Εμφανίζονται 1 - 9 Αποτελέσματα από 9 για την αναζήτηση '"потенциал глобального потепления"', χρόνος αναζήτησης: 0,50δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Πηγή: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 63, № 6 (2020); 554-562 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 63, № 6 (2020); 554-562 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2020-63-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2011/1748; On the Role of Working Fluid Properties in Organic Rankine Cycle Performance / M. Z. Stijepovic [et al.] // Applied Thermal Engineering. 2012. Vol. 36. P. 406–413. https://doi.org/10.1016/j.applthermaleng.2011.10.057.; Fluid Selection and Parametric Optimization of Organic Rankine Сycle Using Low Temperature Waste Heat / Z. Q. Wang [et al.] // Energy. 2012. Vol. 40, Is. 1. P. 107–115. https://doi.org/10.1016/j.energy.2012.02.022.; Овсянник, А. В. Турбодетандерная установка на диоксиде углерода с производством жидкой и газообразной углекислоты / А. В. Овсянник // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2019. Т. 62, № 1. С. 77–87. https://doi.org/10.21122/1029-7448-2019-62-1-77-87.; Овсянник, А. В. Определение параметров теплообмена при парообразовании смесевых хладагентов на высокотеплопроводных порошковых спеченных капиллярно-пористых покрытиях / А. В. Овсянник, Е. Н. Макеева // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2018. Т. 61, № 1. С. 70–79. https://doi.org/10.21122/1029-7448-2018-61-1-70-79.; Бабакин, Б. С. Альтернативные хладагенты и сервис холодильных систем на их основе / Б. С. Бабакин, В. И. Стефанчук, Е. Е. Ковтунов. М.: Колос, 2000. 160 с.; Белов, Г. В. Органический цикл Ренкина и его применение в альтернативной энергетике / Г. В. Белов, М. А. Дорохова // Наука и образование: науч. изд. МГТУ им. Н. Э. Баумана. 2014. № 2. С. 99–124.; Бродянский, В. М. Эксергетический метод термодинамического анализа / В. М. Бродянский. М.: Энергия, 1973. 295 с.; Бродянский, В. М. Эксергетический метод и его приложения / В. М Бродянский, В. Фратшер, К. Михалек; под ред. В. М. Бродянского. М.: Энергоатомиздат, 1988. 288 с.; Шаргут, Я. Эксергия / Я. Шаргут, Р. Петела. М.: Энергия, 1968. 280 с.; Тригенерация энергии в турбодетандерных установках на диоксиде углерода / А. В. Овсянник [и др.] // Вестник ГГТУ им. П. О. Сухого. 2019. № 2. С. 41–51.; Синтетические холодильные агенты, регулируемые Киотским протоколом / О. Б. Цветков [и др.] // Научный журнал НИУ ИТМО. Сер. Холодильная техника и кондиционирование. 2015. № 4. С. 1–8.; Озонобезопасные хладагенты / О. Б. Цветков [и др.] // Научный журнал НИУ ИТМО. Сер. Холодильная техника и кондиционирование. 2014. № 3. С. 98–111.; https://energy.bntu.by/jour/article/view/2011

  4. 4
    Academic Journal

    Πηγή: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 62, № 3 (2019); 293-302 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 62, № 3 (2019); 293-302 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2019-62-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/1671/1593; Chicherin, S. V. Comparison of a District Heating System Operation Based on Actual Data – Omsk City, Russia, Case Study / S. V. Chicherin // International Journal of Sustainable Energy. 2018. Vol. 38, No. 6. Р. 603-614. doi:10.1080/14786451.2018.1548466; Chicherin, S. Low-Temperature District Heating Distributed from Transmission-Distribution Junctions to Users: Energy and Environmental Modelling / S. Chicherin // Energy Procedia. Vol. 147. Р. 382–389. https://doi.org/10.1016/j.egypro.2018.07.107; Экологическая целесообразность применения тепловых насосов для отопления индивидуальных жилых домов в Беларуси / Н. В. Лобикова [и др.] // Вестник Белорусско-Российского университета. 2018. Т. 59, № 2. С. 33–44.; Способы улучшения обработки воды и повышения энергетических характеристик теплового насоса типа «вода – воздух» / Л. Р. Джунусова [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2018. Т. 61, № 4. С. 372–380. https://doi.org/10.21122/1029-7448-2018-61-4-372-380.; Разработка и внедрение технологий использования низкопотенциального тепла тепловыми насосами / Д. Г. Закиров [и др.] // Технологии и технические средства механизированного производства продукции растениеводства и животноводства. 