Showing 1 - 12 results of 12 for search '"праймирование"', query time: 0.69s Refine Results
  1. 1
    Academic Journal

    Source: Vegetable crops of Russia; № 1 (2025); 70-81 ; Овощи России; № 1 (2025); 70-81 ; 2618-7132 ; 2072-9146

    File Description: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2551/1629; Краткое историческое описание приходов и церквей Архангельской епархии. Архангельск. 1895;(2);306-307.; Дюжилов С.А. Полярное земледелие: постановка проблемы и ее решение в 1920-е годы на Кольском Севере. Труды Кольского научного центра РАН. 2016;3(37):71-78. https://www.elibrary.ru/xcsotn; Журавский А.В. Избранные работы по вопросам сельскохозяйственного освоения Печорского Севера. Сыктывкар. 2007. 107 с. ISBN 978-5-89606-342-1. https://www.elibrary.ru/qkzqvv; Прянишников Д.Н. Поднятие земледелия Севера, как средство облегчить кризис продовольствия и транспорта. Изд. 2-е М., «Агрикультура». 1922. 24 с; Вавилов Н.И. Проблема северного земледелия. Материалы Ленинградской чрезвычайной сессии Академии наук СССР. 25-30 XI 1931 г. Ленинград, издательство Академии наук. http://www.book-ist.ru/vavilov/vavilov.html; Сазонова Л.В. Деятельность ВНИИ Растениеводства имени Н.И. Вавилова по продвижению земледелия на Крайний север России. Тезисы докладов. Северное земледелие. Овощные культуры. Научный семинар в рамках 100-летия северного земледелия, посвящённый 90-летию со дня рождения Л.В. Сазоновой. 2023;(1):41-44.; Романенко Т.М., Филиппова Г.И. Флагман сельскохозяйственной науки на территории Ненецкого округа. Глобальные проблемы Арктики и Антарктики: Сборник научных материалов Всероссийской конференции с международным участием, посвященной 90-летию со дня рождения акад. Николая Павловича Лавёрова, Архангельск. 2020. С. 1117-1122. https://www.elibrary.ru/mzzrvs; Кругликов В.М. Сортоиспытание овощных культур и картофеля. Научный отчет Нарьян-Марской зональной станции за 1940 год. Нарьян-Мар. 1940. С. 27-31.; Агроправила по выращиванию картофеля, овощных и кормовых культур в Ненецком национальном округе. Нарьян-Мар. 1968. 77 с.; Романенко Т.М., Вылко Ю.П., Лайшев К.А., Глебова Е.А., Мясникова М.Н. Эколого-фенологические особенности лёта подкожного овода северных оленей на территории Ненецкого автономного округа. Иппология и ветеринария. 2019;3(33):130-137. https://www.elibrary.ru/qzuzkt; https://finobzor.ru/131374-v-arktike-sozdajut-bank-zdorovyh-sortov-kartofelja-rossijskoj-selekcii.html. Дата обращения: 22.10.2024.; https://vniissok.ru/2024/06/28/ispytanie-novyh-tehnologij-i-sortov-ovoshhnyh-kultur-selekcii-fgbnu-fnco-za-severnym-polyarnym-krugom. Дата обращения 23.11.2024.; Kataria S., Jain M. Magnetopriming alleviates adverse effects of abiotic stresses in plants. In Plant Tolerance to Environmental Stress. CRC Press. 2019. P. 427-442. https://doi.org/10.1201/9780203705315-26; Waqas M., Korres N.E., Khan M.D., Nizami A.S., Deeba F., Ali I., Hussain H. Advances in the concept and methods of seed priming. Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crop plants. 2019. P. 11-41. https://doi.org/10.1007/978-981-13-8625-1_2; Argerich C.A., Bradford K.J., Tarquıs A.M. The effects of priming and ageing on resistance to deterioration of tomato seeds. Journal of Experimental Botany. 1989;40(5):593-598. https://doi.org/10.1093/jxb/40.5.593; Fabrissin I., Sano N., Seo M., North H.M. Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off?. Journal of Experimental Botany. 2021;72(7):2312-2333. https://doi.org/10.1093/jxb/erab004; Кутис Т.Л., Кутис С.Д. Электромагнитные технологии в растениеводстве. Часть 1. Электромагнитная обработка семян и посадочного материала. 2017. 52 с.; Shine M.B., Guruprasad K.N., Anand A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics. 2011:32(6):474-484. https://doi.org/10.1002/bem.20656; Bhardwaj J., Anand A., Nagarajan S. