Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice. Clin. Vaccine Immunol. 2014; 21(9):1261–6. DOI:10.1128/CVI.00199-14.; Eto A., Fujita M., Nishiyama Y., Saito T., Molina D.M., Morikawa S., Saijo M., Shinmura Y., Kanatani Y. Profiling of the antibody response to attenuated LC16m8 smallpox vaccine using protein array analysis. Vaccine. 2019; 37(44):6588–93. DOI:10.1016/j.vaccine.2019.09.006.; Eto A., Yamamoto N., Kanatani Y. Effect of serial passage on the pathogenicity and immunogenicity of vaccinia virus LC16m8 strain. Biology (Basel). 2021; 10(11):1158. DOI:10.3390/biology10111158.; Saito T., Fujii T., Kanatani Y., Saijo M., Morikawa S., Yokote H., Takeuchi T., Kuwabara N. Clinical and immunological response to attenuated tissue-cultured mallpox vaccine LC16m8. JAMA. 2009; 301(10):1025–33. DOI:10.1001/jama.2009.289.; Kennedy J.S., Gurwith M., Dekker C.L., Frey S.E., Edwards K.M., Kenner J., Lock M., Empig C., Morikawa S., Saijo M., Yokote H., Karem K., Damon I., Perlroth M., Greenberg R.N. Safety and immunogenicity of LC16m8, an attenuated smallpox vaccine in vaccinia-naïve adults. J. Infect. Dis. 2011; 204(9):1395–402. DOI:10.1093/infdis/jir527.; Sarkar J.K., Mitra A.C., Mukherjee M.K. The minimum protective level of antibodies in smallpox. Bull. World Health Organ. 1975; 52(3):307–11.; Meeting of the Strategic Advisory Group of Experts on immunization, November 2013 – conclusions and recommendations. Wkly Epidemiol. Rec. 2014; 89(1):1–19. PMID: 24466571.; Kidokoro M., Tashiro M., Shida H. Genetically stable and fully effective smallpox vaccine train constructed from highly attenuated vaccinia LC16m8. Proc. Natl Acad. Sci. USA. 2005; 102(11):4152–7. DOI:10.1073pnas.0406671102.; Kidokoro M., Shida H. Vaccinia virus LC16m8Δ as a vaccine vector for clinical applications. Vaccines (Basel). 2014; 2(4):755–71. DOI:10.3390/vaccines2040755.; Empig C., Kenner J.R., Perret-Gentil M., Youree B.E., Bell E., Chen A., Gurwith M., Higgins K., Lock M., Rice A.D., Schriewer J., Sinangil F., White E., Buller R.M., Dermody T.S., Isaacs S.N., Moyer R.W. Highly attenuated smallpox vaccine protects rabbits and mice against pathogenic orthopoxvirus challenge. Vaccine. 2006; 24(17):3686–94. DOI:10.1016/j.vaccine.2005.03.029.; Kidokoro M.S.S., Ami Y., Suzaki Y., Nagata N., Iwata N., Hasegawa H., Ogata M., Fukushi H., Mizutani T., Shida H. Protective effects of improved smallpox vaccine LC16m8Δ against a lethal monkeypox challenge in cynomolgus monkeys. In: Proceedings of the 54th Annual Meeting of the Japanese Society for Virology. Nagoya, Japan, 19–21 November 2006.; https://journal.microbe.ru/jour/article/view/2040
-
2Academic Journal
Authors: L. F. Stovba, O. V. Chukhralya, N. K. Chernikova, A. L. Khmelev, S. V. Borisevich, Л. Ф. Стовба, О. В. Чухраля, Н. К. Черникова, А. Л. Хмелев, С. В. Борисевич
Contributors: The study was performed without external funding., Работа выполнялась без спонсорской поддержки.
