-
1Academic Journal
Authors: Армен Алексанович Овсепян, Екатерина Олеговна Пчелинцева, Евгения Николаевна Бочарова, Елена Валерьевна Белянина, Елена Ивановна Каторкина, Максим Валерьевич Лыков
Source: Российские биомедицинские исследования, Vol 7, Iss 3 (2022)
Subject Terms: почечно -клеточная карцинома, ортотопическая модель, экспериментальные животные, клеточная линия RENCA, Сутент®, Medicine (General), R5-920
File Description: electronic resource
-
2Academic Journal
Source: Российские биомедицинские исследования, Vol 7, Iss 3 (2022)
-
3Academic Journal
Authors: D. D. Asadullina, I. R. Gilyazova, E. A. Ivanova, R. R. Rakhimov, A. F. Nasretdinov, A. A. Izmailov, G. R. Gilyazova, V. N. Pavlov, E. K. Khusnutdinova, Д. Д. Асадуллина, И. Р. Гилязова, Е. А. Иванова, Р. Р. Рахимов, А. Ф. Насретдинов, А. А. Измайлов, Г. Р. Гилязова, В. Н. Павлов, Э. К. Хуснутдинова
Source: Medical Genetics; Том 21, № 7 (2022); 11-14 ; Медицинская генетика; Том 21, № 7 (2022); 11-14 ; 2073-7998
Subject Terms: микроРНК, SNP, drug resistance, renal cell carcinoma, miRNA, лекарственная резистентность, почечно-клеточная карцинома
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2097/1564; Havel J.J., Chowell D., Chan T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer. 2019;19(3):133-150.; Chen Q., Li T., Yue W. Drug response to PD-1/PD-L1 blockade: based on biomarkers. OncoTargets and Therapy. 2018;11:4673-4683.; Ding H., Lv Z., Yuan Y. et al. MiRNA Polymorphisms and Cancer Prognosis: A Systematic Review and Meta-Analysis. Front. Oncol. 2018;8(596):1-14.; Yi M., Xu L., Jiao Y. et al.The role of cancer-derived microRNAs in cancer immune escape. Journal of Hematology & Oncology. 2020;13(25):1-14.; Huber V., Vallacchi V., Fleming V. et al. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J Clin Invest. 2018;128:5505-5516.; Huang Z., Lu Z., Tian J. et al. Effect of a functional polymorphism in the pre-miR-146a gene on the risk and prognosis of renal cell carcinoma. Molecular Medicine Reports. 2015;12(5):6997-7004.; Yang L., Zhao G., Wang F. et al. Hypoxia-Regulated miR-146a Targets Cell Adhesion Molecule 2 to Promote Proliferation, Migration, and Invasion of Clear Cell Renal Cell Carcinoma. Cell Physiol Biochem. 2018;49(3):920-931.; El-Akhrasa B.A., Ali Y.B.M., El-Masry S.A et al. Mir-146a genetic polymorphisms in systemic lupus erythematosus patients:Correlation with disease manifestations. Non-coding RNA Research 2022;7(3):142-149.; He B., Pan Y., Cho W.C. The Association between Four Genetic Variants in MicroRNAs (rs11614913, rs2910164, rs3746444, rs2292832) and Cancer Risk: Evidence from Published Studies. PLoS One. 2012;7(11):e49032; Lin J., Horikawa Y., Tamboli P. et al. Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis. 2010;(10):1805-1812.
-
4Academic Journal
-
5Academic Journal
Source: Урологія; Том 25 № 4 (2021)
Урология; Том 25 № 4 (2021)
Urologiya; Vol. 25 No. 4 (2021)Subject Terms: 03 medical and health sciences, 0302 clinical medicine, нирково-клітинна карцинома, renall cell carcinoma, рак, cancer, почечно-клеточная карцинома, тяжелые металлы, heavy metalls, важкі метали, 3. Good health
File Description: application/pdf
-
6Academic Journal
Authors: S. A. Solodskikh, A. V. Panevina, A. G. Novikova, J. D. Dvoretskaya, M. V. Gryaznova, A. A. Starkov, A. Yu. Maslov, A. A. Mikhailov, K. Khinolupos, V. N. Popov, С. А. Солодских, А. В. Паневина, А. Г. Новикова, Ю. Д. Дворецкая, М. В. Грязнова, А. А. Старков, А. Ю. Маслов, А. А. Михайлов, К. Хинопулос, В. Н. Попов
Contributors: This study was financially supported by the grant of the Ministry of Science and Higher Education of the Russian Federation 14.586.21.0062 (unique contract identifier RFMEFI58618X0062) (V.N. Popov)., Работа выполнена при поддержке гранта Министерства науки и высшего образования Российской Федерации 14.586.21.0062 (уникальный идентификатор договора RFMEFI58618X0062) (В.Н. Попов).