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry. 2012;(57):67-73. https://doi.org/10.1016/j.plaphy.2012.05.008; Xia X., Padula G., Kubisz L., HoŁubowicz R. Effect of low frequency magnetic field (LFMF) on seed quality of radish (Raphanus sativus L.) seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2020;48(3),1458-1464. https://doi.org/10.15835/nbha48311918; Sari M.E., Demir I., Yildirim K.C., Memis N. Magnetopriming enhances germination and seedling growth parameters of onion and lettuce seeds. International Journal of Agriculture, Environment and Food Sciences. 2023;7(3):468-475. https://doi.org/10.31015/jaefs.2023.3.1; Martinez E., Carbonell M.V., Amaya J.M. A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro- and Magnetobiology. 2000:19(3):271-277. https://doi.org/10.1081/JBC-100102118; Martınez E., Carbonell M.V., Florez M., Amaya J.M., Maqueda R. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. Int Agrophys. 2009;(23):45-49.; Dhawi F. Why are magnetic fields used to enhance a plant’s growth and productivity? Annual Research & Review in Biology. 2014. P. 886-896. https://doi.org/10.9734/ARRB/2014/5983; Baghel L., Kataria S., Guruprasad K.N. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics. 2016;37(7):455-470. https://doi.org/10.1002/bem.21988; Kadıoğlu N., Ermis S., Oktem G., Demir I. Magnetopriming enhanced seed germination in six vegetable species: tomato, pepper, onion, cauliflower, cabbage and carrot. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi. 2023;28(3):557-567. https://doi.org/10.37908/mkutbd.1284048.; Rodenko N.A., Blednykh O.V., Glushchenkov V.A., Degteva Y.V. Change in the growth parameters of soft wheat Triticum aestivum (L.) after pretreatment of seeds with a pulsed magnetic field. BIO Web of Conferences. 2024;139:01002. https://doi.org/10.1051/bioconf/202413901002; Hołubowicz R., Kubisz L., Gauza M., Yilin T., Hojan-Jezierska D. Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2014;42(1):168-172. https://doi.org/10.15835/nbha4219131; De Micco V., Paradiso R., Aronne G., De Pascale S., Quarto M., Arena C. Leaf anatomy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. The Scientific World Journal. 2014;(10):428141. https://doi.org/10.1155/2014/428141; Бучаченко А.Л. Магнитно-зависимые молекулярные и химические процессы в биохимии, генетике и медицине. Успехи химии. 2014;83(1):1-12. https://www.elibrary.ru/rrshmx; Кутис С.Д., Кутис Т.Л., Гак Е.З. Электромагнитная установка для предпосевной обработки семян. Механизация и автоматизация технологических процессов в агропромышленном комплексе. 1989;(2):35-36.; Зайнуллин В.Г., Пожирицкая А.Н., Турлакова А.М. и др. Влияние предпосадочной обработки слабыми неионизирующими импульсными полями на продуктивность и качество урожая сортов картофеля. Аграрная наука Евро-Северо-Востока. 2024;25(5):794-804. https://doi.org/10.30766/2072-9081.2024.25.5.794-804 https://www.elibrary.ru/diaqdo; Патент РФ «Способ подавления жизнедеятельности патогенных микроорганизмов и вирусов электромагнитным излучением» №2766002 от 07 февраля 2022 года [Электронный ресурс]. URL: https://patents.s3.yandex.net/RU2766002C1_20220207.pdf. Дата обращения: 22.03.2023.; Методические указания по селекции и первичному семеноводству овощных бобовых культур. М.: ВНИИССОК. 1985. 60 c.; Белик В.Ф., Рубин В.Ф., Лукьяненко Д.Е. Методика полевого опыта в овощеводстве и бахчеводстве. М.: НИИОХ. 1979. 210 c.; Широкий унифицированный классификатор СЭВ и международный классификатор СЭВ рода Pisum L. Л., 1981. 47 с.; Широкий Унифицированный Классификатор СЭВ и Международный Классификатор СЭВ рода Faba Mill. Л. 1981. 28 с.; https://atago-russia.com/primenenie/opredelenie-saharistosti-fruktov. Дата обращения: 20.10.2024.; Доспехов Б.А. Методика полевого опыта. М.: Агропромиздат. 1985. 351 c.; https://www.vegetables.su/jour/article/view/2551