2018. Т. 94, № 1. С. 85–90.; Chicherin, S. GIS-Based Optimisation for District Heating Network Planning / S. Chicherin, A. Volkova, E. Latõšov // Energy Procedia. Vol. 149. Р. 635–641. https://doi.org/10.1016/j.egypro.2018.08.228; Evaluating the Cost of Heat for End Users in Ultra Low Temperature District Heating Networks with Booster Heat Pumps / J. Vivian [et al.] // Energy. 2018. Vol. 153. Р. 788–800. https://doi.org/10.1016/j.energy.2018.04.081; Абильдинова, C. К. Высокотемпературные тепловые насосы, в работе которых используются экологичные хладагенты нового поколения / C. К. Абильдинова, Р. А. Мусабеков, А. С. Расмухаметова // Сб. статей по матер. науч.-практ. конф. «Роль молодежи в становлении экономики знаний» РМСЭЗ – 2018. Алматы: АУЭС, 2018. С. 93–102; Курнакова, Н. Ю. О возможности повышения энергоэффективности тепловой схемы ТЭС с применением теплового насоса / Н. Ю. Курнакова, А. В. Нуждин, А. А. Волхонский // Вестник Иркутского государственного технического университета. 2018. Т. 22, № 7. С. 114–122.; Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 Relating to Emissions from Air-Conditioning Systems in Motor Vehicles and Amending Council Directive 70/156/EC, 2006 [Electronic Resource]. Offcial Journal of the European Union. Mode of access: http://tinyurl.com/lxw8nm.; Heat Pump Placement, Connection and Operational Modes in European District Heating / M. A. Sayegh [et al.] // Energy and Buildings. 2018. Vol. 166. Р. 122–144. https://doi.org/10.1016/j.enbuild.2018.02.006; Потенциал использования тепловых насосов для теплоснабжения станций метрополитена / С. Н. Науменко [и др.] // Вестник научно-исследовательского института железнодорожного транспорта. 2018. Т. 77, № 4. С. 200–204.; Does Heat Pumps Perform Energy Efficiently as We Expected: Field Tests and Evaluations on Various Kinds of Heat Pump Systems for Space Heating / J. Deng [et al.] // Energy and Buildings. 2019. Vol. 182. Р. 172–186. https://doi.org/10.1016/j.enbuild.2018.10.014; https://energy.bntu.by/jour/article/view/1671

  5. 5
    Academic Journal

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 11-12 (2016); 14-36 ; Альтернативная энергетика и экология (ISJAEE); № 11-12 (2016); 14-36 ; 1608-8298 ; 10.15518/isjaee.2016.11-12

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/784/758; International Energy Agency Technical Report, 2013 Key World Energy Statistics, Website: http://www.iea.org/publications/freepublications/publication/KeyWorld2013_FINAL_WEB.pdf; 2013 [accessed 01.10.2013].; Dincer, I. “Green Methods for Hydrogen Production” International Journal of Hydrogen Energy, 2012, 37: 1954–1971.; Acar, C. and Dincer, I. “Comparative Assessment of Hydrogen Production Methods from Renewable and Non-renewable Sources” International Journal of Hydrogen Energy, 2014, 39: 1–12.; Dincer I. “Environmental and Sustainability Aspects of Hydrogen and Fuel Cell Systems” International Journal of Energy Research, 2007, 31(1): 29–55.; Ryland, D. K., Li, H. and Sadhankar, R. R. “Electrolytic Hydrogen Generation Using CANDU Nuclear Reactors” International Journal of Energy Research, 2007, 31(12): 1142–1155.; Dincer, I. and Balta, M. T. “Potential Thermochemical and Hybrid Cycles for Nuclear-Based Hydrogen Production” International Journal of Energy Research, 2011, 35(2): 123–137.; Muradov, N. Z. and Veziroglu, T. N. “From Hydrocarbon to Hydrogen-carbon to Hydrogen Economy” International Journal of Hydrogen Energy, 2005, 30: 225–237.; Levin, D. B. and Chahine, R. “Challenges for Renewable Hydrogen Production from Biomass” International Journal of Hydrogen Energy, 2010, 35: 4962–4969.; Awad, A. H. and Veziroglu, T. N. “Hydrogen vs. Synthetic Fossil Fuels” International Journal of Hydrogen Energy, 1984, 9: 355–366.; Yilanci, A., Dincer, I. and Ozturk, H. K. “A