Source: Siberian journal of oncology; Том 18, № 6 (2019); 39-49 ; Сибирский онкологический журнал; Том 18, № 6 (2019); 39-49 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-6
Subject Terms: рак почки, microarrays, mutations, genome, transcript, renal cell carcinoma, kidney cancer, микроматрицы, мутации, геном, транскриптом, почечно-клеточная карцинома
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1242/684; Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424. doi:10.3322/caac.21492.; Bazzi W.M., Sjoberg D.D., Feuerstein M.A., Maschino A., Verma S., Bernstein M., O’Brien M.F., Jang T., Lowrance W., Motzer R.J., Russo P. Long-Term Survival Rates after Resection for Locally Advanced Kidney Cancer: Memorial Sloan Kettering Cancer Center 1989 to 2012 Experience. J Urol. 2015 Jun; 193(6): 1911–6. doi:10.1016/j.juro.2014.12.022.; Wu X., Shu X. Epidemiology of Renal Cell Carcinoma. Renal Cell Carcinoma. Tokyo: Springer Japan; 2017: 1–18. doi:10.1007/978-4-431-55531-5_1.; Cheville J.C., Lohse C.M., Zincke H., Weaver A.L., Blute M.L. Comparisons of Outcome and Prognostic Features Among Histologic Subtypes of Renal Cell Carcinoma. Am J Surg Pathol. 2003; 27(5): 612–624. doi:10.1097/00000478-200305000-00005.; Kume H., Takahashi S., Teramoto S., Isurugi K. Risk factors for adult renal cell carcinoma: a systematic review and implications for prevention. BJU Int. 2001; 88(7): 804–804. doi:10.1046/j.1464-410-X.2001.2505b.x.; Choueiri T.K., Je Y., Cho E. Analgesic use and the risk of kidney cancer: A meta-analysis of epidemiologic studies. Int J Cancer. 2014 Jan 15; 134(2): 384–96. doi:10.1002/ijc.28093.; Ridge C., Pua B., Madoff D. Epidemiology and Staging of Renal Cell Carcinoma. Semin Intervent Radiol. 2014; 31(01): 003–008. doi:10.1055/s-0033-1363837.; Moch H., Cubilla A.L., Humphrey P.A., Reuter V.E., Ulbright T.M. WHO classification of tumours of the urinary system and male genital organs. Eur Urol. 2016 Jul; 70(1): 93–105. doi:10.1016/j.eururo.2016.02.029.; Gossage L., Eisen T. Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nat Rev Clin Oncol. 2010 May; 7(5): 277–88. doi:10.1038/nrclinonc.2010.42.; Cheng L., Zhang S., MacLennan G.T., Lopez-Beltran A., Montironi R. Molecular and cytogenetic insights into the pathogenesis, classification, differential diagnosis, and prognosis of renal epithelial neoplasms. Hum Pathol. 2009; 40(1): 10–29. doi:10.1016/j.humpath.2008.09.009.; Ricketts C.J., De Cubas A.A., Fan H., Smith C.C., Lang M., Reznik E., Bowlby R., Gibb E.A., Akbani R., Beroukhim R., Bottaro D.P., Choueiri T.K., Gibbs R.A., Godwin A.K., Haake S., Hakimi A.A., Henske E.P., Hsieh J.J., Ho T.H., Kanchi R.S., Krishnan B., Kwiatkowski D.J., Lui W., Merino M.J., Mills G.B., Myers J., Nickerson M.L., Reuter V.E., Schmidt L.S., Shelley C.S., Shen H., Shuch B., Signoretti S., Srinivasan R., Tamboli P., Thomas G., Vincent B.G., Vocke C.D., Wheeler D.A., Yang L., Kim W.Y., Robertson A.G.; Cancer Genome Atlas Research Network, Spellman P.T., Rathmell W.K., Linehan W.M. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep. 2018 Jun 19; 23(12): 3698. doi:10.1016/j.celrep.2018.06.032.; Sato Y., Yoshizato T., Shiraishi Y., Maekawa S., Okuno Y., Kamura T., Shimamura T., Sato-Otsubo A., Nagae G., Suzuki H., Nagata Y., Yoshida K., Kon A., Suzuki Y., Chiba K., Tanaka H., Niida A., Fujimoto A., Tsunoda T., Morikawa T., Maeda D., Kume H., Sugano S., Fukayama M., Aburatani H., Sanada M., Miyano S., Homma Y., Ogawa S. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013 Aug; 45(8): 860–7. doi:10.1038/ng.2699.; Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., Tukiainen T., Birnbaum D.P., Kosmicki J.A., Duncan L.E., Estrada K. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016 Aug 18; 536(7616): 285–91. doi:10.1038/nature19057.; McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016 Jun 6; 17(1): 122. doi:10.1186/s13059-016-0974-4.; Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePris-to M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., McVean G., Durbin R.; 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics. 2011; 27(15): 2156–8. doi:10.1093/bioinformatics/btr330.; Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem. 2009 Apr; 55(4): 611–22. doi:10.1373/clinchem.2008.112797.; Charlesworth B. Population Genetics. Encyclopedia of Biodiversity. Elsevier; 2013: 182–198. doi:10.1016/B978-0-12-384719-5.00116-7.; Solodskikh S.A., Panevina A.V., Gryaznova M.V., Gureev A.P., Serzhantova O.V., Mikhailov A.A., Maslov A.Y., Popov V.N. Targeted sequencing to discover germline variants in the BRCA1 and BRCA2 genes in a Russian population and their association with breast cancer risk. Mutat Res. 2019 Jan; 813: 51–57. doi:10.1016/j.mrfmmm.2018.12.005.; Brugarolas J. Molecular Genetics of Clear-Cell Renal Cell Carcinoma. J Clin Oncol. 2014 Jun 20; 32(18): 1968–76. doi:10.1200/JCO.2012.45.2003.; Serasanambati M., Chilakapati S.R. Function of Nuclear Factor Kappa B (NF-kB) in Human Diseases-A Review. South Indian J Biol Sci. 2016; 2(4): 368. doi:10.22205/sijbs/2016/v2/i4/103443.; Iqbal N., Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int. 2014; 2014: 852748. doi:10.1155/2014/852748.; Krishnamurti U., Silverman J.F. HER2 in Breast Cancer. Adv Anat Pathol. 2014 Mar; 21(2): 100–7. doi:10.1097/PAP.0000000000000015.; Kümler I., Tuxen M.K., Nielsen D.L. A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev. 2014 Mar; 40(2): 259–70. doi:10.1016/j.ctrv.2013.09.002.; Bronchud M.H., Castillo S., Escriva de Romaní S., Mourelo S., Fernández A., Baena C., Murillo J., Julia J.C., Esquius J., Romero R., Andreu X. HER2 Blockade in Metastatic Collecting Duct Carcinoma (CDC) of the Kidney: A Case Report. Onkologie. 2012; 35(12): 776–9. doi:10.1159/000345041.; Shen C., Kaelin W.G. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013 Feb; 23(1): 18–25. doi:10.1016/j.semcancer.2012.06.001.; https://www.siboncoj.ru/jour/article/view/1242
-
7Academic Journal
Authors: Botelho, Ana R., Silva, Hugo F., Martins, Inês S., Carneiro, Isa, Carvalho, Sónia D., Henrique, Rui M., Tuchin, Valery V., Oliveira, Luís M.