  2. 2
  3. 3
    Academic Journal

    Source: Problems of Particularly Dangerous Infections; № 4 (2023); 24-31 ; Проблемы особо опасных инфекций; № 4 (2023); 24-31 ; 2658-719X ; 0370-1069

    File Description: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/1893/1428; [Corporate Author]. Ebola haemorrhagic fever in Zaire, 1976. Report of an International Commission. Bull. World Health Organ. 1978; 56(2):271–93.; Leroy E.M., Kumulungui B., Pourrut X., Rouquet P., Hassanin A., Yaba P., Délicat A., Paweska J.T., Gonzalez J.P., Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature. 2005; 438(7068):575–6. DOI:10.1038/438575a.; World Health Organization. Ebola Virus Disease. Situation Report. 26 May 2016. Available from: http://apps.who.int/iris/bitstream/10665/206924/1/ebolasitrep26May2016eng.pdf?ua=1.; Wong G., Mendoza E.J., Plummer F.A., Gao G.F., Kobinger G.P., Qiu X. From bench to almost bedside: the long road to a licensed Ebola virus vaccine. Expert Opin. Biol. Ther. 2018; 18(2):159–73. DOI:10.1080/14712598.1018.1404572.; Dolzhikova I.V., Tokarskaya E.A., Dzharullaeva A.S., Tukhvatulin A.I., Shcheblyakov D.V., Voronina O.L., Syromyatnikova S.I., Borisevich S.V., Pantyukhov V.B., Babira V.F., Kolobukhina L.V., Naroditsky B.S., Logunov D.Y., Gintsburg A.L. Virus-vectored Ebola vaccines. Acta Naturae. 2017; 9(3):4–11.; Sridhar S. Clinical development of Ebola vaccines. Ther. Adv. Vaccines. 2015; 3(5-6):125–38. DOI:10.1177/2051013615611017.; Frey S.E., Winokur P.L., Salata R.A., EL-Kamary S.S., Turley C.B., Walter E.B. Jr, Hay C.M., Newman F.K., Hill H.R., Zhang Y., Chaplin P., Tary-Lehmann M., Belshe R.B. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for a post event scenario. Vaccine. 2013; 31(29):3025–33. DOI:10.1016/j.vaccine.2013.04.050.; Ndiaye B.P., Thieneman F., Ota M., Landry B.S., Camara M., Dieye S. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomized, placebo-controlled, phase 2 trial. Lancet. Respir. Med. 2015; 3(3):190–200. DOI:10.1016/S2213-2600(15)00037-5.; Greenberg R.N., Hay C.M., Stapleton J.T., Marbury T.C., Wagner E., Kreitmeir E., Röesch., von Krempelhuber A., Young P., Nichols R., Meuer T.P., Schmidt D., Weigl J., Virgin G., Arndtz-Wiedemann N., Chaplin P. A randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of modified vaccinia Ankara smallpox vaccine (MVA-BN®) in 56–80-year-old subjects. PloS One. 2016; 11(6):e0157335. DOI: 10/1371/journal.pone.0157335.; Greenberg R.N., Hurley M.Y., Dinh V.D., Mraz S., Vera J.G., von Bredow D., von Krempelhuber A., Roesch S., Virgin G., Arndtz-Wiedemann N., Meyer T.P., Schmidt D., Nichols R., Young P., Chaplin P. A multicenter, open-label, controlled phase II study to evaluate safety and immunogenicity of MVA small-pox vaccine (IMVAMUNE) in 18–40 year old subjects with diagnosed atopic dermatitis. PloS One. 2015; 10(10):e0138348. DOI: 10/1371/journal.pone.0138348.; Greenberg R.N., Overton E.T., Haas D.W., Frank I., Goldman M., von Krempelhuber A., Virgin G., Bädeker N., Vollmar J., Chaplin P. Safety, immunogenicity, and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J. Infect. Dis. 2013; 207(5):749–58. DOI:10.1093/infdis/jis753.; Overton E.T., Stapleton J., Frank I., Haasler S., Goepfert P.A., Barker D., Wagner E., von Krempelhuber A., Virgin G., Meyer T.P., Müller J., Bädeker N., Grünert R., Young P., Rösch S., Maclennan J., Arndtz-Wiedemann N., Chaplin P. Safety and immunogenicity of modified vaccinia Ankara-Bavarian Nordic smallpox vaccine in vaccinia-naive and experienced human immunodeficiency virus-infected individuals: An open-label, controlled clinical phase II trial. Open Forum Infect. Dis. 2015; 2(2):ofv040. DOI: 10/1093/ofid/ofv040.; Zitzman-Roth E.-M., von Sonnenburg F., de la Motte S., Arndtz-Wiedemann N., von Krempelhuber A., Uebler N., Vollmar J., Virgin G., Chaplin P. Cardiac safety of modified vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PloS One. 2015; 10(4):e0122653. DOI:10.1371//journal.pone.0122653.; Lázaro-Frías A., Gómez-Medina S., Sánchez-Sampedro L., Ljungberg K., Ustav M., Liljeström P., Muñoz-Fontela C., Esteban M., García-Arriaza J. Distinct immunogenicity and efficacy of pox-virus-based vaccine candidates against Ebola virus expressing GP and VP40 proteins. J. Virol. 