Source: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 26-41 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 26-41 ; 2619-1156 ; 2221-996X
Subject Terms: вирус вакцины, priming/boosting, seroconversion rate, geometric mean antibody titers, orthopoxviruses, vaccination, monkeypox, vaccinia virus, праймирование/бустирование, уровень сероконверсии, среднее геометрическое значение титров антител, ортопоксвирусы, вакцинация, оспа обезьян
File Description: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/447/625; https://www.biopreparations.ru/jour/article/view/447/629; https://www.biopreparations.ru/jour/article/view/447/643; https://www.biopreparations.ru/jour/article/view/447/651; https://www.biopreparations.ru/jour/article/downloadSuppFile/447/471; https://www.biopreparations.ru/jour/article/downloadSuppFile/447/632; Silva NIO, de Oliveira JS, Kroon EG, Trindade GS, Drumond BP. Here, there, and everywhere: the wide host range and geographic distribution of zoonotic orthopoxviruses. Viruses. 2020;13(1):43. https://doi.org/10.3390/v13010043; Gao J, Gigante C, Khmaladze E, Liu P, Tang S, Wilkins K, et al. Genome sequences of Akhmeta virus, an early divergent Old World Orthopoxvirus. Viruses. 2018;10(5):252. https://doi.org/10.3390/v10050252; Gruber CEM, Giombini E, Selleri M, Tausch SH, Andrusch A, Tyshaieva A, et al. Whole genome characterization of Orthopoxvirus (OPV) Abatino, a zoo notic virus representing a putative novel clade of Old World Orthopoxviruses. Viruses. 2018;10:546. https://doi.org/10.3390/v10100546; Gigante CM, Gao J, Tang S, McCollum A, Wilkins K, Reynolds MG, et al. Genome of Alaskapox virus, a novel orthopoxvirus isolated from Alaska. Viruses. 2019;11(8):708. https://doi.org/10.3390/v11080708; Lanave G, Dowgier G, Decaro N, Albanese F, Brogi E, Parisi A, et al. Novel оrthopoxvirus and lethal disease in cat, Italy. Emerg. Infect. Dis. 2018;24(9):1665–73. https://doi.org/10.3201/eid2409.171283; Fenner F, Henderson DA, Arita L, Ježek Z, Ladnyi ID. Smallpox and its eradication. World Health Organization: Geneva, Switzerland, 1988. https://apps.who.int/iris/handle/10665/39485; Rehm KE, Roper RL. Deletion of the A35 gene from Modified Vaccinia Virus Ankara increases immunogenicity and isotype switching. Vaccine. 2011; 29(17):3276–83. https://doi.org/10.1016/j.vaccine.2011.02.023; Nalca A, Zumbrum EE. ACAM2000 TM : the new smallpox vaccine for United States Strategic National Stockpile. Drug Des Devel Ther. 2010;4:71–9. https://doi.org/10.2147/dddt.s3687; Wollenberg A, Engler R. Smallpox, vaccination and adverse reactions to smallpox vaccine. Curr Opin Allergy Clin Immunol. 2004;4(4):271–5. https://doi.org/10.1097/01.all.0000136758.66442.28; Meseda CA, Atukorale V, Kuhn J, Schmeisser F, Weir JP. Percutaneous vaccination as an effective method of delivery оf MVA and MVA-vectored vaccines. PLoS One. 2016;11(2):e0149364. https://doi.org/10.1371/journal.pone.0149364; Melamed S, Israely T, Paran N. Challenges and achievements in prevention and treatment of smallpox. Vaccines. 2018;6(1):8. https://doi.org/10.3390/vaccines6010008; Hermanson G, Chun S, Felgner J, Tan X, Pablo J, Nakajima-Sasaki R, et al. Measurement of antibody responses to Modified Vaccinia Virus Ankara (MVA) and Dryvax® using proteome microarrays and development of recombinant protein ELISAs. Vaccine. 