Contributors: REPOSITÓRIO P.PORTO
Source: Spectrochimica acta. Part A : Molecular and biomolecular spectroscopy. 2023. Vol. 286. P. 122002 (1-7)
Subject Terms: Melanins, 0301 basic medicine, липофусцин, почки человека, Chromophobe renal cell carcinoma, Renal cancer discrimination, Kidney, 01 natural sciences, Human kidney, Lipofuscin, спектральные коэффициенты поглощения, 03 medical and health sciences, меланины, хромофобная почечно-клеточная карцинома, Spectral absorption coefficient, Melanin, 0103 physical sciences, Humans, Scattering, Radiation, Anisotropy
File Description: application/pdf
Linked Full TextAccess URL: https://pubmed.ncbi.nlm.nih.gov/36274538
https://hdl.handle.net/10400.22/22542
https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001009442 -
8Academic Journal
Authors: M. V. Novikova, B. P. Kopnin, P. B. Kopnin, М. В. Новикова, Б. П. Копнин, П. Б. Копнин
Contributors: Russian Science Foundation, agreement No. 14-15-00 467, Российский научный фонд, соглашение № 14-15-00 467
Source: Cancer Urology; Том 15, № 1 (2019); 108-116 ; Онкоурология; Том 15, № 1 (2019); 108-116 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2019-15-1
Subject Terms: у-секретаза, adrenocortical carcinoma, renal cell cancer, prostate cancer, Notch signaling pathway, oncogene, tumor suppressor, monoclonal antibody, y-secretase, адренокортикальный рак, почечно-клеточная карцинома, рак предстательной железы, сигнальный путь Notch, онкоген, опухолевый супрессор, моноклональное антитело
File Description: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/876/834; Antoni S., Ferlay J., Soerjomataram I. et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 2017;71(1):96-108. DOI:10.1016/j.eururo.2016.06.010. PMID: 27370177.; Malats N., Real F. X. Epidemiology of bladder cancer. Hematol Oncol Clin North Am 2015;29(2):177—89. DOI:10.1016/j.hoc.2014.10.001. PMID: 25836927.; Rosenberg J.E., Hoffman-Censits J., Pow-les T. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387(10031):1909-20. DOI:10.1016/S0140-6736(16)00561-4. PMID: 26952546.; Hussain M.H., Wood D.P., Bajorin D.F. et al. Bladder cancer: narrowing the gap between evidence and practice. J Clin Oncol 2009;27(34):5680-4. DOI:10.1200/JCO.2009.23.6901. PMID: 19858384.; Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014;507(7492):315-22. DOI:10.1038/nature12965. PMID: 24476821.; Wilson A., Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 2006;580(12): 2860-8. DOI:10.1016/j.febs-let.2006.03.024. PMID: 16574107.; Weng A.P., Ferrando A.A., Lee W. et al. Activating mutations of NOTCH1 in human T-cell acute lymphoblastic leukemia. Science 2004;306(5694):269—71. DOI:10.1126/science.1102160. PMID: 15472075.; Lin C., Zheng H., Wang C. et al. Mutations increased overexpression of Notch1 in T-cell acute lymphoblastic leukemia. Cancer Cell Int 2012;12:13. DOI:10.1186/1475-2867-12-13. PMID: 22480166.; Clay M.R., Varma S., West R.B. MAST2 and NOT CH1 translocations in breast carcinoma and associated pre-invasive lesions. Hum Pathol 2013;44(12):2837—44. DOI:10.1016/j.humpath.2013.08.001. PMID: 24140425.; Tonon G., Modi S., Wu L. et al. t(11;19) (q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet 2003;33(2):208—13. DOI:10.1038/ng1083. PMID: 12539049.; Hori K., Sen A., Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci 2013;126(Pt 10):2135—40. DOI:10.1242/jcs.127308. PMID: 23729744.; Hsieh J.J., Hayward S.D. Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein—Barr virus EBNA2. Science 1995;268(5210):560—3. PMID: 7725102.; Dou S., Zeng X., Cortes P. et al. The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor. Mol Cell Biol 1994;14(5): 3310—9. PMID: 8164682.; Ronchi C.L., Sbiera S., Altieri B. et al. Notch1 pathway in adrenocortical carcinomas: correlations with clinical outcome. Endocr Relat Cancer 2015;22(4):531—43. DOI:10.1530/ERC-15-0163. PMID: 25979380.; Simon D.P., Giordano T.J., Hammer G.D. Upregulated JAG1 enhances cell proliferation in adrenocortical carcinoma. Clin Cancer Res 2012;18(9):2452—64. DOI:10.1158/1078-0432.CCR-11-2371. PMID: 22427350.; Toso A., Revandkar A., Di Mitri D. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep 2014;9(1):75—89. DOI:10.1016/j.celrep.2014.08.044. PMID: 25263564.; Wang X.D., Leow C.C., Zha J. et al. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev Biol 2006;290(1):66—80. DOI:10.1016/j.ydbio.2005.11.009. PMID: 16360140.; Wu X., Xu K., Zhang L. et al. Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Dev Biol 2011;356(2):337—49. DOI:10.1016/j.ydbio.2011.05.659. PMID: 21624358.; LaTulippe E., Satagopan J., Smith A. et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002;62(15):4499— 506. PMID: 12154061.; Santagata S., Demichelis F., Riva A. et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 2004;64(19):6854—7. DOI:10.1158/0008-5472.CAN-04-2500. PMID: 15466172.; Zayzafoon M., Abdulkadir S.A., McDonald J.M. Notch signaling and ERK activation are important for the osteomi-metic properties of prostate cancer bone metastatic cell lines. J Biol Chem 2004;279(5):3662—70. DOI:10.1074/jbc.M308158200. PMID: 14602722.; Peruzzi B., Athauda G., Bottaro D.P. The von Hippel—Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 2006;103(39): 14531-6. DOI:10.1073/pnas.0606850103. PMID: 16983094.; Turcotte S., Chan D.A., Sutphin P.D. et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 2008;14(1):90-102. DOI:10.1016/j.ccr.2008.06.004. PMID: 18598947.; Ding M., Cui S., Li C. et al. Loss of the tumor suppressor Vhlh leads to upregula-tion