-
1Academic Journal
Συγγραφείς: O. V. Sirotkina, A. S. Ulitina, Y. I. Zhilenkova, E. A. Zolotova, M. A. Simakova, O. M. Moiseeva, T. V. Vavilova, О. В. Сироткина, А. С. Улитина, Ю. И. Жиленкова, Е. А. Золотова, М. А. Симакова, О. М. Моисеева, Т. В. Вавилова
Συνεισφορές: The study was supported by state assignment No. 121031100305-9 «Development of a decision support system for predicting the development of long-term outcomes of venous thromboembolic complications», Исследование выполнено при поддержке ГЗ №121031100305-9 «Разработка системы поддержки принятия решений прогноза развития отдаленных исходов венозных тромбоэмболических осложнений».
Πηγή: Pharmacogenetics and Pharmacogenomics; № 1 (2023); 20-32 ; Фармакогенетика и фармакогеномика; № 1 (2023); 20-32 ; 2686-8849 ; 2588-0527
Θεματικοί όροι: посттромбоэмболический синдром, miR-144, miR-451, microvesicles, pulmonary embolism, post-thromboembolic syndrome, микровезикулы, ТЭЛА
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/272/262; Pastori D, Cormaci VM, Marucci S, et al. A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. Int J Mol Sci. 2023 Feb 5;24(4):3169. DOI:10.3390/ijms24043169.; Валиева З.С., Мартынюк Т.В. Хроническая тромбоэмболическая легочная гипертензия: от патогенеза к выбору тактики лечения. Терапевтический архив. 2022;94(7):791–796. [Valieva ZS, Martynyuk TV. Chronic thromboembolic pulmonary hypertension: from pathogenesis to the choice of treatment tactics. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(7):791–796. (In Russ.)]. DOI:10.26442/00403660.2022.07.201741.; Антонова О.А., Якушкин В.В., Мазуров А.В. Коагуляционная активность мембранных микрочастиц. Биологические мембраны. 2019;36(3):155–175. [Antonova OA, Yakushkin VV, Mazurov AV. Coagulation activity of membrane microparticles. Biologicheskiye membrany = Biological membranes. 2019;36(3):155–175. (In Russ.)]. DOI:10.1134/S0233475519030034.; Золотова Е.А., Симакова М.А., Жиленкова Ю.И. и др. Роль микро-РНК в патогенезе венозных тромбоэмболических осложнений. Российский журнал персонализированной медицины. 2022;2(1):43–50. [Zolotova EA, Simakova MA, Zhilenkova YuI et al. The role of miRNAs in the pathogenesis of venous thromboembolic complications. Russian Journal for Personalized Medicine. 2022;2(1):43–50. (In Russ.)]. DOI:10.18705/2782-3806-2022-2-1-43-50.; Alberro A, Iparraguirre L, Fernandes A, Otaegui D. Extracellular vesicles in blood: sources, effects, and applications. Int J Mol Sci. 2021;22(15):8163. DOI:10.3390/ijms22158163.; He Y, Wucorresponding Q. The effect of extracellular vesicles on thrombosis. J Cardiovasc Transl Res. 2022 Nov 28:1–16. DOI:10.1007/s12265-022-10342-w.; Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2021;22(1):153. DOI:10.3390/ijms22010153.; Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. DOI:10.1038/35057062.; Xue Y, Chen R, Qu L, Cao X. Noncoding RNA: from dark matter to bright star. Sci China Life Sci. 2020;63(4):463–468. DOI:10.1007/s11427-020-1676-5.; Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–3364. DOI:10.1093/nar/gkz097.; Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1):132. DOI:10.3390/ijms21010132.; Saliminejad K, Khorram Khorshid HR, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. DOI:10.1002/jcp.27486.; Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 2010;49(5): 841–50. DOI:10.1016/j.yjmcc.2010.08.007.; Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010 Jul 5; 207(7):1351–8. DOI:10.1084/jem.20100458.; Wang X, Hong Y, Wu L et al. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ. Front Neurol. 2021;11:551411. DOI:10.3389/fneur.2020.551411.; He Q, Wang F, Honda T, et al. Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci Rep. 2020;10(1):6127. DOI:10.1038/s41598-020-63335-7.; Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 2012;94(2):379–390. DOI:10.1093/cvr/cvs096.; Tao L, Yang L, Huang X, et al. Reconstruction and aof the lncRNAmiRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in dilated cardiomyopathy. Front Genet. 