2018; 92(11):e00363-18. DOI:10.1128/JVI.00363-18.; Domi A., Feldman F., Basu R., McCurley N., Shifflett K., Emanuel J., Hellerstein M.S., Guirakhoo F., Orlandi C., Flinko R., Lewis G.K., Hanley P.W., Feldmann H., Robinson H.L., Marzi A. A single dose of modified vaccinia Ankara expressing Ebola virus like particles protects nonhuman primates from lethal Ebola virus challenge. Sci. Rep. 2018; 8(1):864. DOI:10.1038/s41598-017-19041-y.; Schweneker M., Laimbacher A.S., Zimmer G., Wagner S., Schraner E.M., Wolferstätter M., Klingenberg M., Dirmeier U., Steigerwald R., Lauterbach H., Hochrein H., Chaplin P., Suter M., Hausmann J. Recombinant modified vaccinia virus Ankara geeing Ebola virus-like particles. J. Virol. 2017; 91(11):e00343-17. DOI:10.1128/JVI.00343-17.; Callendret B., Vellinga J., Wunderlich K., Rodrigues A., Steigerward R., Dirmeier U., Cheminay C., Volkmann A., Brasel T., Carrion R., Giavedoni L.D., Patterson J.L., Mire C.E., Geisbert T.W., Hooper J.W., Weijtens M., Hartkoorn-Pasma J., Custers J., Grazia Pau M., Schuitemaker H., Zahn R. A prophylactic multivalent vaccine against different filovirus species is immunogenetic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates. PloS One. 2018; 13(2):e0192312. DOI:10.1371/journal.pone.0192312.; Hensley L.E., Mulangu S., Asiedu C., Johnson J., Honko A.N., Stanley D., Fabozzi G., Nichol S.T., Ksiazek T.G., Rollin P.E., Wahl-Jensen V., Bailey M., Jahrling P.B., Roederer M., Koup R.A., Sullivan N.J. Demonstration of cross-protective vaccine immunity against an emerging pathogenic Ebolavirus species. PloS Pathog. 2010; 6(5):e1000904. DOI:10.1371/journal.ppat.1000904.; Tapia M.D., Sow S.O., Lyke K.E., Haidara F.C., Diallo F., Doumbia M., Traore A., Coulibaly F., Kodio M., Onwuchekwa U., Sztein M.B., Wahid R., Campbell J.D., Kieny M.P., Moorthy V., Imoukhuede E.B., Rampling T., Roman F., De Ryck I., Bellamy A.R., Dally L., Mbaya O.T., Ploquin A., Zhou Y., Stanley D.A., Bailer R., Koup R.A., Roederer M., Ledgerwood J., Hill A.V.S., Ballou W.R., Sullivan N., Graham B., Levine M.M. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial. Lancet. Infect. Dis. 2016; 16(1):31–42. DOI:10.1016/S1473-3099(15)00362-X.; Stanley D.A., Honko A.N., Asiedu C., Trefry J.C., Lau-Kilby A.W., Johnson J.C., Hensley L., Ammendola V., Abbate A., Grazioli F., Foulds K.E., Cheng C., Wang L., Donaldson M.M., Colloca S., Folgori A., Roederer M., Nabel G.J., Mascola J., Nicosia A., Cortese R., Koup R.A., Sullivan N.J. Chimpanzee adenovirus vaccine generates acuate and durable protective immunity against Ebolavirus challenge. Nat. Med. 2014; 20(10):1126–29. DOI:10.1038/nm.3702.; Plotkin S.A., Gilbert P.B. Nomenclature for immune correlates of protection after vaccination. Clin. Infect. Dis. 2012; 54(11):1615–7. DOI:10.1093/cid/cis238.; Venkatraman N., Ndiaye B.P., Bowyer G., Wade D., Sridhar S., Wright D., Powlson J., Ndiaye I., Dièye S., Thompson C., Bakhoum M., Morter R., Capone S., Del Sorbo M., Jamieson S., Rampling T., Datoo M., Roberts R., Poulton I., Griffiths O., Ballou W.R., Roman F., Lewis D.J.M., Lawrie A., Imoukhuede E., Gilbert S.C., Dieye T.N., Ewer K.J., Mboup S., Hill A.V.S. Safety and immunogenicity of a heterologous prime-boost Ebola virus vaccine regimen in healthy adults in the United Kingdom and Senegal. J. Infect. Dis. 2019; 219(8):1187–97. DOI:10.1093/infdis/jiy639.; Dahlke C., Lunemann S., Kasonta R., Kreuels B., Schmiedel S., Ly M.L., Fehling S.K., Strecker T., Becker S., Altfeld M., Sow A., Lohse A.W., Muñoz-Fontela C., Addo M.M. Comprehensive characterization of cellular immune responses following Ebola virus infection. J. Infect. Dis. 2017; 215(2):287–92. DOI:10.1093/infdis/jiw508.; Milligan I.D., Gibani M.M., Sewell R., Clutterbuck E.A., Campbell D., Plested E., Nuthall E., Voysey M., Silva-Reyes L., McElrath M.J., De Rosa S.C., Frahm N., Cohen K.W., Shukarev G., Orzabal N., van Duijnhoven W., Truyers C., Bachmayer N., Splinter D., Samy N., Pau M.G., Schuitemaker H., Luhn K., Callendret B., Van Hoof J., Douoguih M., Ewer K., Angus B., Pollard A.J., Snape M.D. Safety and immunogenicity of novel adenovirus type 26 – and modified vaccinia Ankara – vectored Ebola vaccine: A randomized clinical trial. JAMA. 2016; 315(15):1610–23. DOI:10.1001jama.2016.4218.; Coltart C.E.M., Johnson A.M., Whitty C.J.M. Role of healthcare workers in early epidemic spread of Ebola: policy implication of prophylactic compared to reactive vaccination policy in outbreak prevention and control. BMC Med. 2015; 13:271. DOI:10.1186/s12916-015-0477-2.; https://journal.microbe.ru/jour/article/view/1893