of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med 2006;12(9):1081 —7. DOI:10.1038/nm1460. PMID: 16906157.; Patel U., Simpson E., Kingswood J.C., Saggar-Malik A.K. Tuberose sclerosis complex: analysis of growth rates aids differentiation of renal cell carcinoma from atypical or minimal-fat-containing angio-myolipoma. Clin Radiol 2005;60(6): 665—73. DOI:10.1016/j.crad.2005.01.009. PMID: 16038693.; Walker C. Molecular genetics of renal carcinogenesis. Toxicol Pathol 1998;26(1):113—20. DOI:10.1177/019262339802600113. PMID: 9502393.; Aparicio L.M., Villaamil V.M., Gallego G.A. et al. Expression of Notch1 to -4 and their ligands in renal cell carcinoma: a tissue microarray study. Cancer Genomics Proteomics 2011;8(2):93—101. PMID: 21471519.; Gustafsson M.V., Zheng X., Pereira T. et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell 2005;9(5):617—28. DOI:10.1016/j.devcel.2005.09.010. PMID: 16256737.; Karbowniczek M., Zitserman D., Khabibullin D. et al. The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development. J Clin Invest 2010;120(1):93—102. DOI:10.1172/JCI40221. PMID: 20038815.; Bielesz B., Sirin Y., Si H. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 2010;120(11): 4040—54. DOI:10.1172/JCI43025. PMID: 20978353.; Sjolund J., Johansson M., Manna S. et al. Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J Clin Invest 2008;118(1):217—28. DOI:10.1172/JCI32086. PMID: 18079963.; Liang L., Zhang H.W., Liang J. et al. KyoT3, an isoform of murine FHL1, associates with the transcription factor RBP-J and represses the RBP-J-mediated transactivation. Biochim Biophys Acta 2008;1779(12):805—10. DOI:10.1016/j.bbagrm.2008.08.001. PMID: 18760388.; Surendran K., Selassie M., Liapis H. et al. Reduced Notch signaling leads to renal cysts and papillary microadenomas. J Am Soc Nephrol 2010;21(5):819—32. DOI:10.1681/ASN.2009090925. PMID: 20378824.; https://portal.gdc.cancer.gov/.; Greife A., Jankowiak S., Steinbring J. et al. Canonical Notch signalling is inactive in urothelial carcinoma. BMC Cancer 2014;14:628. DOI:10.1186/1471-2407-14-628. PMID: 25167871.; Maraver A., Fernandez-Marcos P.J., Cash T.P. et al. NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest 2015;125(2):824—30. DOI:10.1172/JCI78185. PMID: 25574842.; Rampias T., Vgenopoulou P., Avgeris M. et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med 2014;20(10):1199—205. DOI:10.1038/nm.3678. PMID: 25194568.; Xu T., Wu X., Chen Q. et al. The anti-apoptotic and cardioprotective effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway. PLoS One 2015;9(7):e102292. DOI:10.1371/journal.pone.0102292. PMID: 25019380.; Kimura F., Florl A.R., Seifert H.H. et al. Destabilization of chromosome 9 in transitional cell carcinoma of the urinary bladder. Br J Cancer 2001;85(12):1887—93. DOI:10.1054/bjoc.2001.2154. PMID: 11747331.; Goriki A., Seiler R., Wyatt A.W. et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol 2018;15(6):345—57. DOI:10.1038/s41585-018-0005-1. PMID: 29643502.; Garcia-Cao I., Duran A., Collado M. et al. Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep 2005;6(6):577—83. DOI:10.1038/sj.em-bor.7400421. PMID: 15877079.; Hayashi T., Gust K.M., Wyatt A.W. et al. Not all NOTCH is created equal: the oncogenic role of NOT CH2 in bladder cancer and its implications for targeted therapy. Clin Cancer Res 2016;22(12):2981—92. DOI:10.1158/1078-0432.CCR-15-2360. PMID: 26769750.; Fan X., Mikolaenko I., Elhassan I. et al. Notch1 and Notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004;64(21):7787—93. DOI:10.1158/0008-5472.CAN-04-1446. PMID: 15520184.; Mazur P.K., Einwachter H., Lee M. et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 2010;107(30):13438—43. DOI:10.1073/pnas.1002423107. PMID: 20624967.; Hanlon L., Avila J.L., Demarest R.M. et al. Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res 2010;70(11):4280—6. DOI:10.1158/0008-5472.CAN-09-4645. PMID: 20484026.; Wu Y., Cain-Hom C., Choy L. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010;464(7291):1052—7. DOI:10.1038/nature08878. PMID: 20393564.; Zhang H., Liu L., Liu C. et al. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma. Oncotarget 2017;8(21):34362—73. DOI:10.18632/oncotarget.16156. PMID: 28416766.; Luistro L., He W., Smith M. et al. Preclinical profile of a potent y-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res 2009;69(19):7672—80. DOI:10.1158/0008-5472.CAN-09-1843. PMID: 19773430.; Yuan X., Wu H., Xu H. et al. Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett 2015;369(1):20—7. DOI:10.1016/j.can-let.2015.07.048. PMID: 26341688.; Doody R.S., Raman R., Farlow M. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 2013;369(4):341—50. DOI:10.1056/NEJMoa1210951. PMID: 23883379.; Dobranowski P., Ban F., Contreras-Sanz A. et al. Perspectives on the discovery of NOTCH2-specific inhibitors. Chem Biol Drug Des 2018;91(3):691—706. DOI:10.1111/cbdd.13132. PMID: 29078041.; Ferrarotto R., Mitani Y., Diao L. et al. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J Clin Oncol 2017;35(3):352–60. DOI:10.1200/JCO.2016.67.5264. PMID: 27870570.; Yen W.C., Fischer M.M., Axelrod F. et al. Targeting notch signaling with a Notch2/ Notch3 antagonist (Tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res 2015;21(9):2084—95. DOI:10.1158/1078-0432.CCR-14-2808. PMID: 25934888.; Lee D., Kim D., Choi Y.B. et al. Simultaneous blockade of VEGF and Dll4 by HD105, a bispecific antibody, inhibits tumor progression and angiogenesis. MAbs 2016;8(5):892—904. DOI:10.1080/19420862.2016.1171432. PMID: 27049350.; Andersson E.R., Lendahl U. Therapeutic modulation of Notch signaling — are we there yet? Nat Rev Drug Discov 2014;13(5):357—78. DOI:10.1038/nrd4252. PMID: 24781550.; Espinoza I., Pochampally R., Xing F. et al. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 2013;6:1249-59. DOI:10.2147/OTT. S36162. PMID: 24043949.; Kangsamaksin T., Murtomaki A., Kofler N.M. et al. NOTCH decoys that selectively block DLL/NOTCH or JAG/ NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 2015;5(2):182—97. DOI:10.1158/2159-8290.CD-14-0650. PMID: 25387766.; https://oncourology.abvpress.ru/oncur/article/view/876