2019;10:1149. DOI:10.3389/fgene.2019.01149.; Turczyńska KM, Bhattachariya A, Säll J, et al. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One. 2013;8(5): e65135. DOI:10.1371/journal.pone.0065135.; Сироткина О.В., Ермаков А.И., Гайковая Л.Б. и др. Микрочастицы клеток крови у больных COVID-19 как маркер активации системы гемостаза. Тромбоз, гемостаз и реология. 2020;(4):35–40. [Sirotkina OV, Ermakov AI, Gaykovaya LB, et al. Microparticles of blood cells in patients with COVID-19 as a marker of hemostasis activation. Tromboz, gemostazireologija = Thrombosis, hemostasis and rheology. 2020;(4):35–40. (In Russ.)]. DOI:10.25555/THR.2020.4.0943.; Kabanova S, Kleinbongard P, Volkmer J, et al. Gene expression analysis of human red blood cells. Int J Med Sci. 2009;6(4):156–159. DOI:10.7150/ijms.6.156.; Groen K, Maltby VE, Lea RA, et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med Genomics. 2018;11(1):48. DOI:10.1186/s12920-018-0365-7.; Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One. 2008;3(6):e2360. DOI:10.1371/journal.pone.0002360.; Lamba V, Ghodke-Puranik Y, Guan W, Lamba JK. Identification of suitable reference genes for hepatic microRNA quantitation. BMC Res Notes. 2014;7:129. DOI:10.1186/1756-0500-7-129.; Shen J, Wang Q, Gurvich I, et al. Evaluating normalization approaches for the better identification of aberrant microRNAs associated with hepatocellular carcinoma. Hepatoma Res. 2016;2:305–315. DOI:10.20517/2394-5079.2016.28.; Wagner GM, Chiu DT, Yee MC, Lubin BH. Red cell vesiculation – a common membrane physiologic event. J Lab Clin Med. 1986;108(4):315–24.; Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10(7):1355–62. doi:10.1111/j.1538-7836.2012.04758.x.; Koshiar RL, Somajo S, Norström E, Dahlbäck B. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One. 2014;9(8):e104200. DOI:10.1371/journal.pone.0104200.; Papapetrou EP, Korkola JE, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells. 2010;28(2):287–96. DOI:10.1002/stem.257.; Fang X, Shen F, Lechauve C, et al. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica. 2018 Mar;103(3):406–416. DOI:10.3324/haematol.2017.177394.; Yu D, dos Santos CO, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010; 24(15):1620–1633. DOI:10.1101/gad.1942110.; Feng L, Yang X, Liang S, et al. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Part Fibre Toxicol. 2019;16(1):16. DOI:10.1186/s12989-019-0300-x.; Oto J, Plana E, Solmoirago MJ, et al. microRNAs and markers of neutrophil activation as predictors of early incidental post-surgical pulmonary embolism in patients with intracranial tumors. Cancers (Basel). 2020;12(6):1536. DOI:10.3390/cancers12061536.; Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in venous thromboembolism. Int J Mol Sci. 2020;21(7):2602. DOI:10.3390/ijms21072602.; He F, Ni N, Wang H et al. OUHP: an optimized universal hairpin primer system for cost-effective and high-throughput RT-qPCR-based quantification of microRNA (miRNA) expression. Nucleic Acids Res. 2022;50(4):e22. DOI:10.1093/nar/gkab1153.; Forero DA, González-Giraldo Y, Castro-Vega LJ, Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques. 2019;67(4):192–199. DOI:10.2144/btn-2019-0065.; Busk PK. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics. 2014;15:29. DOI:10.1186/1471-2105-15-29.; D’Agata R, Spoto G. Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem. 2019;411(19):4425–4444. DOI:10.1007/s00216-019-01621-8.; Zárybnický T, Matoušková P, Ambrož M, et al. The selection and validation of reference genes for mRNA and microRNA expression studies in human liver slices using RT-qPCR. Genes (Basel). 2019;10(10):763. DOI:10.3390/genes10100763.; Tafrihi M, Hasheminasab E. MiRNAs: biology, biogenesis, their web-based tools, and databases. Microrna. 2019;8(1):4–27. DOI:10.2174/2211536607666180827111633.; Felekkis K, Papaneophytou C. Challenges in using circulating micro- RNAs as biomarkers for cardiovascular diseases. Int J Mol Sci. 2020;21(2):561. DOI:10.3390/ijms21020561.; Rogula S, Pomirski B, Czyżak N, et al. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med. 2022;9:980718. DOI:10.3389/fcvm.2022.980718