  4. 4
    Academic Journal

    Source: Problems of Particularly Dangerous Infections; № 3 (2024); 42-50 ; Проблемы особо опасных инфекций; № 3 (2024); 42-50 ; 2658-719X ; 0370-1069

    File Description: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/2040/1499; Duggan A.T., Klunk J., Porter A.F., Dhody A.N., Hicks R., Smith G.L., Humphreys M., McCollum A.M., Davidson W.B., Wilkins K., Li Y., Burke A., Polasky H., Flanders L., Poinar D., Raphenya A.R., Lau T.T.Y., Alcock B., McArthur A.G., Golding G.B., Holmes E.C., Poinar H.N. The origins and genomic diversity of American Civil War Era smallpox vaccine strains. Genome Biol. 2020; 21(1):175. DOI:10.1186/s13059-020-02079-z.; Esparza J., Schrick L., Damaso C.D., Nitsche A. Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine. Vaccine. 2017; 35(52):7222–30. DOI:10.1016/j.vaccine 1017.11.003.; Nalca A., Zumbrum E.E. Acam2000: the new small vaccine for United States Strategic National Stockpile. Drag Des. Devel. Ther. 2010; 4:71–9. DOI:10.2147/dddt.s3687.; Melamed S., Israely T., Paran N. Challenges and achievements in prevention and treatment of smallpox. Vaccines. 2018; 6(1):8. DOI:10.3390/vaccines6010008.; Jacobs B.L., Langland J.O., Kibler K.V., Denzler K.L., White S.D., Holechek S.A., Wong S., Huynh T., Baskin C.R. Vaccinia virus vaccines: past, present and future. Antiviral Res. 2009; 84(1):1–13. DOI:10.1016/j.antiviral.2009.06.006.; Yamaguchi M., Kimura M., Hirayama M. Vaccination research group research report: Ministry of Health and Welfare special research: postvaccination side effects and research regarding treatment of complications. Rinsho to Uirusu [Clin Virus]. 1975; 3:269–79.; Marennikova S.S., Chimishkyan K.L., Maltseva N.N., Shelukhina E.M., Fedopov V.V. Characteristics of virus strains for production of smallpox vaccines. In: Gusic B., editor. Proceedings of the Symposium on Smallpox. Zagreb: Yugoslav Academy of Sciences and Arts; 1969. P. 65–79.; Kimura M., Sakai H. Vaccination in Japan. Rinsho to Uirusu [Clin. Virus]. 1996; 24:30–40.; McCurdy L.H., Larkin B.D., Martin J.E., Graham B.S. Modified vaccinia Ankara: potential as an alternative smallpox vaccine. Clin. Infect. Dis. 2004; 38(12):1749–53. DOI:10.1086/421266.; Tint H. The rationale for elective prevaccination with attenuated vaccinia (CVI-78) in preventing some vaccination complications. Proceedings of the Symposia Series in Immunobiological Standardization. 1973; 19:281–92.; Hashizume S. Chiba Serum Institute. Special edition future of vaccination: everything about attenuated vaccines. Basics of new attenuated vaccine strain LC16m8. Clin. Virus. 1975; 3:229–35.; Hashizume S., Yoshizawa N., Morita M., Suzuki K. Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain. In: Quinnan G., editor. Vaccinia Virus as Vectors for Vaccine Antigens. New York: Elsevier Science Publishing; 1985. P. 87–99.; Morita M., Suzuki K., Yasuda A., Kojima A., Sugimoto M., Watanabe K., Kobayashi H., Kajima K., Hashizume S. Recombinant vaccinia virus LC16m0 or LC16m8 that expresses hepatitis B surface antigen while preserving the attenuation of the parental virus strain. Vaccine. 1987; 5(1):65–70. DOI:10.1016/0264-410х(87)90012-0.; Takeuchi K., Kawakami K., Akagi N., Kawanishi K. Results of experimental inoculation of attenuated LC16m8 reducing effect of LC16m8 strain pre-treatment. Shonika Shinryo [Pediatr. Diagn.]. 1976; 39:1208–19. [Translated from Japanese].; Kenner J., Cameron F., Empig C., Jobes D.V., Gurwith M. LC16m8: an attenuated smallpox vaccine. Vaccine. 2006; 24(47-48): 7009–22. DOI:10.1016/j.vaccine.2006.03.087.; Saijo M., Ami Y., Suzaki Y., Nagata N., Iwata N., Hasegawa H., Ogata M., Fukushi S., Mizutani T., Sata T., Kurata T., Kurane I., Morikawa S. LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox. J. Virol. 2006; 80(11):5179–88. DOI:10.1128/JVI.02642-05.; Morikawa S., Sakiyama T., Hasegawa H., Saijo M., Maeda A., Kurane I., Maeno G., Kimura J., Hirama C., Yoshida T., Asahi-Ozaki Y., Sata T., Kurata T., Kojima A. An attenuated LC16m8 smallpox vaccine: analysis of full-genome sequence and induction of immune protections. J. Virol. 2005; 79(18):11873–91. DOI:10.1128/JVI.79.18.11873-11891.2005.; Silva N.I.O., de Oliveira J.S., Kroon E.G., Trindade G.S., Drumond B.P. Here, there, and everywhere: the wide host range and geographic distribution of zoonotic orthopoxviruses. Viruses. 2021; 13(1):43. DOI:10.3390/v13010043.; Takahashi-Nishimaki F., Funahashi S., Miki K., Hashizume S., Sugimoto M. Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology. 