Review on Solar-hydrogen/Fuel Cell Hybrid Energy Systems for Stationary Applications” Progress in Energy and Combustion Science, 2009, 35: 231–244.; Lodhi, M. A. K. “Hydrogen Production from Renewable Sources of Energy” International Journal of Hydrogen Energy, 1987, 12: 461–568.; Lodhi, M. A. K. “Helio-hydro and Helio-thermal Production of Hydrogen” International Journal of Hydrogen Energy, 2004, 29: 1099–1113.; Miltner, A., Wukovitz, W., Proll, T. and Friedl A. “Renewable Hydrogen Production: A Technical Evaluation Based on Process Simulation” Journal of Cleaner Production, 2010, 18: 51–62.; Lemus, R. G. and Duart, J. M. M. “Updated Hydrogen Production Costs and Parities for Conventional and Renewable Technologies” International Journal of Hydrogen Energy, 2010, 35: 3929–3936.; Alstrum-Acevedo, J. H., Brennaman, M. K. and Meyer, T. J. “Chemical Approaches to Artificial Photosynthesis” Inorganic Chemistry, 2005, 44: 6802– 6827.; Tanksale, A., Beltramini, J. N. and Lu, G. M. “A Review of Catalytic Hydrogen Production Methods from Biomass” Renewable and Sustainable Energy Reviews, 2010, 14: 166–182.; Bhandari, R., Trudewind, C. A. and Zapp, P. “Life Cycle Assessment of Hydrogen Production via Electrolysis a Review” Journal of Cleaner Production, 2013, http://dx.doi.org/10.1016/j.jclepro.2013.07.048; Karunadasa, H. I., Chang, C. J. and Long, J. R. “A Molecular Molybdenum-oxo Catalyst for Generating Hydrogen from Water” Nature, 2010, 464:1329–1333.; El-Bassuoni, A. M. A., Sheffield, J. W. and Veziroglu, T. N. “Hydrogen and Fresh Water Production from Sea Water” International Journal of Hydrogen Energy, 1982, 7: 919–923.; Ni, M., Leung, M. K. H., Sumathy, K. and Leung, D. Y. C. “Potential of Renewable Hydrogen Production for Energy Supply in Hong Kong” International Journal of Hydrogen Energy, 2006, 31: 1401–1412.; Fulcheri, L., Probst, N., Falmant, G., Fabry, F., Grivei, E. and Bourrat, X. “Plas ma Processing: A Step towards the Production of New Grades of Carbon Black” Carbon, 2002, 40: 169–176.; Gaudernack, B. and Lynum, S. “Hydrogen from Natural Gas without Release of CO2 to the Atmosphere” International Journal of Hydrogen Energy, 1998, 12: 1087–1093.; Baykara, S. Z. “Experimental Solar Water Thermolysis” International Journal of Hydrogen Energy, 2004, 29(14): 1459–1469.; Balta, M. T., Dincer, I. and Hepbasli, A. “Thermodynamic Assessment of Geothermal Energy Use in Hydrogen Production” International Journal of Hydrogen Energy, 2009, 34: 2925–2939.; Rand, D. A. J. and Dell, R. M. “Fuels Hydrogen Production: Coal Gasification” Encyclopedia of Electrochemical Power Sources, 2009, 276–292.; Acar, C., Dincer, I. and Zamfirescu, C. “A Review on Selected Heterogeneous Photocatalysts for Hydrogen Production” International Journal of Energy Research, 2014, http://dx.doi.org/10.1002/er.3211; Quan, X., Yang, S., Ruan, X. and Zhao, H. “Preparation of Titania Nanotube and Their Environmental Applications as Electrode” Environmental Science and Technology, 2005, 39: 3770– 3775.; Rabbani, M., Dincer, I. and Naterer, G. F. “Efficiency Assessment of a Photoelectrochemical Chloralkali Process for Hydrogen and Sodium Hydroxide Production” International Journal of Hydrogen Energy, 2014, 39: 1941–1956.; Acar, C. and Dincer, I. “Analysis and Assessment of a Continuous-Type Hybrid Photoelectrochemical System for Hydrogen Production” International Journal of Hydrogen Energy, 2014, in review.; Koutrouli, E. K., Kalfas, H., Gavala, H. N., Skiadas, I. V., Stamatelatou, K. and Lyberatos G. “Hydrogen and Methane Production through Two-stage Mesophilic Anaerobic Digestion of Olive Pulp” Bioresource Technology, 2009,100: 3718–3723.; Das, D. and Veziroglu, T. N. “Advances in Biological Hydrogen Production Processes” International Journal of Hydrogen Energy, 2008, 33: 6046–6057.; Hallenbeck, P. C., Abo-Hashesh, M. and Ghosh, D. “Strategies for Improving Biological Hydrogen Production” Bioresource Technology, 2012, 110: 1–9.; Royal Belgian Academy Council of Applied Science Report: Hydrogen as