-
2Academic Journal
Συγγραφείς: O. V. Sirotkina, A. S. Ulitina, Yu. I. Zhilenkova, E. A. Zolotova, M. A. Simakova, O. M. Moiseeva, T. V. Vavilova, О. В. Сироткина, А. С. Улитина, Ю. И. Жиленкова, Е. А. Золотова, М. А. Симакова, О. М. Моисеева, Т. В. Вавилова
Πηγή: Medical Genetics; Том 21, № 8 (2022); 47-50 ; Медицинская генетика; Том 21, № 8 (2022); 47-50 ; 2073-7998
Θεματικοί όροι: посттромбоэмболический синдром, miR-223, microRNA, microvesicles, PE, post-thromboembolic syndrome, микроРНК, микровезикулы, ТЭЛА
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2132/1599; Сироткина О.В., Улитина А.С., Масленников А.Б., Вавилова Т.В. Генетические факторы риска развития тромбозов: накопленный опыт и новые горизонты. Молекулярно-биологические технологии в медицинской практике. Под ред. чл.-корр. РАЕН А.Б. Масленникова. Вып. 31. Новосибирск: Академиздат, 2020. C. 48-62.; Золотова Е.А., Жиленкова Ю.И., Сироткина О.В. и др. Повышение уровня внеклеточных везикул тромбоцитарного и эндотелиального происхождения у пациентов с перенесенной тромбоэмболией легочной артерии. Современные достижения химико-биологических наук в профилакической и клинической медицине: сборник научных трудов 2-й Всероссийской научно-практической конференции с международным участием. 2-3 декабря 2021 года. Под. ред. А.В. Силина, Л.Б. Гайковой. СПб.: Изд-во СЗГМУ им. И.И. Мечникова, 2021. С. 243-246.; Zarà M., Guidetti G.F., Camera M. et al. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis.International Journal of Molecular Sciences. 2019;20(11):2840.; Jiang Z., Ma J., Wang Q., Wu F., Ping J., Ming L.Combination of Circulating miRNA-320a/b and D-Dimer Improves Diagnostic Accuracy in Deep Vein Thrombosis Patients. Med Sci Monit. 2018;24:2031-2037.; Золотова Е.А., Симакова М.А., Жиленкова Ю.И. и др. Роль микро-РНК в патогенезе венозных тромбоэмболических осложнений. Российский журнал персонализированной медицины. 2022;2(1):43-50.; Di Martino M.T., Arbitrio M., Caracciolo D. et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. Molecular Therapy: Nucleic Acids. 2022;27:1191-1224.; Liu T., Kang.J, Liu F. Plasma Levels of microRNA-221 (miR-221) are Increased in Patients with Acute Pulmonary Embolism. Medical Science Monitor. 2018;24:8621-8626.; Zhang W., Tao Z., Xu F., Diao Q., Li J., Zhou L., Miao Y., Xie S., Wan J., Xu R. An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension. BioMed Research International. 2021, Article ID 5765029.; Sobrero M., Montecucco F., Carbone F. Circulating MicroRNAs for Diagnosis of Acute Pulmonary Embolism: Still a Long Way to Go. Biomed Res Int. 2022; 2022: 4180215.; Кишенко В.В., Кондратов К.А., Михайловский В.Ю. и др. Выделение тромбоцитами мембранных везикул, несущих зрелую микроРНК-221 и активированную каспазу-3, в процессе хранения тромбоцитного концентрата. Цитология. 2018;60(7): 563-566.; Merkerova M., Belickova M., Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol. 2008;81(4):304-310.; Shen N.N., Zhang C., Li Z., Kong L.C., Wang X.H., Gu Z.C., Wang J.L. MicroRNA expression signatures of atrial fibrillation: The critical systematic review and bioinformatics analysis. Experimental Biology and Medicine. 2020; 245: 42-53.; Duan X., Zhan Q., Song B. et al. Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke. J. Diabetes.Complications. 2014;28(5):705-710.; Sun L.L., Lei F.R., Jiang X.D., Du X.L., Xiao L., Li W.D., Li X.Q. LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FGF2 and MMP2/9 through the miR-223-3p/FOXO1/Akt pathway. AGING. 2020;12(5):4506-526.; Sirotkina O., Kishenko V., Melnishnikova O. et al. Platelet microparticles containing microRNA as a marker of the antiplatelet therapy’s effectiveness. Res. Pract. Thromb. Haemost. 2019;3(Suppl. 1): 36.