1991; 181(1):158–64. DOI:10.1016/0042-6822(91)90480-y.; Meseda C.A., Mayer A.E., Kumar A., Garcia A.D., Campbell J., Listrani P., Manischewitz J., King L.R., Golding H., Merchlinsky M., Weir J.P. Comparative evaluation of the immune responses and protection engendered by LC16m8 and Dryvax smallpox vaccines in a mouse model. Clin. Vaccine Immunol. 2009; 16(9):1261–71. DOI:10.1128/CVI.00040-09.; Moss B. Smallpox vaccine: targets of protective immunity. Immunol. Rev. 2011; 239(1):8–26. DOI:10.1111/j.1600-065-X.2010.00975.x.; Eto A., Saito T., Yokote H., Kurane I., Kanatani Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine. 2015; 33(45):6106–11. DOI:10.1016/j.vaccine.2015.07.111.; Iizuka I., Ami Y., Suzaki Y., Nagata N., Fukushi S., Ogata M., Morikawa S., Hasegawa H., Mizuguchi M., Kurane I., Saijo M. A single vaccination of nonhuman primates with highly attenuated smallpox vaccine, LC16m8, provides long-term protection against monkeypox. Jpn. J. Infect. Dis. 2017; 70(4):408–15. DOI:10.7883/yoken.JJID.2016.417.; Gordon S.N., Cecchinato V., Andresen V., Heraud J.M., Hryniewicz A., Parks R.W., Venzon D., Chung H.K., Karpova T., McNally J., Silvera P., Reimann K.A., Matsui H., Kanehara T., Shinmura Y., Yokote H., Franchini G. Smallpox vaccine safety is dependent on T cells and not B cells. Infect. Dis. 2011; 203(8):1043–53. DOI:10.1093/infdis/jig162.; Tagaya I., Kitamura T., Sano Y. A new mutant of dermovaccinia virus. Nature. 1961; 192:381–2. DOI:10.1038/192381a0.; Ishii K., Ueda Y., Matsuo K., Matsuura Y., Kitamura T., Kato K., Izumi Y., Someya K., Ohsu T., Honda M., Miyamura T. Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector. Virology. 2002; 302(2):433–44. DOI:10.1006/viro.2002.1622.; Yokote H., Shinmura Y., Kanehara T., Maruno S., Kuranaga M., Matsui H., Hashizume S. Vaccinia virus strain LC16m8 defective in the B5R gene keeps strong protection comparable to its parental strain Lister in immunodeficient mice. Vaccine. 2015; 33(45):6112–9. DOI:10.1016/j.vaccine.2015.07.076.; Yokote H., Shinmura Y., Kanehara T., Maruno S., Kuranaga M., Matsui H., Hashizume S. Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice. Clin. Vaccine Immunol. 2014; 21(9):1261–6. DOI:10.1128/CVI.00199-14.; Eto A., Fujita M., Nishiyama Y., Saito T., Molina D.M., Morikawa S., Saijo M., Shinmura Y., Kanatani Y. Profiling of the antibody response to attenuated LC16m8 smallpox vaccine using protein array analysis. Vaccine. 2019; 37(44):6588–93. DOI:10.1016/j.vaccine.2019.09.006.; Eto A., Yamamoto N., Kanatani Y. Effect of serial passage on the pathogenicity and immunogenicity of vaccinia virus LC16m8 strain. Biology (Basel). 2021; 10(11):1158. DOI:10.3390/biology10111158.; Saito T., Fujii T., Kanatani Y., Saijo M., Morikawa S., Yokote H., Takeuchi T., Kuwabara N. Clinical and immunological response to attenuated tissue-cultured mallpox vaccine LC16m8. JAMA. 2009; 301(10):1025–33. DOI:10.1001/jama.2009.289.; Kennedy J.S., Gurwith M., Dekker C.L., Frey S.E., Edwards K.M., Kenner J., Lock M., Empig C., Morikawa S., Saijo M., Yokote H., Karem K., Damon I., Perlroth M., Greenberg R.N. Safety and immunogenicity of LC16m8, an attenuated smallpox vaccine in vaccinia-naïve adults. J. Infect. Dis. 2011; 204(9):1395–402. DOI:10.1093/infdis/jir527.; Sarkar J.K., Mitra A.C., Mukherjee M.K. The minimum protective level of antibodies in smallpox. Bull. World Health Organ. 1975; 52(3):307–11.; Meeting of the Strategic Advisory Group of Experts on immunization, November 2013 – conclusions and recommendations. Wkly Epidemiol. Rec. 2014; 89(1):1–19. PMID: 24466571.; Kidokoro M., Tashiro M., Shida H. Genetically stable and fully effective smallpox vaccine train constructed from highly attenuated vaccinia LC16m8. Proc. Natl Acad. Sci. USA. 2005; 102(11):4152–7. DOI:10.1073pnas.0406671102.; Kidokoro M., Shida H. Vaccinia virus LC16m8Δ as a vaccine vector for clinical applications. Vaccines (Basel). 2014; 2(4):755–71. DOI:10.3390/vaccines2040755.; Empig C., Kenner J.R., Perret-Gentil M., Youree B.E., Bell E., Chen A., Gurwith M., Higgins K., Lock M., Rice A.D., Schriewer J., Sinangil F., White E., Buller R.M., Dermody T.S., Isaacs S.N., Moyer R.W. Highly attenuated smallpox vaccine protects rabbits and mice against pathogenic orthopoxvirus challenge. Vaccine. 2006; 24(17):3686–94. DOI:10.1016/j.vaccine.2005.03.029.; Kidokoro M.S.S., Ami Y., Suzaki Y., Nagata N., Iwata N., Hasegawa H., Ogata M., Fukushi H., Mizutani T., Shida H. Protective effects of improved smallpox vaccine LC16m8Δ against a lethal monkeypox challenge in cynomolgus monkeys. In: Proceedings of the 54th Annual Meeting of the Japanese Society for Virology. Nagoya, Japan, 19–21 November 2006.; https://journal.microbe.ru/jour/article/view/2040