-
9Academic Journal
Authors: K. Sh. Gantsev, A. A. Khmelevskiy, К. Ш. Ганцев, А. А. Хмелевский
Source: Creative surgery and oncology; Том 8, № 4 (2018); 263-267 ; Креативная хирургия и онкология; Том 8, № 4 (2018); 263-267 ; 2076-3093 ; 2307-0501 ; 10.24060/2076-3093-2018-8-4
Subject Terms: таргетная молекулярная терапия, renal cell carcinoma, neoplasms metastasis, bevacizumab, interferon-alfa, immunotherapy, chemotherapy, molecular targeted therapy, почечно-клеточная карцинома, метастазы, бевацизумаб, интерферон, иммунотерапия, химиотерапия
File Description: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/344/314; Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.) Злокачественные новообразования в России в 2017 г.: заболеваемость и смертность. М.; 2018. 250 с.; Алексеев Б.Я. Метастатический рак почки: выбор терапии первой линии. Онкоурология. 2014;10(3):43-8. DOI:10.17650/1726-9776-2014-10-3-43-48; Shinohara N., Obara W, Tatsugami K., Naito S., Kamba T., Taka-hashi M., et al. Prognosis of Japanese patients with previously untreated metastatic renal cell carcinoma in the era of molecular-targeted therapy. Cancer Sci. 2015;106(5):618-26. DOI:10.1111/cas.12646; Motzer R.J., Jonasch E., Agarwal N., Bhayani S., Bro W.P., Chang S.S., et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Kidney Cancer, Version 2.2017. J Natl Compr Canc Netw. 2017;15:804-34. DOI:10.6004/jnccn.2017.0100; Powles T., Albiges L., Staehler M., Bensalah K., Dabestani S., Giles R.H., et al. Updated European Association of Urology Guidelines: recommendations for the treatment of first-line metastatic clear cell renal cancer. Eur Urol. 2018;73(3):311-5. DOI:10.1016/j.eururo.2017.11.016; Anselmo Da Costa I., Rausch S., Kruck S., Todenhofer T., Stenzl A., Bedke J. Immunotherapeutic strategies for the treatment of renal cell carcinoma: where will we go? Expert Rev Anticancer Ther. 2017;17(4):357-68. DOI:10.1080/14737140.2017.1292138; Escudier B., Albiges L. Anti-VEGF and VEGFR monoclonal antibodies in RCC. In: Bukowski R., Figlin R.A., Motzer R. (editors). Renal cell carcinoma: molecular targets and clinical applications. Springer; 2015. P. 237-52.; Thomas L., Lai S.Y., Dong W., Feng L., Dadu R., Regone R.M. Sorafenib in metastatic thyroid cancer: a systematic review. Oncologist. 2014;19(3):251-8. DOI:10.1634/theoncologist.2013-0362; North S.A., Basappa N., Basiuk J., Bjarnason G., Breau R., Canil Ch., et al. Management of advanced kidney cancer: Canadian Kidney Cancer Forum consensus update. Can Urol Assoc J. 2015;9(5-6):164-70. DOI:10.5489/cuaj.2894; Shen C.T., Qiu Z.L., Luo Q.Y. Sorafenib in the treatment of radioiodine-refractory differentiated thyroid cancer: a meta-analysis. Endocr Relat Cancer. 2014;21(2):253-61. DOI:10.1530/ERC-13-0438; Soerensen A.V., Donskov F., Hermann G.G., Jensen N.V., Petersen A., Spliid H., et al. Improved overall survival after implementation of targeted therapy for patients with metastatic renal cell carcinoma: results from the Danish Renal Cancer Group (DARENCA) study-2. Eur J Cancer. 2014;50 (3):553-62. DOI:10.1016/j.ejca.2013.10.010; Godo S., Yoshida Y., Kawamorita N., Mitsuzuka K., Kawazoe Y., Fujita M., et al. Life-threatening hyperkalemia associated with axitinib treatment in patients with recurrent renal carcinoma. Intern Med. 2018;57(19):2895-900. DOI:10.2169/internalmedicine.0262-17; Powles T., Rini B. Novel agents and drug development needs in advanced clear cell renal cancer. J Clin Oncol. 2018 Oct 29:JCO2018792655. DOI:10.1200/JCO.2018.79.2655; Dorff T.B., Longmate J.A., Pal S.K., Stadler W.M., Fishman M.N., Vaishampayan U.N., et al. Bevacizumab alone or in combination with TRC105 for patients with refractory metastatic renal cell cancer. Cancer. 2017;123(23):4566-73. DOI:10.1002/cncr.30942; Davis I.D., Xie W., Pezaro C., Donskov F., Wells J.C., Agarwal N., et al. Efficacy of second-line targeted therapy for renal cell carcinoma according to change from baseline in International Metastatic Renal Cell Carcinoma Database Consortium Prognostic Category. Eur Urol. 2017;71(6):970-8. DOI:10.1016/j.eururo.2016.09.047; https://www.surgonco.ru/jour/article/view/344
-
10Academic Journal
Authors: K. Sh. Gantsev, Yu. N. Khrizman, A. A. Khmelevskiy, V. K. Shakurov, R. I. Aglyamov, К. Ш. Ганцев, Ю. Н. Хризман, А. А. Хмелевский, В. К. Шакуров, Р. И. Аглямов
Source: Creative surgery and oncology; Том 8, № 2 (2018); 89-93 ; Креативная хирургия и онкология; Том 8, № 2 (2018); 89-93 ; 2076-3093 ; 2307-0501 ; 10.24060/2076-3093-2018-8-2
Subject Terms: нефрэктомия, renal cell carcinoma, organ-preserving surgery, organ sparing treatments, nephrectomy, почечно-клеточная карцинома, органосохраняющая операция, органщадящее лечение