-
3Academic Journal
Συγγραφείς: A. Klimenko A., N. Demidova A., N. Shostak A., M. Anischenko O., А. Клименко А., Н. Демидова А., Н. Шостак А., М. Анищенко О.
Πηγή: Rational Pharmacotherapy in Cardiology; Vol 16, No 6 (2020); 1002-1008 ; Рациональная Фармакотерапия в Кардиологии; Vol 16, No 6 (2020); 1002-1008 ; 2225-3653 ; 1819-6446
Θεματικοί όροι: acute pulmonary embolism, pulmonary embolism, chronic thromboembolic pulmonary hypertension, post-thromboembolic syndrome, chronic thromboembolic pulmonary disease, residual pulmonary thrombosis, cardiorespiratory test, rehabilitation, тромбоэмболия легочной артерии, легочная эмболия, хроническая тромбоэмболическая легочная гипертензия, посттромбоэмболический синдром, хроническая тромбоэмболическая болезнь легких, остаточный тромбоз легочных артерий, кардиореспи-раторный тест, реабилитация
Περιγραφή αρχείου: application/pdf
Relation: https://www.rpcardio.com/jour/article/view/2360/2099; Barco S., Mahmoudpour S.H., Valerio L. et al. Trends in mortality related to pulmonary embolism in the European Region, 2000-15: analysis of vital registration data from the WHO Mortality Database. Lancet Respir Med. 2020;8(3):277-287. DOI:10.1016/S2213-2600(19)30354-6.; Konstantinides S.V., Barco S., Rosenkranz S., et al. Late outcomes after acute pulmonary embolism: rationale and design of FOCUS, a prospective observational multicenter cohort study. J Thromb Thrombolysis. 2016;42(4):600-9. DOI:10.1007/s11239-016-1415-7.; Pengo V., Lensing A.W., Prins M.H., et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med. 2004;350(22):2257-64. DOI:10.1056/NEJ-Moa032274.; Klok F.A., Zondag W., van Kralingen K.W. et al. Patient outcomes after acute pulmonary embolism. A pooled survival analysis of different adverse events. Am J Respir Crit Care Med. 2010;181(5):501-6. DOI:10.1164/rccm.200907-1141OC.; Fanikos J., Piazza G., Zayaruzny M., Goldhaber S.Z. Long-term complications of medical patients with hospital-acquired venous thromboembolism. Thromb Haemost. 2009 ;1 02(4):688-93. DOI:10.1160/TH09-04-0266.; Noble S., Lewis R., Whithers J., et al. Long-term psychological consequences of symptomatic pulmonary embolism: a qualitative study. BMJ Open. 2014;4(4):e004561. DOI:10.1136/bmjopen-2013-004561.; Ramfrez P., Otero R., Barbera J.A. Chronic Pulmonary Thromboembolic Disease. Arch Bronconeumol. 2020;56(5):314-321. DOI:10.1016/j.arbres.2019.10.027.; Raj L., Robin P., Mao R.L., et al. Predictors for Residual Pulmonary Vascular Obstruction after Unprovoked Pulmonary Embolism: Implications for Clinical Practice-The PADIS-PE Trial. Thromb Haemost. 2019;119(9):1489-97. DOI:10.1055/s-0039-1692424.; Hvid-Jacobsen K., Fogh J., Nielsen S.L., et al. Scintigraphic control of pulmonary embolism. Eur J Nucl Med. 1988;14:71-2. DOI:10.1007/bf00253444.; Ende-Verhaar Y.M., Cannegieter S.C., Noordegraaf A.V., et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: A contemporary view of the published literature. Eur Respir J. 2017;49(2):pii 1601792. DOI:10.1183/13993003.01792-2016.; Wang J., Xu M., Sun N., et al. Factors associating with the presence of residual thrombosis after 3month treatment of acute pulmonary embolism. J Thromb Thrombolysis. 