an Energy Carrier, Website: http://www.kvab.be/downloads/lezingen/hydrogen_energycarrier.pdf; 2006 [accessed 09.01.13].; Holladay, J. D., Hu, J., King, D. L. and Wang, Y. “An Overview of Hydrogen Production Technologies” Catalysis Today, 2009, 139: 244–260.; Kotay, S. M. and Das, D. “Biohydrogen as a Renewable Energy Resource Prospects and Potentials” International Journal of Hydrogen Energy, 2008, 33: 258–263.; FreedomCAR and Fuel Partnership. Report: Hydrogen Production Overview of Technology Options, Website: http://www.energetics.com/resourcecenter/products/communication/Documents/hydrogenproductionbrochure.pdf; 2009 [accessed 01.12.12].; Kone, A. C. and Buke, T. “Forecasting of CO2 Emissions from Fuel Combustion Using Trend Analysis” Renewable and Sustainable Energy Reviews, 2010, 14: 2906–2915.; Abanades, A. “The Challenge of Hydrogen Production for the Transition to a CO2-free Economy” Agronomy Research Biosystems Engineering Special Issue, 2012, 1: 11–16.; Guinee, J. B, Gorree, M., Heijungs, R., Huppes, G., Kleijn, R. and Koning, A. “Life Cycle Assessment an Operational Guide to the ISO Standards” The Center of Environmental Science of Leiden University, 2001, Website: http://media.leidenuniv.nl/legacy/new-dutchlca-guide-part-1.pdf [accessed 10.12.12].; Ozbilen, A., Dincer, I. and Rosen, M. A. “A Comparative Life Cycle Analysis of Hydrogen Production via Thermochemical Water Splitting Using a Cu-Cl Cycle” International Journal of Hydrogen Energy 2011, 36: 11321–11327.; Bhandari, R., Trudewind, C. A. and Zapp, P. “Life Cycle Assessment of Hydrogen Production via Electrolysis A Review” Journal of Cleaner Production, 2013, http://dx.doi.org/10.1016/j.jclepro.2013.07.048.; Ozbilen, A., Dincer, I. and Rosen, M. A. “Comparative Environmental Impact and Efficiency Assessment of Selected Hydrogen Production Methods” Environmental Impact Assessment Review, 2013, 42: 1–9.; Kopp, R. E. and Mignone, B. K. “The U.S. Government’s Social Cost of Carbon Estimates after Their First Two Years: Pathways for Improvement” Economics, 2012, 6: 1–43.; Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., Hanson, C. E. “Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change” Cambridge University Press, 2007, Website: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg2_report_impacts_adaptation_and_vulnerability.htm [accessed 15.11.12].; Parthasarathy, P. and Narayanan, K. S. “Hydrogen Production from Steam Gasification of Biomass: Influence of Process Parameters on Hydrogen Yield A Review” Renewable Energy, 2014, 66: 570-579.; Uddina, M. N., Dauda, W. M. A. W. and Abbas, H. F. “Potential Hydrogen and Non-condensable Gases Production from Biomass Pyrolysis: Insights into the Process Variables” Renewable and Sustainable Energy Reviews, 2013, 27: 204–224.; Ngoha, S. K. and Njomo, D. “An Overview of Hydrogen Gas Production from Solar Energy” Renewable and Sustainable Energy Reviews, 2012, 16: 6782–6792.; Trainham, J. A., Newman, J., Bonino, C. A., Hoertz, P. G. and Akunuri, N. “Whither solar fuels?” Current Opinion in Chemical Engineering, 2012, 1: 204–210.; Ismail, A. A. and Bahnemannc, D. W. “Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review” Solar Energy Materials and Solar Cells, 2014, 128: 85–101.; Singh, L. and Wahid, Z. A. “Methods for Enhancing Bio-hydrogen Production from Biological Process: A Review” Journal of Industrial and Engineering Chemistry, 2014, http://dx.doi.org/10.1016/j.jiec.2014.05.035; Ibrahim, N., Kamarudina, S. K. and Minggua, L. J. “Biofuel from Biomass via Photo-electrochemical Reactions: An Overview” Journal of Power Sources, 2014, 259: 33–42.; Bicakova, O. and Straka, P. “Production of Hydrogen from Renewable Resources and its Effectiveness” International Journal of Hydrogen Energy, 2012, 37: 11563–11578.; Dincer, I. and Zamfirescu, C. “Sustainable Hydrogen Production Options and the Role of IAHE” International Journal of Hydrogen Energy, 2012, 37: 16266–16286.; https://www.isjaee.com/jour/article/view/784

  6. 6
  7. 7
  8. 8
  9. 9