  5. 5
  6. 6
    Academic Journal

    Contributors: The study was performed without external funding., Работа выполнялась без спонсорской поддержки.

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 26-41 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 26-41 ; 2619-1156 ; 2221-996X

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/447/625; https://www.biopreparations.ru/jour/article/view/447/629; https://www.biopreparations.ru/jour/article/view/447/643; https://www.biopreparations.ru/jour/article/view/447/651; https://www.biopreparations.ru/jour/article/downloadSuppFile/447/471; https://www.biopreparations.ru/jour/article/downloadSuppFile/447/632; Silva NIO, de Oliveira JS, Kroon EG, Trindade GS, Drumond BP. Here, there, and everywhere: the wide host range and geographic distribution of zoonotic orthopoxviruses. Viruses. 2020;13(1):43. https://doi.org/10.3390/v13010043; Gao J, Gigante C, Khmaladze E, Liu P, Tang S, Wilkins K, et al. Genome sequences of Akhmeta virus, an early divergent Old World Orthopoxvirus. Viruses. 2018;10(5):252. https://doi.org/10.3390/v10050252; Gruber CEM, Giombini E, Selleri M, Tausch SH, Andrusch A, Tyshaieva A, et al. Whole genome characterization of Orthopoxvirus (OPV) Abatino, a zoo notic virus representing a putative novel clade of Old World Orthopoxviruses. Viruses. 2018;10:546. https://doi.org/10.3390/v10100546; Gigante CM, Gao J, Tang S, McCollum A, Wilkins K, Reynolds MG, et al. Genome of Alaskapox virus, a novel orthopoxvirus isolated from Alaska. Viruses. 2019;11(8):708. https://doi.org/10.3390/v11080708; Lanave G, Dowgier G, Decaro N, Albanese F, Brogi E, Parisi A, et al. Novel оrthopoxvirus and lethal disease in cat, Italy. Emerg. Infect. Dis. 2018;24(9):1665–73. https://doi.org/10.3201/eid2409.171283; Fenner F, Henderson DA, Arita L, Ježek Z, Ladnyi ID. Smallpox and its eradication. World Health Organization: Geneva, Switzerland, 1988. https://apps.who.int/iris/handle/10665/39485; Rehm KE, Roper RL. Deletion of the A35 gene from Modified Vaccinia Virus Ankara increases immunogenicity and isotype switching. Vaccine. 2011; 29(17):3276–83. https://doi.org/10.1016/j.vaccine.2011.02.023; Nalca A, Zumbrum EE. ACAM2000 TM : the new smallpox vaccine for United States Strategic National Stockpile. Drug Des Devel Ther. 2010;4:71–9. https://doi.org/10.2147/dddt.s3687; Wollenberg A, Engler R. Smallpox, vaccination and adverse reactions to smallpox vaccine. Curr Opin Allergy Clin Immunol. 2004;4(4):271–5. https://doi.org/10.1097/01.all.0000136758.66442.28; Meseda CA, Atukorale V, Kuhn J, Schmeisser F, Weir JP. Percutaneous vaccination as an effective method of delivery оf MVA and MVA-vectored vaccines. PLoS One. 2016;11(2):e0149364. https://doi.org/10.1371/journal.pone.0149364; Melamed S, Israely T, Paran N. Challenges and achievements in prevention and treatment of smallpox. Vaccines. 2018;6(1):8. https://doi.org/10.3390/vaccines6010008; Hermanson G, Chun S, Felgner J, Tan X, Pablo J, Nakajima-Sasaki R, et al. Measurement of antibody responses to Modified Vaccinia Virus Ankara (MVA) and Dryvax® using proteome microarrays and development of recombinant protein ELISAs. Vaccine. 2012;30(3):614–25. https://doi.org/10.1016/j.vaccine.2011.11.021; Guerra S, Gonsáles JM, Climent N, Reuburn H, López-Fernández LA, Nájera JL, et al. Selective induction of host genes by MVA-B, a candidate vaccine against HIV/AIDS. J Virol. 2010;84(16):8141–52. https://doi.org/10.1128/JVI.00749-10; Mayr A, Stickl H, Müller HK, Danner K, Singer H. Der Pockenimpfstamm MVA: Marker, genetische Struktur, Erfahrungen mit der parenteralen Schutzimpfung und Verhalten im abwehrgeschwächten Organismus. Zentralbl Bakteriol B. 1978;167:375–90.; Garsía AD, Meseda СА, Mayer AE, Kumar A, Merchlinsky M, Weir JP. Characterization and use of mammalian-expressed vaccinia virus extracellular membrane proteins for quantification of the humoral immune response to smallpox vaccines. Clin Vaccine Immunol. 2007;14(8):1032–44. https://doi.org/10.1128/CVI.00050-07; Grandpre LE, Duke-Cohan JS, Ewald BA, Devoy C, Barouch DH, Letvin NL, et al. Immunogenicity of recombinant Modified Vaccinia Ankara following a single or multi-dose vaccine regimen in rhesus monkeys. Vaccine. 2009;27(10):1549–56. https://doi.org/10.1016/j.vaccine.2009.01.010; Meseda CA, Garcia AD, Kumar A, Mayer AE, Manischewitz J, King LR, et al. Enhanced immunogenicity and protective effect conferred by vaccination with combinations of modified vaccinia virus Ankara and licensed smallpox vaccine Dryvax in a mouse model. Virology. 2005;339(2):164–75. https://doi.org/10.1016/j.virol.2005.06.002; Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8 + T cell responses. J Exp Med. 2007;204(6):1405–16. https://doi.org/10.1084/jem.20062363; Volz A, Sutter G. Modified Vaccinia Virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv Virus Res. 2017;97:187–243. https://doi.org/10.1016/bs.aivir.2016.07.001; von Krempelhuber B, Vollmar J, Pokorny R, Rapp P, Wulff N, Petzold B, et al. A randomized, double-blind, dose-finding phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE®. Vaccine. 