2018;45(1):27-35. DOI:10.1007/s11239-017-1561-6.; Becattini C., Giustozzi M., Cerda P., et al. Risk of recurrent venous thromboembolism after acute pulmonary embolism: Role of residual pulmonary obstruction and persistent right ventricular dysfunction. Ameta-analysis. J Thromb Haemost. 2019;17(8):1217-28. DOI:10.1111/jth.14477.; Konstantinides S.V., Meyer G., Becattini C., et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41(4):543-603. DOI:10.1093/eurheartj/ehz405.; Bonnefoy P.B., Margelidon-Cozzolino V., Catella-Chatron J., et al. What's next after the clot? Residual pulmonary vascular obstruction after pulmonary embolism: From imaging finding to clinical consequences. Thromb Res. 2019;184:67-76. DOI:10.1016/j.thromres.2019.09.038.; Dzikowska-Diduch O., Kostrubiec M., Brodka K., et al. Post-PE impairment is mostly related to newly diagnosed heart failure with preserved ejection fraction. Eur Heart J. 2019;40(1):ehz748.1085. DOI:10.1093/eurheartj/ehz748.1085.; Klok F.A., van der Hulle T., den Exter P.L., et al. The post-PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev. 2014;28(6):221-6. DOI:10.1016/j.blre.2014.07.003.; Klok F.A., van Kralingen K.W., van Dijk A.P.J., et al. Prevalence and potential determinants of exertional dyspnea after acute pulmonary embolism. Respir Med. 2010;104:1744-9. DOI:10.1016/j.rmed.2010.06.006.; Sanchez O., Helley D., Couchon S., et al. Perfusion defects after pulmonary embolism: Risk factors and clinical significance. J Thromb Haemost. 2010;8:1248-55. DOI:10.1111/j.1538-7836.2010.03844.x; Keller K., Tesche C., Gerhold-Ay A., et al. Quality of life and functional limitations after pulmonary embolism and its prognostic relevance. J Thromb Haemost. 2019;17(11):1923-34. DOI:10.1111/jth.14589.; Kim N.H., Delcroix M., Jais X., et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019;53(1): pii 1801915. DOI:10.1183/13993003.01915-2018.; Hogg K., Kimpton M., Carrier M., et al. Estimating quality of life in acute venous thrombosis. JAMA Intern Med. 2013;173(12):1067-72. DOI:10.1001/jamainternmed.2013.563.; Ma K.A., Kahn S.R., Akaberi A., et al. Serial imaging after pulmonary embolism and correlation with functional limitation at 12 months: Results of the ELOPE Study. Res Pract Thromb Haemost. 2018;2(4):670-7. DOI:10.1002/rth2.12123.; Held M., Kolb P., Grun M., et al. Functional Characterization of Patients with Chronic Thromboembolic Disease. Respiration. 2016;91(6):503-9. DOI:10.1159/000447247.; Kahn S.R., Hirsch A.M., Akaberi A., et al. Functional and exercise limitations after a first episode of pulmonary embolism: results of the ELOPE prospective cohort study. Chest. 2017;151(5):1058-68. DOI:10.1016/j.chest.2016.11.030.; Riedel M., Stanek V., Widimsky J., Prerovsky I. Longterm follow-up of patients with pulmonary thromboembolism. Late prognosis and evolution of hemodynamic and respiratory data. Chest. 1982;81:151-8. DOI:10.1378/chest.81.2.151.; Dzikowska-Diduch O., Kostrubiec M., Kurnicka K., et al. The post-pulmonary syndrome - results of echocardiographic driven follow up after acute pulmonary embolism. Thromb Res. 2020;186:30-5. DOI:10.1016/j.thromres.2019.12.008.; Клименко А.А., Шостак Н.А., Демидова Н.