File Description: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/312/286; Каприн А.Д., Старинский В.В., Петровой Г.В. (ред.) Злокачественные новообразования в России в 2016 г.: заболеваемость и смертность. М., 2018. 250 с.; Gorin M.A., Rowe S.P., Baras A.S., Solnes L.B., Ball M.W., Pierorazio P.M., et al. Prospective evaluation of 99mTc-sestamibi SPECT/ CT for the diagnosis of renal oncocytomas and hybrid oncocytic/ chromophobe tumors. Eur Urol. 2016;69(3):413–6. DOI:10.1016/j.eururo.2015.08.056; Capitanio U., Terrone C., Antonelli A., Minervini A., Volpe A., Furlan M., et al. Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a-T1b renal mass and normal preoperative renal function. Eur Urol. 2015;67(4):683–9. DOI:10.1016/j.eururo.2014.09.027; Huang W.C., Levey A.S, Serio A.M., Snyder M., Vickers A.J, Raj G.V., et al. Chronic kidney cancer disease nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol. 2006;7(9):735–40. DOI:10.1016/S1470-2045(06)70803-8; Minervini A., Rosaria Raspollini M., Tuccio A., Di Cristofano C., Siena G., Salvi M., et al. Pathological characteristics and prognostic effect of peritumoral capsule penetration in renal cell carcinoma after tumor enucleation. Urol Oncol. 2014;32(1):15–22. DOI:10.1016/j. urolonc.2013.07.018; Rausch S., Gakis G., Bedke J., Stenzl A. Elective organ and function preservation in ureter and renal pelvis tumors. Urologe. 2014;53(9):1284–94. DOI:10.1007/s00120-014-3557-6; Ганцев Ш.Х., Кзыргалин Ш.Р., Ганцев К.Ш. Хирургические методы лечения в онкологии: от расширенных операций к малоинвазивным. Практическая онкология. 2017;18(4):355–60.; Дымочка М.А., Шахсуварян С.Б., Науменко Л.Л., Красновская Е.С., Верташ О.Ю. Рак почки: клиническая характеристика, диагностика, лечение, критерии количественной оценки степени выраженности функциональных нарушений при осуществлении медико-социальной экспертизы. Медико-социальные проблемы инвалидности. 2018;1:59–67.; Verze P., Fedelini P., Chiancone F., Cucchiara V., La Rocca R., Fedelini M., et al. Perioperative and renal functional outcomes of laparoscopic partial nephrectomy (LPN) for renal tumours of high surgical complexity: a single-institute comparison between clampless and clamped procedures. World J Urol. 2017;35(3):403–9. DOI:10.1007/s00345-016-1882-7; Lugo-Baruqui J.A., Guerra G., Chen L., Burke G.W., Gaite J.A., Ciancio G. Living donor renal transplantation with incidental renal cell carcinoma from donor allograft. Transpl Int. 2015;28(9):1126–30. DOI:10.1111/tri.12594; Padevit C., Sauck A., John H. Renal cell carcinoma: When is a partial, organ-preserving nephrectomy possible and reasonable?. Praxis. 2016;105(13):755–9. DOI:10.1024/1661-8157/a002398; Шкодкин С.В., Фиронов С.А., Идашкин Ю.Б., Любушкин А.В., Невский А.А. Пути снижения интраоперационной кровопотери в хирургии почечно-клеточного рака, осложненного инвазией в нижнюю полую вену. Экспериментальная и клиническая урология. 2016;(1):16–21.; Индароков Т.Р., Серегин А.В., Лоран О.Б., Шустицкий Н.А., Морозов А.Д., Яндиев А.М., Бессолова О.В. Превентивный гемостатический шов при открытой резекции почки как один из способов сохранения почечной функции. Онкоурология. 2017;13(3):39–45. DOI:10.17650/1726-9776-2017-13-3-39-45; Ивахно К.Ю., Киприянов Е.А., Важенин А.В., Карнаух П.А. Результаты органосохранного лечения пациентов с локализованным почечно-клеточным раком по оригинальной методике. Онкоурология. 2017;13(2):36–42. DOI:10.17650/1726-9776-2017-13-2-36-42; Аляев Ю.Г., Рапопорт Л.М., Сирота Е.С., Безруков Е.А., Кондрашина А.В. Местный рецидив после выполнения лапароскопических резекций при раке паренхимы почки. Андрология и генитальная хирургия. 2017;18(4):61–8. DOI:10.17650/2070-9781-2017-18-4-61-68; https://www.surgonco.ru/jour/article/view/312
-
11Academic Journal
Authors: E. A. Klimentova, I. R. Gilyazova, G. B. Kunsbaeva, A. A. Izmailov, I. M. Sultanov, V. N. Pavlov, E. K. Khusnutdinova, Е. А. Климентова, И. Р. Гилязова, Г. Б. Кунсбаева, А. А. Измайлов, И. М. Султанов, В. Н. Павлов, Э. К. Хуснутдинова
Source: Medical Genetics; Том 15, № 4 (2016); 50-52 ; Медицинская генетика; Том 15, № 4 (2016); 50-52 ; 2073-7998
Subject Terms: microRNA binding site polymorphism, почечно-клеточная карцинома, полиморфизм в сайтах связывания микроРНК, VHL-HIF1a pathway, renal cell carcinoma
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/119/107; Yu Z, Li Z, Jolicoeur N, Zhang L et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 2007; 35(13):4535-41.; Аушев ВН МикроРНК: малые молекулы с большим значением Клиническая онкогематология 2015; 8(1): 1-12; Thien A, Prentzell MT, Holzwarth B et al. TSC1 activates TGF-b-Smad2/3 signaling in growth arrest and epithelial-to-mesenchymal transition. Dev Cell. 2015 Mar 9;32(5):617-30.; Kwiatkowski DJ, Choueiri TK, Fay AP et al. Mutations in TSC1, TSC2, and MTOR Are Associated with Response to Rapalogs in Patients with Metastatic Renal Cell Carcinoma. Clin Cancer Res. 2016 Feb 1.; Wei H, Ke HL, Lin J et al. MicroRNA target site polymorphisms in the VHL-HIF1a pathway predict renal cell carcinoma risk Mol Carcinog. 2014 Jan;53(1):1-7.; Awakura Y, Nakamura E, Takahashi T et al. Microarray-based identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma. J Cancer Res Clin Oncol. 2008;134(12):1363-9.; Mamat S, Ikeda J, Enomoto T et al. Prognostic significance of CUB domain containing protein expression in endometrioid adenocarcinoma. Oncol Rep. 2010 May;23(5):1221-7.; Ma W, Shi X, Lu S, Wu L, Wang Y. Hypoxia-induced overexpression of DEC1 is regulated by HIF-1a in hepatocellular carcinoma. Oncol Rep. 2013;30(6):2957-62.; Wykoff CC, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ.Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene. 2000;19(54):6297-305.