2012;30(3):614–25. https://doi.org/10.1016/j.vaccine.2011.11.021; Guerra S, Gonsáles JM, Climent N, Reuburn H, López-Fernández LA, Nájera JL, et al. Selective induction of host genes by MVA-B, a candidate vaccine against HIV/AIDS. J Virol. 2010;84(16):8141–52. https://doi.org/10.1128/JVI.00749-10; Mayr A, Stickl H, Müller HK, Danner K, Singer H. Der Pockenimpfstamm MVA: Marker, genetische Struktur, Erfahrungen mit der parenteralen Schutzimpfung und Verhalten im abwehrgeschwächten Organismus. Zentralbl Bakteriol B. 1978;167:375–90.; Garsía AD, Meseda СА, Mayer AE, Kumar A, Merchlinsky M, Weir JP. Characterization and use of mammalian-expressed vaccinia virus extracellular membrane proteins for quantification of the humoral immune response to smallpox vaccines. Clin Vaccine Immunol. 2007;14(8):1032–44. https://doi.org/10.1128/CVI.00050-07; Grandpre LE, Duke-Cohan JS, Ewald BA, Devoy C, Barouch DH, Letvin NL, et al. Immunogenicity of recombinant Modified Vaccinia Ankara following a single or multi-dose vaccine regimen in rhesus monkeys. Vaccine. 2009;27(10):1549–56. https://doi.org/10.1016/j.vaccine.2009.01.010; Meseda CA, Garcia AD, Kumar A, Mayer AE, Manischewitz J, King LR, et al. Enhanced immunogenicity and protective effect conferred by vaccination with combinations of modified vaccinia virus Ankara and licensed smallpox vaccine Dryvax in a mouse model. Virology. 2005;339(2):164–75. https://doi.org/10.1016/j.virol.2005.06.002; Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8 + T cell responses. J Exp Med. 2007;204(6):1405–16. https://doi.org/10.1084/jem.20062363; Volz A, Sutter G. Modified Vaccinia Virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv Virus Res. 2017;97:187–243. https://doi.org/10.1016/bs.aivir.2016.07.001; von Krempelhuber B, Vollmar J, Pokorny R, Rapp P, Wulff N, Petzold B, et al. A randomized, double-blind, dose-finding phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE®. Vaccine. 2010;28(5):1209–16. https://doi.org/10.1016/j.vaccine.2009.11.030; Paavonen J, Jenkins D, Bosch FX, Naud P, Salmerón J, Wheeler CM, et al. Efficacy of prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women an interim analysis of a phase III double-blind, randomized controlled trial. Lancet. 2007;369(9580):2161–70. https://doi.org/10.1016/S0140-6736(07)60946-5; Damon IK, Davidson WB, Hughes CM, Olson VA, Smith SK, Holman RC, et al. Evaluation of smallpox vaccines using variola neutralization. J Gen Virol. 2009;90(8):1962–66. https://doi.org/10.1099/vir.0.010553-0; Frey SE, Winokur PL, Salata RA, El-Kamary SS, Turley CB, Walter EB Jr, et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for post event scenario. Vaccine. 2013;31(29):3025–33. https://doi.org/10.1016/j.vaccine.2013.04.050; Frey SE, Winokur PL, Hill H, Goll JBN, Chaplin P, Belshe RB. Phase II randomized, double-blinded comparison of a single high dose (5×10 8 TCID 50 ) of modified vaccinia Ankara compared to a standard dose (1×10 8 TCID 50 ) in healthy vaccinia-naїve individuals. Vaccine. 2014;32(23):2732–9. https://doi.org/10.1016/j.vaccine.2014.02.043; Frey SE, Newman FK, Kennedy JS, Sobek V, Ennis FA, Hill H, et al. Clinical and immunologic responses to multiple doses of IMVAMUNE® (Modified Vaccinia Ankara) followed by Dryvax® challenge. Vaccine. 