А., и др. Ремоделирование правых отделов сердца и уровень мозгового натрийуретического пептида при хронической тромбоэмболической лёгочной гипертензии: сравнительное одномоментное наблюдательное исследование. Рациональная Фармакотерапия в Кардиологии 2013;9(3):258-64. DOI:10.20996/1819-6446-2013-9-3-258-264.; Rivera-Lebron B., McDaniel M., Ahrar K., et al. Diagnosis, Treatment and Follow Up of Acute Pulmonary Embolism: Consensus Practice from the PERT Consortium. Clin Appl Thromb Hemost. 2019;25:1076029619853037. DOI:10.1177/1076029619853037.; Taboada D., Pepke-Zaba J., Jenkins D.P., et al. Outcome of pulmonary endarterectomy in symptomatic chronic thromboembolic disease. Eur Respir J. 2014;44(6):1635-45. DOI:10.1183/09031936.00050114.; Wiedenroth C.B., Olsson K.M., Guth S., et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic disease. Pulm Circ. 2018;8(1):2045893217753122. DOI:10.1177/2045893217753122.; Simonneau G., Torbicki A., Dorfmuller P., et al. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2017;26:16011. DOI:10.1183/16000617.0112-2016.; Simonneau G., Montani D., Celermajer D.S., et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1): pii 1801913. DOI:10.1183/13993003.01913-2018.; Klok F.A., Barco S. Follow-up after acute Pulmonary Embolism. Hamostaseologie. 2018;38(1):22-32. DOI:10.5482/HAMO-17-06-0020.; Park J.S., Ahn J., Choi J.H., et al. The predictive value of echocardiography for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism in Korea. Korean J Intern Med. 2017;32(1):85-94. DOI:10.3904/kjim.2014.175.; Quarck R., Wynants M., Verbeken E., et al. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2015;46(2):431-43. DOI:10.1183/09031936.00009914.; Zabini D., Heinemann A., Foris V., et al. Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. Eur Respir J. 2014;44(4):951-62. DOI:10.1183/09031936.00145013.; Klok F.A., Dzikowska-Diduch O., Kostrubiec M., et al. Derivation of a clinical prediction score for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. J Thromb Haemost. 2016;14(1):121-8. DOI:10.1111/jth.13175.; Otero R., EliasT, Jara L.et al. Factors associated with elevated pulmonary arterial pressure levels on the echocardiographic assessment in patients with prior pulmonary embolism. Thromb Res. 2013;131(5):e191-5. DOI:10.1016/j.thromres.2013.01.034.; Galie N., Hoeper M.M., Humbert M., et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Thromb Res. 2013;131(5):e191-5. DOI:10.1016/j.thromres.2013.01.034.; Delcroix M., Lang .I, Pepke-Zaba J., et al. Long-Term Outcome of Patients With Chronic Thromboembolic Pulmonary Hypertension: Results From an International Prospective Registry. Circulation. 2016;133(9):859-71. DOI:10.1161/CIRCULATIONAHA.115.016522.; Konstantinides S.V., Torbicki A., Agnelli G., et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35(43):3033-69, 3069a-3069k. DOI:10.1093/eurheartj/ehu283.; Galie N., Humbert M., Vachiery J.L., et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67-119. DOI:10.1093/eurheartj/ehv317.; Wiedenroth C.B., Ghofrani H.A., Adameit M.S.D., et al. Sequential treatment with riociguat and balloon pulmonary angioplasty for patients with inoperable chronic thromboembolic pulmonary hypertension. Pulm Circ. 2018;8(3):2045894018783996. DOI:10.1177/2045894018783996.; Чазова И.Е., Мартынюк Т.В. Клинические рекомендации по диагностике и лечению хронической тромбоэмболической легочной гипертензии (II часть). Терапевтический Архив. 2016;88(10):63-74. DOI:10.17116/terarkh201688663-73.; https://www.rpcardio.com/jour/article/view/2360