-
12Academic Journal
Authors: Alexander Olegovich Krutskevich, Janna Vladimirovna Sheikch, Александр Олегович Круцкевич, Жанна Владимировна Шейх
Source: Medical Visualization; № 2 (2014); 81-89 ; Медицинская визуализация; № 2 (2014); 81-89 ; 2408-9516 ; 1607-0763
Subject Terms: nephrectomy, ангиомиолипома, ассоциированная с туберозным склерозом, эпителиоидно-клеточная ангиомиолипома, почечно-клеточная карцинома, ангиоэмболизация, резекция почки, нефрэктомия, angiomyolipoma, tuberous sclerosis associated аngiomyolipoma, epithelioid аngiomyolipoma, renal cell carcinoma, embolization, partial nephrectomy
File Description: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/28/29; Kavoussi L.R., Andrew C. Campbell-Walsh Urology. 10th Edition Review. New York: Elsevier, 2012. 616 p.; McAninch J., Lue T. F General Urology. London: McGraw Hill Lance, 2008. 489 p.; Eble J.N. Angiomyolipoma of the kidney. Semin. Diagn. Pathol. 1998; 15: 21-40.; Прокоп М., Галански М. Спиральная и многослойная компьютерная томография. М.: МЕДпресс-информ, 2006. 710 c.; Raft J., Lalot J., Meistelman C. et al. Influence of pregnancy on renal angiomyolipoma. Gynecol. Obstet. Fertil. 2005; 33 (11): 898-906.; Bakshi S.S, Vishal K., Kalia V. et al. Aggressive renal angiomyolipoma extending into the renal vein and inferior vena cava - an uncommon entity. Br. J. Radiol. 2011; 84 (1004): e166-e168.; Kyo C., Won-Tae K., Won-Sik H. et al. Trends of Presentation and Clinical Outcome of Treated Renal Angiomyolipoma. Yonsei Med. J. 2010; 51 (5): 728-734.; Wright T., Sooriakumaran P. Renal angiomyolipoma presenting with massive retroperitoneal haemorrhage due to deranged clotting factors: a case report. Cases J. 2008; 1: 213.; Pea M., Bonetti F., Martignoni G. et al. Apparent renal cell carcinomas in tuberous sclerosis are heterogenaneous: the identification of malignant epithelioid angiomyolipoma. Am. J. Surg. Pathol. 1998; 22: 180-187.; Bharwani N., Christmas T.J., Jameson C. Epithelioid angiomyolipoma: treatment and prognosis. Br. J. Radiol. 2009; 82 (984): e249-e252.; Lai H.Y., Chen C.K., Lee Y.H. et al. Multicentric aggressive angiomyolipomas: A rare form of PEComas. Am. J. Roentgenol. 2006; 186: 837-840.; Lane B.R., Aydin H., Danforth T.L. et al. Clinical correlates of renal angiomyolipoma subtypes in 209 patients: classic, fat poor, tuberous sclerosis associated and epithelioid. J. Urol. 2008; 180: 836-843.; Alexandros K., Filippos L., Stylianos K. Ultrasound and CT imaging assessment of renal angiomyolipoma. BMJ Case Reports 2010; doi:10.1136/bcr.01.2010.2624; Bakshi S.S., Vishal K., Kalia V. et al. Aggressive renal angiomyolipoma extending into the renal vein and inferior vena cava - an uncommon entity. Br. J. Radiol. 2011; 84 (1004): e166-e168.; Merran S., Vieillefond A., Peyromaure M. et al. Renal angiomyolipoma with calcification: CT-pathology correlation. Br. J. Radiol. 2004; 77: 782-783.; Garin J.M., Marco I., Salva A. et al. CT and MRI in fat-containing papillary renal cell carcinoma. Br. J. Radiol. 2007; 80: e193-e195.; Zagoria R. Genitourinary Radiology: Radiology Requisites Series. New York: Mosby, 2004. 349 p.; Israel G.M., Bosniak M.A., Slywotzky C.M. et al. CT differentiation of large exophytic renal angiomyolipomas and perirenal liposarcomas. Am. J. Roentgenol. 2002; 179 (3): 769-773.; Jun Li M., Yan-Li W. Malignant epithelioid angiomyolipoma of the kidney with pulmonary metastases and p53 gene mutation. Wld J. Surg. Oncol. 2012; 10: 213.; Fergany A.F., Hafez K.S., Novick A.C. Long-term results of nephron sparing surgery for localized renal cell carcinoma: 10-year followup. J. Urol. 2000; 163: 442-445.; Kim J.W., Lee T.W., Kim M.J. et al. Spontaneous rupture of renal angiomyolipoma in a female tuberous sclerosis patient with pulmonary lymphangioleiomyomatosis. Korean J. Urol. 2007; 48: 344-347.; Timothy W., Prasanna S. Renal angiomyolipoma presenting with massive retroperitoneal haemorrhage due to deranged clotting factors: a case report. Cases J. 2008; 1: 213.; Hadley D.A., Bryant L.J., Ruckle H.C. Conservative treatment of renal angiomyolipomas in patient with tuberous sclerosis. Clin. Nephrol. 2006; 65: 22-27.; Teresa L., Danforth T.L., Lane B.R. Conservative management of giant symptomatic angiomyolipomas in patients with the tuberous sclerosis complex. Br. J. Urol. Int. 2007; 100 (4): 794-797.; Lang E.K. Percutaneous and Interventional Urology and Radiology. New York: Thieme, 1990. 784 p.; Brecher M.E., Gill W.B., Straus F.H. 2nd Angiomyolipoma with regional lymph node involvement and long-term follow-up study. Hum. Pathol. 