2007;25(51):8562–73. https://doi.org/10.1016/j.vaccine.2007.10.017; Seaman MS, Wilck MB, Baden LR, Walsh SR, Grandpre LE, Devoy C, et al. Effect of vaccination with modified vaccinia Ankara (ACAM3000) on subsequent challenge with Dryvax. J Infect Dis. 2010;201(9):1353–60. https://doi.org/10.1086/651560; Parrino J, McCurdy LH, Larkin BD, Gordon IJ, Rucker SE, Enama ME, et al. Safety, immunogenicity and efficacy of modified vaccinia Ankara (MVA) against Dryvax challenge in vaccinia-naïve and vaccinia-immune individuals. Vaccine. 2007;25(8):1513–25. https://doi.org/10.1016/j.vaccine.2006.10.047; Pfister G, Savino W. Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective. Neuroimmunomodulation. 2008;15(4-6):351–64. https://doi.org/10.1159/000156477; Greenberg RN, Hay CM, Stapleton JT, Marbury TC, Wagner E, Kreitmeir E, et al. A randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of modified vaccinia Ankara smallpox vaccine (MVA-BN®) in 56–80-year-old subjects. PLoS One. 2016;11(6):e0157335. https://doi.org/10.1371/journal.pone.0157335; Greenberg RN, Overton ET, Haas DW, Frank I, Goldman M, von Krempelhuber A, et al. Safety, immunogenicity and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J Infect Dis. 2013;207(5):749–58. https://doi.org/10.1093/infdis/jis753; Overton ET, Stapleton J, Frank I, Hassler S, Goephert PA, Barker D, et al. Safety and immunogenicity of modified vaccinia Ankara-Bavarian Nordic smallpox vaccine in vaccinia-naïve and experienced human immunodeficiency virus-infected individuals: fn open-label, controlled clinical phase II trial. Open Forum Infect Dis. 2015;2(2):ofv040. https://doi.org/10.1093/ofid/ofv040; Zitzman-Roth E-M, von Sonnenburg F, de la Motte S, Arndtz-Wiedemann N, von Krempelhuber A, Uebler N, et al. Cardiac safety of modified vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS One. 2015;10(4):e0122653. https://doi.org/10.1371/journal.pone.0122653; Greenberg RN, Hurley MY, Dinh DV, Mraz S, Vera JG, von Bredow D, et al. A multicenter, open-label, controlled phase II study to evaluate safety and immunogenicity of MVA smallpox vaccine (IMVAMUNE) in 18–40 year old subjects with diagnosed atopic dermatitis. PLoS One. 2015;10(10): e0138348. https://doi.org/10.1371/journal.pone.0138348; Hraib M, Jouni S, Albitar M, Alaidi S, Alshehabi Z. The outbreak of monkeypox 2022: an overview. Ann Med Surg (Lond). 2022;79:104069. https://doi.org/10.1016/j.amsu.2022.104069; Velavan TP, Meyer CG. Monkeypox 2022 outbreak: an update. Trop Med Int Health. 2022;27(7):604–5. https://doi.org/10.1111/tmi.13785; Rizk JG, Lippi G, Henry BN, Forthal DN, Rizk Y. Prevention and treatment of monkeypox. Drugs. 2022;82(9):957–63. https://doi.org/10.1007/s40265-022-01742-y; Максютов РА, Якубицкий СН, Колосова ИВ, Трегубчак ТВ, Швалов АН, Гаврилова ЕВ, Щелкунов СН. Стабильность генома вакцинного штамма VAC∆6. Вавиловский журнал генетики и селекции. 2022;26(4):394–401. https://doi.org/10.18699/VJGB-22-48; Максютов РА, Якубицкий СН, Колосова ИВ, Щелкунов СН. Сравнение кандидатных вакцин нового поколения против ортопоксвирусных инфекций человека. Acta Naturae. 2017;9(2):93–99. https://doi.org/10.32607/20758251-2017-9-2-88-93; https://www.biopreparations.ru/jour/article/view/447