2010;28(5):1209–16. https://doi.org/10.1016/j.vaccine.2009.11.030; Paavonen J, Jenkins D, Bosch FX, Naud P, Salmerón J, Wheeler CM, et al. Efficacy of prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women an interim analysis of a phase III double-blind, randomized controlled trial. Lancet. 2007;369(9580):2161–70. https://doi.org/10.1016/S0140-6736(07)60946-5; Damon IK, Davidson WB, Hughes CM, Olson VA, Smith SK, Holman RC, et al. Evaluation of smallpox vaccines using variola neutralization. J Gen Virol. 2009;90(8):1962–66. https://doi.org/10.1099/vir.0.010553-0; Frey SE, Winokur PL, Salata RA, El-Kamary SS, Turley CB, Walter EB Jr, et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for post event scenario. Vaccine. 2013;31(29):3025–33. https://doi.org/10.1016/j.vaccine.2013.04.050; Frey SE, Winokur PL, Hill H, Goll JBN, Chaplin P, Belshe RB. Phase II randomized, double-blinded comparison of a single high dose (5×10 8 TCID 50 ) of modified vaccinia Ankara compared to a standard dose (1×10 8 TCID 50 ) in healthy vaccinia-naїve individuals. Vaccine. 2014;32(23):2732–9. https://doi.org/10.1016/j.vaccine.2014.02.043; Frey SE, Newman FK, Kennedy JS, Sobek V, Ennis FA, Hill H, et al. Clinical and immunologic responses to multiple doses of IMVAMUNE® (Modified Vaccinia Ankara) followed by Dryvax® challenge. Vaccine. 2007;25(51):8562–73. https://doi.org/10.1016/j.vaccine.2007.10.017; Seaman MS, Wilck MB, Baden LR, Walsh SR, Grandpre LE, Devoy C, et al. Effect of vaccination with modified vaccinia Ankara (ACAM3000) on subsequent challenge with Dryvax. J Infect Dis. 2010;201(9):1353–60. https://doi.org/10.1086/651560; Parrino J, McCurdy LH, Larkin BD, Gordon IJ, Rucker SE, Enama ME, et al. Safety, immunogenicity and efficacy of modified vaccinia Ankara (MVA) against Dryvax challenge in vaccinia-naïve and vaccinia-immune individuals. Vaccine. 2007;25(8):1513–25. https://doi.org/10.1016/j.vaccine.2006.10.047; Pfister G, Savino W. Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective. Neuroimmunomodulation. 2008;15(4-6):351–64. https://doi.org/10.1159/000156477; Greenberg RN, Hay CM, Stapleton JT, Marbury TC, Wagner E, Kreitmeir E, et al. A randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of modified vaccinia Ankara smallpox vaccine (MVA-BN®) in 56–80-year-old subjects. PLoS One. 2016;11(6):e0157335. https://doi.org/10.1371/journal.pone.0157335; Greenberg RN, Overton ET, Haas DW, Frank I, Goldman M, von Krempelhuber A, et al. Safety, immunogenicity and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J Infect Dis. 2013;207(5):749–58. https://doi.org/10.1093/infdis/jis753; Overton ET, Stapleton J, Frank I, Hassler S, Goephert PA, Barker D, et al. Safety and immunogenicity of modified vaccinia Ankara-Bavarian Nordic smallpox vaccine in vaccinia-naïve and experienced human immunodeficiency virus-infected individuals: fn open-label, controlled clinical phase II trial. Open Forum Infect Dis. 2015;2(2):ofv040. https://doi.org/10.1093/ofid/ofv040; Zitzman-Roth E-M, von Sonnenburg F, de la Motte S, Arndtz-Wiedemann N, von Krempelhuber A, Uebler N, et al. Cardiac safety of modified vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS One. 2015;10(4):e0122653. https://doi.org/10.1371/journal.pone.0122653; Greenberg RN, Hurley MY, Dinh DV, Mraz S, Vera JG, von Bredow D, et al. A multicenter, open-label, controlled phase II study to evaluate safety and immunogenicity of MVA smallpox vaccine (IMVAMUNE) in 18–40 year old subjects with diagnosed atopic dermatitis. PLoS One. 2015;10(10): e0138348. https://doi.org/10.1371/journal.pone.0138348; Hraib M, Jouni S, Albitar M, Alaidi S, Alshehabi Z. The outbreak of monkeypox 2022: an overview. Ann Med Surg (Lond). 2022;79:104069. https://doi.org/10.1016/j.amsu.2022.104069; Velavan TP, Meyer CG. Monkeypox 2022 outbreak: an update. Trop Med Int Health. 2022;27(7):604–5. https://doi.org/10.1111/tmi.13785; Rizk JG, Lippi G, Henry BN, Forthal DN, Rizk Y. Prevention and treatment of monkeypox. Drugs. 2022;82(9):957–63. https://doi.org/10.1007/s40265-022-01742-y; Максютов РА, Якубицкий СН, Колосова ИВ, Трегубчак ТВ, Швалов АН, Гаврилова ЕВ, Щелкунов СН. Стабильность генома вакцинного штамма VAC∆6. Вавиловский журнал генетики и селекции. 2022;26(4):394–401. https://doi.org/10.18699/VJGB-22-48; Максютов РА, Якубицкий СН, Колосова ИВ, Щелкунов СН. Сравнение кандидатных вакцин нового поколения против ортопоксвирусных инфекций человека. Acta Naturae. 2017;9(2):93–99. https://doi.org/10.32607/20758251-2017-9-2-88-93; https://www.biopreparations.ru/jour/article/view/447

  7. 7
    Academic Journal

    Source: Problems of Environmental Biotechnology; No. 1 (2021) ; Проблемы экологической биотехнологии; № 1 (2021) ; Проблеми екологічної біотехнології; № 1 (2021) ; 2306-6407

    File Description: application/pdf

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Source: Язык и речь в Интернете: личность, общество, коммуникация, культура : сборник статей II Международной научно-практической конференции. Москва, РУДН, 29-30 марта 2018 г. : в 2 т. Т. 1