1986; 17: 962-963.; Yamakado K., Tanaka N., Nakagawa T. et al. Renal Angiomyolipoma: Relationships between Tumor size, Aneurysm Formation, and Rupture. Radiology. 2002; 225: 78-82.; Aruna R.P., Ranjan C., Ashwani G. et. al. Giant aneurysm formation in sporadic renal angiomyolipoma. J. Radiol. Case Rep. 2010; 4 (6): 21-27.; Bharwani N., Christmas T.J., Jameson C. et. al. Epithelioid angiomyolipoma: imaging appearances. Br. J. Radiol. 2009; 82: 249-252.; Nese N., Martignoni G., Fletcher C.D. et al. Pure epithelioid PEComas of the kidney: A clinicopathologic study of 41 cases: detailed assessment of morphology and risk stratification. Am. J. Surg. Pathol. 2011; 35 (2): 161-176.; Martignoni G., Pea M., Rigaud G. et al. Renal angiomyolipoma with epithelioid sarcomatous transformation and metastases. Am. J. Surg. Pathol. 2000; 24: 889-894.; Yamamoto T, Ito K., Suzuki K. et. al. Rapidly progressive malignant epithelioid angiomyolipoma of the kidney. J. Urol. 2002; 168: 190-191.; Smith Jr. J.A., Howards S.S., Preminger G.M. Hinman's Atlas of Urologic Surgery: Expert Consult. New York: Elsevier, 2012. 1184 p.; Dickinson M., Ruckle H., Beaghler M. et al. Renal angiomyolipoma: optimal treatment based on size and symptoms. Clin. Nephrol. 1998; 49: 281-286.; Boorjian S.A., Frank I., Inman B. et al. The role of partial nephrectomy for the management of sporadic renal angiomyolipoma. Urology. 2007; 70: 1064-1068.; Stephen F., Alan S. Treatment of angiomyolipoma at a tertiary care centre: the decision between surgery and angioembolization. Can. Urol. Assoc. J. 2011; 5 (6): E138-E141.; Boorjian S.A., Frank I., Inman B. et al. The role of partial nephrectomy for the management of sporadic renal angiomyolipoma. Urology. 2007; 70 (6): 1064-1068.; Ewalt D.H., Diamond N., Rees C. et al. Long-term outcome of transcatheter embolization of renal angiomyolipomas due to tuberous sclerosis comlex. J. Urol. 2005; 174: 1764-1766.; Williams J.M., Racadio J.M. Embolization of renal angiomyolipoma in patient with tuberous sclerosis complex. Am. J. Kidney Dis. 2006; 47: 95-102.; Bissler J.J., Racadio J., Donnelly L.F. et al. Reduction of postembolization syndrome after ablation of renal angiomyolipoma. Am. J. Kidney Dis. 2002; 39: 966-971.; Boorjian S.A., Frank I., Inman B. et. al. The role of partial nephrectomy for the management of sporadic renal angiomyolipoma. Urology. 2007; 70: 1064-1068.; https://medvis.vidar.ru/jour/article/view/28
Availability: https://medvis.vidar.ru/jour/article/view/28
-
13Academic Journal
Authors: Павлов, В., Кутлыева, Л., Гилязова, И., Загидуллин, А., Сафиуллин, Р., Халиуллин, А., Измайлов, А., Климентова, Е., Шафигина, А., Хуснутдинова, Э.
Subject Terms: ПОЧЕЧНО-КЛЕТОЧНАЯ КАРЦИНОМА, ДНК-ЛОКУСЫ, ГЕНОТИП
File Description: text/html
-
14Academic Journal
Authors: Павлов, В., Кутлыева, Л., Гилязова, И., Загидуллин, А., Мустафин, А., Халиуллин, А., Ямалитдинова, Р., Климентова, Е., Зырянов, А., Пушкарев, А., Хуснутдинова, Э.
File Description: text/html
-
15Academic Journal
Source: EPMA J
EPMA Journal. 2015. Vol. 6, № 1, Art. 20. P. 1-7Subject Terms: молекулярные маркеры, 2. Zero hunger, 03 medical and health sciences, молекулярные мишени, 0302 clinical medicine, эпигенетика, прогноз болезни, почечно-клеточная карцинома, иммунный ответ, Review, рак почки, 3. Good health
Linked Full TextAccess URL: https://link.springer.com/content/pdf/10.1186/s13167-015-0042-2.pdf
https://pubmed.ncbi.nlm.nih.gov/26500709
https://pubmed.ncbi.nlm.nih.gov/26500709/
https://www.ncbi.nlm.nih.gov/pubmed/26500709
https://core.ac.uk/display/81773581
https://link.springer.com/content/pdf/10.1186%2Fs13167-015-0042-2.pdf
https://link.springer.com/article/10.1186/s13167-015-0042-2
https://europepmc.org/articles/PMC4617448
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000620325 -
16Academic Journal
Source: Медицинский вестник Башкортостана.
Subject Terms: ПОЧЕЧНО-КЛЕТОЧНАЯ КАРЦИНОМА, ДНК-ЛОКУСЫ, ГЕНОТИП, 3. Good health
File Description: text/html
-
17Academic Journal
Source: Медицинский вестник Башкортостана.
Subject Terms: ПОЧЕЧНО-КЛЕТОЧНАЯ КАРЦИНОМА, ГЕНЫ-СУПРЕССОРЫ ОПУХОЛЕВОГО РОСТА, ГЕНЫ ФАКТОРОВ РОСТА, 3. Good health
File Description: text/html
-
18Academic Journal
Authors: Волченко Н.Н., Гоева Н.С., Воробьев Н.В., Мурадян А.Г., Ратушная В.В.
Source: Альманах клинической медицины
Subject Terms: мочеполовая система, почечно-клеточная карцинома, тиреоидоподобная фолликулярная карцинома, genitourinary system, renal cell carcinoma, Thyroid-like follicular carcinoma
Availability: https://repository.rudn.ru/records/article/record/67937/